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Abstract— Communication latency in any delicate telerobotic
operation (such as remote surgery over distance) would impose
a significant challenge due to the temporal degradation of visual
perception and can substantially affect the outcomes. Less is
known, however, about the neurophysiological basis of how
operators adapt/react to delayed visual feedback. Identification
of such neural markers might provide novel ways for future
applications to monitor the mental workload (MW). In this
study, we recorded electroencephalography (EEG) data from
nine users while performing a peg transfer task using the
da Vinci Research Kit with three levels of induced visual
delay in the video feedback. Our results suggest that spectral
EEG-based features can provide markers of the operator’s
MW modulated by arbitrary visual delay. We also show that
the exposure to different visual delays could be successfully
classified/detected solely from EEG data, using a Riemannian
geometry-based classifier, which highlights the utility of EEG
signals for detecting the effect of visual delay on brain activity.

I. INTRODUCTION

Development of robotic teleoperation techniques has

paved the way for remote surgery [1]–[3]. Robot-assisted

surgery (RAS) allows surgeons to perform remote operations

when the subjects are located miles away [4], and even

ultimately in outer space [5]. However, in such scenarios

one may face limitations imposed by communication latency

— or ”time delay” — in the visual feedback, which can

drastically affect the performance of a surgeon. This delay

in visual feedback introduces additional demand on cognitive

processing, resulting in increased mental workload (MW)

[1], [6], [7].

MW and other cognitive states of the operator in an RAS

setting have been typically assessed via various indirect

markers including questionnaires such as the NASA Task

Load Index and the Surgery Task Load Index (e.g., [8]–

[10]), expert observations (e.g., [11]), heart rate variability
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[8], or eye-tracking markers (e.g., [12]). For example, using

such indirect markers, it has been studied how delayed video

feed in a laparoscopic procedure and RAS could increase

the MW of the surgeon [8], [13], [14]. In addition, Anvari

et al. [15] explored the effect of induced delay on the task

completion time and error rates at latencies of 150 ms and

500 ms. In another study, Madder et al. [16] investigated

the impact of video and audio feedback latency on the tele-

stenting performance during a coronary artery wiring task.

While various robotic approaches have been developed in

the past (e.g., [1], [3], [6], [17]) to mitigate the MW issue, as

assessed through the above-mentioned indirect analyses, it is

much less explored how direct neurophysiological markers

can be used to objectively quantify, monitor, and evaluate the

level of MW. Therefore, the main focus of this present study

was to investigate the possibility of capturing and decoding

the neural signatures of increased MW and related cognitive

states induced by the delayed visual feedback.

Unlike the aforementioned indirect MW assessment met-

rics, electroencephalography (EEG) provides a flexible, ef-

fective, and real-time way of recording ongoing neural pro-

cesses. Moreover, a recent study suggests that EEG provides

better markers for MW assessment than other physiological

variables (e.g., heart rate variability or electrodermal activity

[18]). Various approaches have been proposed in order to

extract direct neural correlates of MW from EEG in generic

applications, with most EEG-based studies utilizing band-

limited power spectral density (PSD) to characterize ongoing

cortical activity. In the context of RAS, some initial efforts

have also been reported in the literature (e.g., [19], [20]).

Overall, it should be highlighted that to the best of our

knowledge, the effect of visual delay in a telemanipulation

setting has not been assessed using EEG in the past. There-

fore, identifying biomarkers of MW caused by various delay

conditions might pave the way for more efficient telesurgery,

tackling the increased MW of surgeons in the presence

of feedback-delay. Therefore, this paper identifies neural

correlates of delayed visual feedback in an RAS scenario.

The robotic hardware is based on a da Vinci Research Kit

(dVRK) [21]. We recorded EEG data from 9 subjects while

performing a pick-and-place task using the dVRK under

three different delay conditions. We carried out PSD analysis

to assess plausible neural markers associated with the various

delay exposure. We also show that the exposure to different

visual delays could be detected solely from EEG data, using

a Riemannian geometry-based classifier. The classification



Fig. 1. The experimental setup includes the human test subject wearing an EEG Head Cap while manipulating the MTMs in surgeon console controlling
the PSMs and looking at a display showing the visual feedback coming from the endoscopic Camera, with and without the presence of a synthetic delay.
Figure also shows the custom-designed pick and place phantom.

study, highlights the information content of EEG signals for

detecting the effect of visual delay on brain activity.

II. EXPERIMENTS AND METHODOLOGY

A. Participants and Experimental Protocol

Our study was conducted in accordance with the relevant

guidelines of the Declaration of Helsinki. Participants signed

an informed consent before the experiment. The study was

approved by UT Austin’s ethics committee (ID: 2020030073-

MODCR01). We enrolled nine volunteers (1 female and

8 males) with mean age 25 ± 0.7 years, all right-handed.

All participants had previous experience in the Peg Transfer

Task and handling the dVRK. Subjects controlled the patient

side manipulator (PSM) using their right hand. Subjects

completed 12 distinct three minute long runs of the Peg

Transfer Task (see below) with approximately 2 minutes of

rest between task periods. In each run, subjects performed

the task with visual feedback being delivered either in real

time with no delay (ND), short delay of 150 ms (SD) or long

delay of 500 ms (LD). Participants completed 4 runs of each

condition in a randomized order.

B. Experimental setup and Peg Transfer Task

For our studies, we chose the peg transfer surgical task–

a classic fundamentals of laparoscopic surgery task [22]–

and used the dVRK [21] to conduct our experiments. The

dVRK has been used extensively in the medical robotics

research community and has open source electronics and

software (cisst/SAW libraries) developed by the researchers

at the Johns Hopkins University. The system has one stereo

camera installed on one Endoscopic Camera Manipulator

(ECM) to control the movement of camera and endoscopic

view. Two master tool manipulators (MTMs) allow a surgeon

to simultaneously teleoperate two patient side manipulators

(PSMs). Interchangeable tools are installed on the PSMs. The

PSM used in these experiments utilizes an EndoWrist® Pro-

Grasp™ Forceps (Intuitive surgical, Inc., California, USA)

tool, which has two 16 mm fingers for holding the fabricated

phantoms. Typically, the da Vinci robotic system operates

three distinct PSMs, but for our experiments, we limited

our scope to two PSMs. Also, instead of using the stereo

visual feedback provided by the endoscope in the MTM

console, we interfaced a 5 inch HDMI display with 800×480
mini LCD screen (ELECROW Inc.) with the MTM and

displayed the video feed provided by the endoscope on this

monitor. We also leveraged Robot Operating System (ROS)

and dVRK software to utilize the endoscope video feed

and create a separate node to inject a custom delay and

simulate various visual delay conditions for the operator. For

our peg transfer experiments, we also developed a custom

peg transfer phantom (shown in Fig. 1) including triangular

deformable tissue-like phantoms made out of Elastic 50A

resin using the Form 3 (Formlabs Inc.) Stereolithography

3D printer. The experimental setup is also shown in Fig. 1.

The task consisted of transferring a set of triangular

phantoms from a vertical base peg to the goal peg as fast

as possible (see the inset in Fig. 1) via dVRK using a

single MTM with and without the presence of a synthetic

visual delay. Each run was scored as follows: the operator

received 1 points for successful transfers and 0.5 points

for unsuccessful attempts (e.g., dropped phantom). During

the task, if the peg fell, it was expected from the users

to pick the phantom up and transfer it to the goal peg or

switch to another phantom at their base peg. Note that task

performance data was only available for 8 out of 9 subjects

(all but subject 1).



C. EEG recording and pre-processing

Scalp EEG was recorded at 512 Hz using an eego system

(ANT Neuro, Netherlands) from 32 cortical regions in stan-

dardized 10-10 International System locations (refer to Fig.

5C for list of electrodes). All subsequent data processing and

analyses were carried out in Matlab (MathWorks, Natick,

MA) using custom scripts and functions of the EEGLAB

toolbox [23]. EEG was filtered in the frequency band [4-

30] Hz with a 5th order non-causal Butterworth filter to

avoid movement-related slow cortical potentials and high

frequency noise. Filtered EEG was then re-referenced to

the common average electrode. The EEG signals for each

visual feedback condition (no delay (ND), short de-

lay (SD), long delay (LD)) were epoched into trials

using a sliding window of 3 s at 1 s step size. Trials were

then concatenated per condition. Only trials from the first

minute of each recording were included to avoid plausible

effects of habituation and fatigue. Furthermore, trials with

filtered EEG signal amplitude above/below ±100 µV were

considered artifactual and excluded from further analyses.

D. EEG spectral power analysis

We conducted spectral power analysis to study EEG spec-

tral modulations while subjects performed the peg transfer

task. For each subject, power spectral density (PSD) at each

electrode and epoch was estimated using Welch’s algorithm

at 1 s windows with 500 ms overlap. From the PSD esti-

mates, the total band limited power (BLP) was estimated in

each epoch via integration, and finally averaged over all the

trials in each visual feedback condition. BLP was computed

in the following standard frequency ranges: θ: 4–8 Hz; α:

8–13 Hz; and β: 13–30 Hz. For each subject, the differences

in averaged BLP values between the visual feedback delay

conditions were also computed at all electrodes.

E. Classification Approach

Riemannian geometry-based classifiers have recently

shown promising results for EEG-based brain-machine in-

terfaces [24]. In the Riemannian geometry framework, co-

variance matrices of band pass filtered signals are directly

used as features for building the classifiers. These covari-

ance feature matrices encode both the spatial (lower/upper

triangulars) and power (main diagonal) information of the

bandpass filtered signal. Minimum distance to Riemannian

Mean (MDRM) is one of the most commonly used, robust

Riemannian geometry classifier approaches [25]. MDRM

works on the principle of nearest neighbor classification and

classifies the covariance features directly on the Riemannian

manifold. We used 3 s windows with a step size of 1 s on

the first 1 minute of broadband ([4-30] Hz) EEG data from

the different delay conditions to estimate covariance matrices

[26]. The estimated covariance matrices of different delay

conditions were then used to build the MDRM classifier. The

chance level for binary class classification was estimated in-

dividually for each testing fold by using the inverse binomial

distribution using a p = 0.05 and the total number of trials

in each of the testing folds (see [27] for details).

Fig. 2. Box plot of the distribution of peg transfer scores in different
delayed feedback conditions. Box edges mark 75th and 25th percentiles,
while horizontal lines correspond to the median. * : p < 0.05.

F. Neurophysiological Feature Discriminancy

We explored, which BLP features carry the most dis-

criminating power between the various delay conditions.

For this purpose we chose the Fisher score-based feature

discriminancy criterion to select subject-specific discriminant

features [28]. The Fisher score S(yi) for a given feature yi
(i = 1 · · ·m ∗ Nc), where m is number of frequency bins

and Nc is number of channels, is computed by the equation:

S(yi) =

∑K

k=1

∣

∣µyi,k
− µyi

∣

∣

√

∑K

k=1
σ2
yi,k

(1)

where µyi,k
and σ2

yi,k
are the mean and variance, respectively,

for a given feature over all samples for a given class k ∈
{1, 2 · · ·K}, and µyi

is the mean across all the samples of

feature yi. We ranked the features using (1) and visualised

the 20 most discriminant features.

III. RESULTS

A. Task performance

Fig. 2 reports the task performance metric Peg Transfer

Score normalised by the number of runs for each visual

delay condition. One-way repeated measures analysis of vari-

ance (ANOVA) indicated a significant main effect of visual

feedback delay on performance (p = 0.00068, Greenhouse-

Geisser-corrected, Mauchly’s p = 0.4993). Post-hoc pairwise

comparisons (all p-values Bonferroni-adjusted for multiple

comparisons) indicated that peg transfer performance de-

creased significantly in the LD condition (3.7344± 2.2643)

when compared to the ND (7.0781±3.6240, paired t-test, p =
0.0019) and SD (6.7240± 4.1416, paired t-test, p = 0.0197)

conditions. No difference was found between ND and SD.

B. Spectral power analysis

Previous studies have proposed increase in frontal θ [29]–

[31], parietal θ [32] and decrease in occipital α power [32] as

plausible neural markers of MW. With this in mind, we were

focusing on these regions throughout BLP analyses (Fig. 3).

As frontal theta BLP data (averaged over electrodes AF3,



Fig. 3. Box plot of the average θ spectral power (4–8 Hz) in the three
different delayed feedback conditions at frontal region (left) and posterior
region (right). *: p < 0.05.

AF4, F1, F3, Fz, F2 and F4) did not satisfy the normality

criterion (Lilliefors test, p > 0.05) we used Friedman and

the Wilcoxon signed rank tests. The p-values from all post-

hoc comparisons were adjusted using Bonferroni’s method.

Friedman’s test identified a significant main effect (p =
0.0164) of visual input delay on frontal θ power (Fig. 3, left

panel). Post-hoc paired Wilcoxon signed rank tests revealed

a significant increase in mean θ power at frontal regions

when subjects performed the task with SD (4.1540±1.7184,

p = 0.0234) and LD (4.3866 ± 1.9457, p = 0.0234) with

respect to ND (3.4552± 1.3519).

Furthermore, repeated measures ANOVA identified a sig-

nificant main effect (p = 0.02526, Greenhouse-Geisser

corrected, Mauchly’s p = 0.1398) of delay condition on

posterior θ power (averaged over regions PO3, POz and

PO4), too (Fig. 3, right panel). Paired t-tests revealed a

significant increase in mean θ BLP at posterior regions in

LD (3.0620 ± 0.8926, p = 0.0410) with respect to ND

(2.6306± 0.8359), while the increase in SD was found only

marginally significant (2.8581 ± 0.8749, p = 0.0506) (Fig.

3). No differences in frontal and parietal θ power were found

between SD and LD. Note that parietal θ BLP data satisfied

the normality criterion (Lilliefors test, p < 0.05) and all

post-hoc p-values are Bonferroni-adjusted.

Delayed feedback with (SD or LD) led to a decrease in

mean α power relative to ND at occipital sites (O1, O2)

(4.7267± 2.0154, 5.0988± 2.4180 and 5.5738± 3.2795 for

LD, SD and ND, respectively), however this decrease was not

statistically significant.

Fig. 4 shows the grand average topographic maps of the

differences in θ, α and β BLP between LD and ND, and SD

and ND conditions. The spatial distributions of the observed

differences further confirm our findings described above. We

also observed an increase in β BLP over the left frontal

and central regions in LD and left central and posterior

regions in SD, however post-hoc analysis did not identify

any significant differences in β BLP between the various

delay conditions.

C. EEG classification analysis

We performed subject-wise cross-validation (CV) between

pairs of the different delay conditions ND-SD, ND-LD and

SD-LD. Note that during pairwise CV, only covariance

Fig. 4. Topological analysis of the average spectral power differences
between LD and ND conditions (LD - ND), and SD and ND conditions (SD

- ND), in θ (4–8 Hz), α (8–13 Hz) and β (13–30 Hz) rhythms modulations.
LD: long delay; ND: no delay; SD: short delay.

features from the training folds were used to build the

classifier for each partition. The reported cross-validation

accuracies correspond to the average across all the folds

for each pairwise comparison (Fig. 5A). For ND vs LD, 4

subjects out of 9 had a better than chance level performance,

with average across the subjects of (68.58±5.96 %). For SD

vs LD, 4 subjects achieved a better than chance level per-

formance, with average across the subjects of (63.41± 4.16
%). Taken together, 6 out of 9 subjects reached a statistically

significant performance above chance level for at least one

pairwise comparison.

D. Discriminant Features

Fig. 5B illustrates the cumulative distribution of top 20

most discriminant features across all the 9 subjects between

ND vs LD conditions as a function of frequency bins and

channels. We observed that theta-band (4-8 Hz) features were

found discriminative the most frequently and contributed to

58.33% of the top 20 features.

IV. DISCUSSION

The performance of subjects in the peg transfer task show

that LD has significantly lowered (p < 0.05) Peg transfer

score compared to SD and ND. This finding is consistent

with previous task-oriented behavioral findings where it was

observed that increasing visual feedback delay decreases task

performance [13].

Frontal θ spectral power has been proposed previously

as a distinct neural signature of MW. For example, frontal

θ power was shown to increase with task difficulty [29],

cognitive demand in multi-tasking environments [30] and

working memory load [31]. θ power increase at parietal

sites, as observed in LD condition (Fig. 3), has also been

associated with increased workload demands [32]. Moreover,

previous studies have linked increased MW to increased α

desynchronization amplitude over parietal and occipital areas

[32]. Decrease in occipital α power may also reflect an

increase in visual information processing and allocation of

attentional resources during the delayed feedback [33]. These

findings are in line with our observations from Fig. 3 and 4.

In addition, established evidence from literature has sug-

gested θ band modulations in the anterior cingulate cortex



Fig. 5. A) Pairwise cross-validation performance, dashed black line correspond to chance level classification performance. B) Frequency of top-20 features
selected using Fisher score discriminancy criteria, over all subjects. LD: long delay; ND: no delay; SD: short delay.

(ACC) as the neural correlate involved in monitoring of

erroneous events, feedback and expectation mismatch [34].

Therefore, expectation mismatch as a result of the visual

feedback delay might induce θ power increase at frontal and

fronto-central locations. Indeed, delayed feedback conditions

led to an increase in θ power at Fz (3.5483 ± 1.3100,

3.3918 ± 1.0775 and 2.9681 ± 0.9511 for LD, SD and ND,

respectively) and FCz (2.0897±0.7364, 1.9972±0.7290 and

1.9630± 0.7462 for LD, SD and ND, respectively) locations.

Even though these differences were found not statistically

significant, they may still approach significance with a larger

subject group.

Neural markers discussed above, in particular those as-

sociated with MW, can be observed in Fig. 4 even in SD.

This finding is reinforced in Fig. 5B, where pairwise CV

classification results SD vs ND were above chance in 2 out of

9 subjects. Though we did not record subjective evaluations,

according to previous evidence on a similar task, subjects

cannot perceive the added visual delay at this latency (SD:

150 ms) [16]. This suggests that visual feedback delays

might have increased MW even when the operators did not

consciously perceive them.

In our exploratory pairwise CV analysis we found that

for some of the subjects LD vs ND classification could be

performed with fairly high confidence (accuracy > 70%
in three cases, Fig.5A). Classification performances could

most likely be further improved by collecting more runs

(hence more data) for the various delay conditions, thus

building more robust decoding models. Moreover, the users

operating the da Vinci robot could be trained in a closed-

loop feedback setting to generate better discernable patterns

for the three delay conditions. Fig. 5B presents the most

discriminative features (across all subjects) ranked according

to their Fisher score-based discriminatory criteria. Most

discriminant features were found in low θ components, sug-

gesting θ rhythm modulations as neural markers of cognitive

processes involved in the task. Furthermore, we observed

some discriminant features in the β band at posterior and

occipital areas, plausibly responsible for visual information

processing.

Importantly, Fig. 4 shows that spectral power differences

in the α and β bands over the motor cortex (FC, C and CP

line electrodes) were in most cases practically zero in com-

parison to θ power changes at the frontal regions. There was

an increase in β power in LD feedback at the contralateral

sensorimotor regions (FC3, C3), which might possibly be a

result of slower and fewer hand movements as a result of

delayed feedback. Since movement generation is generally

characterised by α and β sensorimotor rhythms [35], the

lack of changes in α and β power at other sensorimotor

locations supports the notion that neural correlates observed

here were not primarily elicited by the motor movements

from interaction with the robot, but instead by ongoing

cognitive processes.

In terms of study limitations, it must be mentioned that our

pilot study cohort only included 9 subjects. Therefore, one

of our main future goals is to increase the sample size so

that we can validate the results presented here on a more

representative population. Also, classification was carried

out offline. In the future, we plan to extend our study to

incorporate real-time decoding via a brain-computer interface

(BCI) that rewards detection of high MW. As discussed

above, and based on the demonstrated ability of BCI subjects

to learn to volitionally modulate their brain rhythmic activity

via operant conditioning [28], [36], we expect increasing

classification performance as subjects practice.

V. CONCLUSION

The focus of this work was on studying plausible neural

correlates of MW modulated by visual delay in an exper-

imental setting where 9 users performed a pick-and-place

task with the dVRK. Visual feedback was delivered either

in real-time (no delay), with a short delay (150 ms), or with

a long delay (500 ms). EEG band limited power analysis in

the various delay conditions revealed an increase in θ band

in frontal and parieto-occipital areas. Moreover, we observed



a decreasing trend in α power over occipital regions for the

delayed conditions. In addition, we showed that for some

of the subjects the exposure to the synthetic delays could be

classified solely based on EEG data, highlighting the richness

of brain signals in exhibiting signatures of MW evoked by

visual delay. This paper provides the desired bedrock for

closing the loop of surgeon-centered surgical robotics, taking

into account the neural markers of mental workload that can

be incorporated in various levels of control.
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