
Parla: A Python Orchestration System for
Heterogeneous Architectures

Hochan Lee∗§, William Ruys∗§, Ian Henriksen∗§, Arthur Peters∗§,
Yineng Yan∗§, Sean Stephens∗§, Bozhi You∗, Henrique Fingler∗,

Martin Burtscher†, Milos Gligoric∗, Karl Schulz∗,
Keshav Pingali∗, Christopher J. Rossbach∗, Mattan Erez∗, George Biros∗

∗ {hochan, yinengy, sestephens, gligoric, mattan.erez}@utexas.edu,
iandhenriksen@gmail.com, amp@katanagraph.com,

{youbozhi, hfingler, pingali, rossbach}@cs.utexas.edu,
{will, karl, biros}@oden.utexas.edu
The University of Texas at Austin

Austin, TX, USA

† burtscher@txstate.edu
Texas State University
San Marcos, TX, USA

Abstract—Python’s ease of use and rich collection of numeric
libraries make it an excellent choice for rapidly developing
scientific applications. However, composing these libraries to take
advantage of complex heterogeneous nodes is still difficult. To
simplify writing multi-device code, we created Parla, a hetero-
geneous task-based programming framework that fully supports
Python’s scientific programming stack. Parla’s API is based on
Python decorators and allows users to wrap code in Parla tasks
for parallel execution. Parla arrays enable automatic movement
of data between devices. The Parla runtime handles resource-
aware mapping, scheduling, and execution of tasks. Compared to
other Python tasking systems, Parla is unique in its parallelization
of tasks within a single process, its GPU context and resource-
aware runtime, and its design around gradual adoption to provide
easy migration of and integration into existing Python applica-
tions. We show that Parla can achieve performance competitive
with hand-optimized code while improving ease of development.

Index Terms—Parallel application frameworks, task based par-
allelism, heterogeneous computing, load balancing and scheduling
algorithms

I. INTRODUCTION

Python has grown to be a powerful and versatile program-
ming language with a rich ecosystem of scientific computing
modules for processing, analyzing, graphing, and reporting
data. Libraries like NumPy, CuPy, and others enable program-
mers to stitch together highly-optimized functions to rapidly
develop powerful scientific applications. Properly leveraging
the power of complex heterogeneous compute nodes, however,
remains a challenge. In particular, unless relying on a domain-
specific framework (e.g., PyTorch [1]), proper GPU device
management requires substantial attention to detail as well as

§Authors contributed equally.

the use of low-level CUDA runtime calls from CuPy if a pro-
grammer is to maximize performance by efficiently distribut-
ing work across multiple GPUs, colocating work within the
context of a given device, launching asynchronous concurrent
data copies and compute kernels on various devices, properly
synchronizing dependent kernels across CUDA streams, etc.
Managing these facets while having them cooperate with
diverse libraries is a challenge that programmers shy away
from, particularly non-experts who are not keen on diving into
the intricacies of multi-accelerator management.

We introduce Parla, a Python tasking system for abstracting
away these worries. Parla embraces heterogeneity in HPC
applications and introduces a task based orchestration layer
to control and connect library functions and kernels within a
single Python process and address space. Parla provides user-
defined function variants that wrap implementations special-
ized to devices. It allows the user to write device-agnostic
tasks or to gradually refine and optimize tasks with device-
specific implementations, without changing the structure of
the program.

A primary design goal of Parla is gradual adoption. Parla
focuses on intra-node architectures and interoperability with
existing Python frameworks and libraries. Parla does not re-
quire the user to port an entire application to a new framework;
rather, converting sequential programs to task-based Parla
applications can be done by gradually wrapping individual
portions of the program in Parla tasks as the programmer
sees fit. Parla provides lightweight wrappers to allow users to
take advantage of familiar data structures within tasks without
manually managing data movement between devices. These
features enable rapid prototyping of parallel and heterogeneous
applications using a familiar Python ecosystem. Furthermore,

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F3571885.3571952&domain=pdf&date_stamp=2022-11-18

Parla tasks operate within a single Python process, lowering
the overheads of data transfer and cross-library calls.

Parla enables users to create coarse-grained tasks by anno-
tating code with its Pythonic @spawn decorator. Tasks may be
assigned dependencies on other tasks, creating a dynamically
spawning task graph as the program executes. Data can be
wrapped in Parla arrays (PArrays) and provided to tasks at
spawn time. Tasks can request device resources, such as an
amount of memory, number of cores, or simply a fraction of
its target device. This allows the user to annotate to avoid over-
subscription and over-allocation. The underlying Parla runtime
enforces dependency ordering within the task graph, assigns
tasks to devices while managing their resources, and launches
tasks for parallel execution. Section III further explains the
Parla API, PArrays, and the Parla runtime.

We implemented several benchmarks in Parla to characterize
its performance-programmability trade-offs empirically. We
achieved comparable performance to state-of-the-art systems
for these applications on from 1 to 4 GPUs, within 35% of
Magma using an unoptimized algorithm and native Python
libraries, even when using a policy for automating device
assignment. Notably, this is achieved with minimal source
code modifications to the serial code.
The main contributions of Parla described in this paper are:
• Parla, a Python tasking system for heterogeneous systems
• A data management layer to schedule data movement and

manage coherency of data between tasks.
• Multi-GPU programming supporting relative data move-

ment and automatic stream management.
• Compatibility with NumPy, CuPy, SciPy, and a range of

other standard HPC Python libraries.
• Support for gradual adoption of Parla in sequential

Python codes.
• A suite of applications that show Parla can achieve com-

petitive performance on common computational tasks.
Parla source code and applications are available at the UT
Parla GitHub repository.1

II. RELATED WORK

In this section, we provide an overview of the work most
closely related to Parla: heterogeneous tasking systems in
Python, and highlight the differences in how we approach
many of the same problems.

A. Heterogeneous Tasking Systems in Python

Parla differs from other Python-based systems for hetero-
geneous tasking in four main ways: (1) in gradual adoption,
(2) by providing tightly integrated heterogeneous support
e.g., CUDA event-based run-ahead scheduling, (3) in flexible
memory management features e.g., PArray, the Parla data
model, and (4) by focusing on performance via single-process
on-node orchestration. Unlike most of the systems described
below, we do not strive to replace or provide a distributed
workflow management system. This means we do not focus

1https://github.com/ut-parla/Parla.py

on features for fault tolerance, multiprocess management,
or replacing MPI abstractions. This allows us to focus on
providing performant abstractions for managing accelerators
on a single node. For distributed computing our model is
MPI+Parla.

Ray [2], Dask [3], Parsl [4], and PyCOMPSs [5] are
designed for managing workflows on distributed filesystems,
which leads to design differences. First, the topology and
resources of workers are configured ahead of time by user-
specified files. Some systems such as Dask-CUDA [6] provide
automatic generation of these configuration files for GPU
systems. For each of these systems, resources are viewed as
permanent attributes of a worker process that constrain which
tasks a given worker process can execute. This is a major
difference from Parla, where worker threads are not tied to
devices. In Parla, any worker thread can take any work from
the queue and configure itself to the needed context. This
enables more flexible and dynamic configuration at runtime.

Another difference with Parla is that these systems prioritize
support for process-based parallelism. Due to overheads from
process creation, management of multiple Python interpreters,
and inter-process communication, they target tasks with 100ms
or larger granularity. This limits their use in algorithms with
parallelism at a finer grain size. Some of these systems do
support a thread-based parallelism but they lose functionality.
As an example, Dask loses data aware scheduling, resource
awareness, and multi-GPU support when it runs with the
thread-centric mode.

By targeting fault-tolerance, these programming models do
not easily enable in-place modifications of data or adding de-
pendencies between tasks without explicit data-dependencies.
In practice, this can lead to inefficient algorithms with extra
memory allocation and data movement. In Dask, Ray, and
Parsl, the ability to specify a user-defined task mapping by
listing specific workers is not easily exposed to the user
and hidden by their abstractions. None of the above tasking
systems integrate directly with the hardware command queues
on GPU devices nor use CUDA event driven synchronization.
They do not provide a data abstraction for data on the GPU,
only for data on the host processor of a worker.

PyCOMPSs has a similar notion of separately scheduled
data movement tasks [7]. However, these must be created
manually by the user and are used to read large out-of-disk
files in a distributed system. They are not used for GPU data
movement. PyCOMPSs also supports creating architecture-
specific versions of the same task [8]. These variants are of
the whole task itself and not of arbitrary internal functions.
In contrast, Parla provides a more modular and incremental
approach.

Charm4py [9] also allows the use of native Python libraries
and code, however, their interface still requires significant
alterations to the execution model of user code to set up
‘Chare’ classes and communication channels. Pygion provides
awareness of GPU contexts, resources, and memory movement
similar to what is provided by Parla, but requires a complete
overhaul of user code. Legion’s resource management fea-

https://github.com/ut-parla/Parla.py

tures [10] (used in Pygion) hinge on the use of their region
data structures for managing user data. Though these interfaces
provide remarkable safety guarantees and resource awareness
to the runtime, they also form a practical barrier for adoption
of Pygion into existing codebases—requiring a rewrite to port
existing code to use the provided data structures. Legate [11]
also integrates Legion with Python and addresses the porting
effort imposed by Pygion. Instead of requiring the end user
to port their kernels and data structures to Legion, Legate
directly re-implements most NumPy kernels for Legion and
its data representation. However, while Legate allows those
Python programs that only call NumPy kernels to utilize
Legion without modification, it precludes the use of opaque
library calls and end-user-provided tasks that operate directly
on the ndarrays and other data structures. Machine learning
frameworks Tensorflow [12], PyTorch [1], and MXNet [13] all
provide means to express tensor computation tasks on various
devices. However, these models are generally restricted to
fixed, or generally inflexible, computational pipelines with lim-
ited support for data-dependent computation. These systems
have heuristics for heterogeneous scheduling policies [14].

B. Heterogeneous Tasking Systems

Outside of Python, both StarPU [15] and PaRSEC [16]
provide excellent support for heterogeneous hardware on
distributed systems. Both emphasize GPU contexts, data
prefetching, and have heterogeneous data-aware scheduling
policies available [17]. In particular, ParSEC uses lightweight
tasks driven by CUDA events. OmpSs [18], Hydra [19], and
PTask [20] all provide graph-based dataflow programming
models for offloading tasks across heterogeneous devices.

III. THE PARLA TASKING SYSTEM

This section describes the features and implementation of
Parla. We first describe Parla tasks in Section III-A and the
Parla interface in Section III-B. The Parla system introduces
the PArray data abstraction that manages distributed coherency
for the user and allows the runtime to schedule tasks in a
data-aware manner. Section III-C describes PArray and Sec-
tion III-D describes the Parla runtime. Section III-E describes
Parla’s interoperability with other libraries.

A. Parla Tasks

In Parla, tasks are arbitrary blocks of Python code
that run asynchronously with respect to the enclosing
block. This is similar to the semantics of async blocks in
X10 [21], but different from function-based tasking runtimes,
e.g., Cilk [22], which couple tasks to functions and task
spawns to function calls. Parla uses code blocks instead of
functions for two reasons: (a) it decouples functional abstrac-
tion from parallelism [23], and (b) it allows a program to be
gradually parallelized by adding parallel code blocks around
fragments of sequential code without needing to restructure
the program. Tasks can freely use nested parallelism to spawn
other tasks. They can either wait for those newly spawned
tasks before continuing execution or allow them to run inde-
pendently of the task that spawned them. Task creation can

1 a = numpy.random(n)
2 b = numpy.random(n)
3 partial_sums = numpy.empty(num_gpu)
4 result = 0
5 block_size = n // num_gpu
6 T = TaskSpace("T")
7

8 for i in range(num_gpu):
9 s = slice(i*block_size,(i+1)*block_size)

10 @spawn(T[i], placement=gpu(i))
11 def inner_local():
12 a_part=clone_here(a[s])
13 b_part=clone_here(b[s])
14 partial_sums[i] = a_part @ b_part
15

16 @spawn(T[num_gpu], dependencies=T, placement=cpu)
17 def reduce_task():
18 result = np.sum(partial_sums)
19 await T[num_gpu]

Fig. 1. Inner product in Parla.

be data-dependent or otherwise conditional, allowing Parla
to handle arbitrary irregular and dynamic parallelism that is
decided at runtime. Parla tasks may begin executing as soon
as they are spawned and their dependencies have finished
executing. This is the only ordering constraint. There are
no implicit barriers at which execution waits for tasks to
complete.

The Parla runtime dispatches the annotated tasks to worker
threads. All parallel execution occurs within a single process.
When using a CPython implementation of Python, this means
all pure Python code is serialized as each thread must share
and acquire the same Global Interpreter Lock (GIL) to man-
age reference counting of Python objects. However, all high
performance computation in modern Python is done through
JIT compiled kernels (such as through Numba [24]), a mix of
static and dynamic kernel compilation (like in PyKokkos [25]),
user wrapped kernels from a lower-level language (for example
via a Cython interface to C++), or in Python modules such as
CuPy and NumPy that hide away these pre-compiled routines.
During these calls, the GIL can be released allowing tasks
to schedule and execute in parallel. In our experience, the
GIL is released often enough to achieve good performance
on the types of applications we consider. We observe that
performance is relatively insensitive to repeated short accesses
to the GIL for orchestration. For 1000 independent 50ms tasks,
strong scaling efficiency remains over 90% on 12 workers
when the GIL is held for less than 10ms of the total task
time.

B. The Parla Interface

Parla provides a number of features to help with task
creation and scheduling. To introduce these features and their
interfaces we use a simple sample application: an inner-
product scattered across 2 GPUs (see Figures 1 and 2). In this
application data is initialized on the host machine and copied
to each accelerator, then each device computes the partial
inner-products in parallel, and finally the output is gathered
as a reduction on the host.

a

b

GPU0

CPU

D
ep
.

D
ep
.

P[0] P[1]

GPU1

reduce_task

Fig. 2. The Program Flow for the Inner Product in Figure 1.

Gradual Adoption. Parla can be used to parallelize sequential
programs quickly. As the runtime supports using existing
Python libraries without limitations, there is no need to port
existing libraries to support Parla or to provide Parla wrappers.

Via the @spawn annotations shown in Figure 1, a program-
mer can add tasks to their application to create parallel patterns
with few modifications. The first argument to @spawn is the
task ID (e.g., in @spawn(taskid=T[i]), the task ID is T[i]).
In general task IDs can be arbitrary names, but here T is a task
space, an n-dimensional indexable collection of tasks that can
be used to organize and refer to the tasks later. In particular,
task names are used to specify dependencies between tasks.
An example is Line 16, which lists all other tasks in this task
space as dependencies for the final reduction task. This ensures
that it runs last. In general, task dependencies are specified as
a collection of tasks:
@spawn(dependencies=[task, ...])

Task spaces support slicing to allow subspaces to be used as
the dependencies of other tasks:
@spawn(dependencies=[taskspace[i, :], ...])

Adding dependencies on task spaces expresses more complex
heterogeneous parallel task structures, such as those used
in a blocked Cholesky factorization, with little user effort.
Specifying dependencies through task IDs and spaces gives
the user flexibility in supporting nested task patterns, tasks
that modify disjoint slices of data objects, and handling tasks
with side effects. All task IDs and task spaces can be used as
barriers as seen on Line 19. Parla tasks may block waiting for
an existing task to complete, including ones for a task they
spawned. This is integrated with Python’s async and await

support. As such, any task that needs to block on another task
must be declared with the async keyword. While a task is
blocked, it yields to the scheduler and releases all devices it
is using (potentially allowing those devices to be used by the
tasks it is waiting on). It will reclaim the exact same device
when the awaiting task completes.

Lastly, Parla tasks capture variables from the enclosing
scope by value. If a variable is reassigned in the outer scope
after spawning a task, it will not affect the variable value
observed inside the task. This is used in Line 14 to capture
the index i at spawn time. Data structures referenced by
variables are not copied, so mutable data (e.g., arrays and

other buffers) are still shared between tasks. For comparison,
standard Python functions capture variables by reference,
meaning that reassignments to variables in the outer scope
will also affect functions that captured that variable.
Heterogeneous Placement and Assignment. Parla allows
each task to specify the valid set of devices it can run on to
aid with effective task scheduling across devices. This is done
via the placement keyword argument to the @spawn decorator
used to create a task.
placement=[device, device_type, data, task]

The placement restrictions of a task are specified as the
collection of tasks, data, and/or devices. If a task ID or data
block is given, this specifies the device where the correspond-
ing task ran, or where that data is currently located. These
specifications can refer to a particular device, a set of devices
for the runtime to choose from, or a type of device architecture.
The tasking runtime determines which device is used from the
set of valid placements.

Currently, tasks support placement on two architectures:
CPUs and CUDA-capable GPUs. Placing a task on a GPU
notifies the runtime that the task should be treated as a
GPU task, allocating resources on the device and receiving
special context from the runtime such as a dedicated CUDA
stream and different mapping considerations—we detail these
provisions in III-D. GPU tasks should be thought of as code
that launches one or several GPU kernel(s) to process device-
side data. Given the nature of calling GPU code in Python,
some amount of work does occur on the CPU during a GPU
task, e.g., to call into the CuPy runtime and asynchronously
launch kernels. However, we assume that these CPU-side
routines are trivial, only briefly acquiring the GIL on a single
core during kernel launches; and so we do not provision CPU-
side resources to handle GPU tasks. While tasks that need to
perform both CPU- and GPU-side computations are allowed,
Parla can hide scheduling overheads via run-ahead scheduling
when a task ends in an asynchronous CUDA kernel.
Execution Context Management. Parla manages some con-
text switching in external libraries to ensure that the thread
of execution where a task runs is configured for the desired
device. For example, for CuPy, the context stores the current
device and streams for all of its API calls as a thread-local
object. Parla automatically switches the current device for
tasks that utilize a single GPU and runs each task on its
own stream. In contexts where it is available, events on the
stream are used to manage task dependents to enable run-ahead
scheduling. Contexts perform the required synchronization
calls to guarantee that operations run in a valid order.
Device-based Dispatch. Parla provides annotations to over-
load and specialize functions for different device architectures.
When called within a task environment, the function will
dispatch the appropriate implementation. The use of these
task variants can be seen in Figure 8 on Line 1. Variants
make it easy for a user to encapsulate such high-performance
implementations for a specific device behind a simple in-
terface. Parla does not aim to be a kernel generator or a

code transformer to create device code. For writing archi-
tecture specific implementations, we rely on being provided
a user implementation via hand-written kernels, via code
transformers such as PyKokkos [25] or Numba [24], or via
API compatibility between CuPy and NumPy for architecture-
generic tasks.
Manual Relative Data Movement. Cross-device communi-
cation is a critical concern when building a heterogeneous
application. To help manage communication, Parla provides
interfaces with varying degrees of automation that allow the
user to specify data movement relative to the current device or
a specific data object. This interface is built on top of CuPy,
which supports direct device-to-device transfers, and NumPy.
When either the CPU or a single GPU is used for a given task,
data can be copied to where the current task is running using
the clone_here function. This is demonstrated on Lines 12-
13 in Figure 1 to move the host data to the current device.
Similarly, Parla provides a copy function that can be used to
copy data between arrays regardless of their location.
Automatic Scheduled Data Movement. In addition to manual
movement within a task, Parla provides PArray, an intelligent
lightweight wrapper for CuPy and NumPy ndarrays. PArrays
can have multiple valid locations and be accessed by mul-
tiple tasks on different devices simultaneously. By putting a
PArray in the input, output, or inout keyword arguments
to the @spawn decorator its movement will be automatically
scheduled to the mapped device before the task launches
if it is not already available there. This automatic copying
of PArray across devices is referred to here as automatic
data movement. To ensure memory coherence when multiple
devices are accessing the same PArray, a coherence protocol
is used. To eliminate unnecessary data movement and improve
parallelism, automatic data movement for slices of PArray
objects is supported. More details are in subsection III-C.
Using these features allows the scheduler to track more infor-
mation about data flow to make more intelligent scheduling
decisions. Parla does not force programs to use this specific
data management or coherence system. This allows better
compatibility with libraries that include their own optimized
data management tools and enables full programmer control
over data movement.
Resource-Aware Tasks. The resource usage of a task can be
specified using abstract resources that apply to all devices.
Resources are provided by devices and occupied by currently
running tasks. Parla supports two resources: abstract compute
units (ACUs) and memory.
@spawn(memory=bytes, acus=n)

Memory is specified in bytes and represents the amount of
data allocated on the device during the execution of the
task. Abstract compute units are used to represent fractional
load. (e.g. two tasks that take 0.5 ACUs can fit on a single
device). ACUs provide a simple representation of the compute
resources that a task can effectively use.

Parla is designed to support arbitrary resources on devices
contexts. These resource specifications allow the scheduler to

schedule multiple tasks per device provided that the needed
resources are available.

For convenience, both the memory and the placement can
be specified simultaneously through data:
@spawn(data=[array, ...])

If a task uses PArray objects memory is tracked automatically
by the scheduler. The resource specifications for a given task
are not enforced in any way by Parla. They simply provide a
measure of task resource use so that the scheduler can schedule
additional tasks as long as additional resources are available on
a device. In the case of CPU libraries, existing interfaces, like
OMP_NUM_THREADS [26], must be set appropriately to ensure
that the number of cores per task is an accurate representation
of how many cores will actually be used. Similarly, a task
that uses a certain amount of GPU memory must take care to
ensure that it does not allocate more than its requested amount.
Extensibility. Parla only supports CPUs and CUDA GPUs, but
the runtime has been designed to be extensible as new plat-
forms and hardware mature. Architecture support is enabled
through abstract task environments. These manage hardware
resources, platform specific local variables and context con-
figurations, synchronization, and events. Architecture support
can be extended by providing these primitives through the
environment class.

C. The Parla Array (PArray)

Efficient data management is a key challenge for per-
formance on heterogeneous systems. However, existing data
structures like NumPy or CuPy arrays are designed for a
single device and provide limited information to the runtime.
To alleviate this limitation, Parla introduces a wrapper for
ndarrays called the Parla Array, or PArray.
Design Principles. Figure 4 shows an example of a PArray.
Abstractly, a PArray manages a single object (i.e., the ndarray)
that may have copies on several devices. The Parla system
uses an MSI (Modified/Shared/Invalid) protocol similar to that
used in cache-coherent systems to ensure that these copies are
transparent to the programmer. In addition, PArrays support
non-overlapping slices and manage coherency on a slice-by-
slice level. Tasks can request and produce data in finer-grained
units rather than an entire PArray. To simplify the protocol and
improve memory usage and performance, the Parla coherency
protocol does not provide an ordering protocol for multiple
overlapping writers.

In the spirit of gradual adoption, PArrays are an optional
Parla feature and are not required for Parla tasks. Programmers
may use their own objects within tasks and PArrays are
provided as a tool for enabling automatic data movement.

Using PArrays provides two advantages when using Parla.
First, the Parla runtime is able to automatically prefetch data
contained in a PArray to a task’s device. Second, the runtime
is able to make more informed task mapping decisions based
on data locality when PArrays are used. That said, while
gradually migrating to, or optimizing a Parla program, the
programmer may rely on a less informed scheduler rather

1 a = parla.asarray(numpy.random(n))
2 b = parla.asarray(numpy.random(n))
3 partial_sums = numpy.empty(num_gpu)
4 result = 0
5 block_size = n // num_gpu
6 T = TaskSpace("T")
7

8 for i in range(num_gpu):
9 s = slice(i*block_size,(i+1)*block_size)

10 @spawn(T[i], input=[a[s],b[s]])
11 def inner_local():
12 partial_sums[i] = a[s] @ b[s]
13

14 @spawn(T[num_gpu], dependencies=T, placement=cpu)
15 def reduce_task():
16 result = numpy.sum(partial_sums)
17 await T[num_gpu]

Fig. 3. Inner product in Parla with PArray.

Fig. 4. Overview of PArray.

than using PArrays. Conversely, an expert programmer may
forego PArrays through user-constructed data-movement tasks
or choose their own mappings.
PArray Interfaces. The PArray interface is compatible with
NumPy and CuPy ndarrays to enable users to easily migrate
applications to Parla. For example, the computation in Line 12
in Figure 3 is the same as what one would write when using a
NumPy array. NumPy/CuPy ndarrays and Python built-in lists
can be converted to PArray objects via the asarray method.
An example is shown in Figure 3 in Lines 1-2. PArray objects
can be converted back to NumPy/CuPy ndarray via the .array
class method. This is useful when they need to be passed to
functions that require a ndarray type.

PArray objects used in a task are specified in the decorator.
An example is shown below.
@spawn(input=[array1, ...], inout=[array2, ...],

output=[array3, ...],)

This permits the scheduler to generate automatic data move-
ment tasks before the task launches, prefetching data to a task’s
device before the task executes (Section III-D).

D. The Parla Runtime

The Parla runtime ensures that task dependency require-
ments are met, maps tasks to compute devices, and launches
tasks on worker threads for execution. The primary goal of
the Parla runtime is to maximize overall system utilization and

Spawned Task Queue Map tasks to
devices

Create data-move
tasks

Wait for callbacks of
dependees

Launcher assigns tasks to
worker threads

GPU0CPU

Schedule ready
tasks to device
queues Inputs

= A, B

move
A

move
B

GPU1

Task completes
and notifies
dependent tasks

(1)
(2)

CPU GPU

GPU

(3)

(4)
(5)

(6)

(7)

(8)

Task is
spawned

Fig. 5. The Parla runtime.

efficiency for a variety of workloads on any hardware topol-
ogy, making Parla programs both performant and portable.
The Parla runtime also provides a mapping API enabling
users to exploit machine- or application-specific knowledge
to enhance performance. In the following sections, we explain
the design principles of the Parla runtime and describe our
implementation.
Design Principles. To properly leverage the compute capa-
bilities of all devices in a heterogeneous node, the runtime
is designed around two basic principles. The first is data
locality: Tasks ought to be scheduled near their data to
minimize unnecessary data movement. The second is load
balancing: Work ought to be evenly distributed over devices
when possible. These principles pose a trade-off, as in complex
task graphs it often proves difficult to maintain a balance of
work while limiting data movement between devices.

Our runtime is also designed to keep GPUs saturated with
useful work. We make use of CUDA events to map and launch
GPU tasks early, keeping GPU command queues full when
possible. We hide latency by overlapping GPU computation
and communication, masking the cost of data movement
when it must occur. When users take advantage of PArrays,
we decouple a task’s data movement from its computation,
separately scheduling copy operations to prefetch data blocks
as soon as their dependencies resolve. We call a task that
prefetches data blocks a data-move task, and a task that
performs computation a compute task.
Implementation. We demonstrate our implementation by
walking through the lifetime of a task from spawn to comple-
tion. The basic structure of the scheduler is shown in Figure 5.

When a task is spawned into a FIFO queue for mapping. The
runtime mapper runs periodically via callbacks from worker
threads. It uses a greedy policy to assign tasks to suitable
devices. Figure 6 contains the pseudocode for the mapper’s
priority calculation (Lines 1 to 12). A task’s required PArrays

1 def mapper(task: Task):
2 for d in device_candidates(task):
3 for parray in task.inputs:
4 if d.has_parray(parray):
5 local_data += w0 * parray.nbytes
6 else:
7 non_local_data += w1 * parray.nbytes
8 device_load = w2 * d.mapped_task_count
9 depend_load = w3 * d.has_depend(task.dep)

10 d.priority = local_data + depend_load
11 - non_local_data - device_load
12 task.device = find_best_device(cand_devices)
13

14 def launcher():
15 for d in available_devices():
16 if d.active_compute_tasks < compute_threshold:
17 compute_task = compute_task_queue[d].pop()
18 thread_pool.launch(compute_task, d)
19 if d.active_data_tasks < data_threshold:
20 datamove_task = data_task_queue[d].pop()
21 thread_pool.launch(data_task, d)

Fig. 6. The Parla runtime pseudocode.

are used to determine how much data is local to each device
and the cost of moving non-local data (Lines 3 to 7). Each
device is penalized for its current load based on the number
of tasks already mapped to it (Line 8). Additional factors, such
as whether the task has a dependency already mapped to the
given device, are also considered (Line 9). These factors are
weighted and combined to determine an overall priority for
each device. Devices receive a higher priority for more data
locality and lower priority if they already have a heavy load
(Line 10). The task is mapped to the device with the highest
priority (Line 12). Occasionally, no suitable device is found
(e.g., because no device has enough free memory to satisfy
the task’s memory requirements); in this case, the task is re-
enqueued and processed the next time the mapper runs.

Once a task is mapped, the runtime creates a data-move
task for each of the task’s PArrays that need to be moved. A
data-move task is an independent task scheduled and executed
prior to its parent task for the sole purpose of gathering data
to the parent task’s mapped device. While the parent task must
wait for all of its dependencies to complete before executing,
each data-move task only needs to wait until the particular
dependency producing its PArray has completed. This enables
prefetching data before the compute task is scheduled to run.
Dependencies of these data-move tasks are inferred from the
dependencies of the parent compute tasks that write to this
PArray. Each device is associated with a set of FIFO queues
for storing tasks ready to be launched. Once mapped, a task
waits for its dependencies to resolve. When it becomes valid
to run, the runtime scheduler dispatches it to a device queue
based on its mapping. The runtime maintains a pool of worker
threads for executing tasks. Whenever a device is free, the
runtime launcher assigns a dedicated worker thread to the
task at the head of the queue and begins the task’s execution.
Worker threads are responsible for executing user code within
a task as well, setting up the device context, and notifying
dependent tasks and resource pools of task completion. Python
code executed by a worker thread does acquire the GIL, so

1 @spawn(placement=gpu)
2 def simple_task():
3 ...
4

5 for i in range(100):
6 @spawn(placement=gpu(i % 4))
7 def round_robin_task():
8 ...

Fig. 7. Specifying specific mapping decisions.

while many worker threads may have work to do, only one
runs at a given time. Task parallelism is achieved when tasks
call into compiled code and release the GIL. When a task
completes it returns its worker thread to the runtime resource
pool.

GPU Tasks. The runtime launcher has special provisions for
GPU tasks. Every GPU task, whether its compute or for data
movement, is launched on its own dedicated CUDA stream.
As GPU tasks contain asynchronous CUDA kernel launches,
these kernel launches are enqueued into the GPU’s device-side
hardware command queue for execution; keeping this queue
saturated with work minimizes wasted time between kernels.
GPU tasks are dispatched by the Parla scheduler before their
dependencies are complete. Each GPU task records a CUDA
event upon completion and dependency ordering is enforced
by event synchronization. If a task has a dependency, it simply
waits on that dependency’s recorded event at the start of its
own execution. In this way, the task can be dispatched to a
worker thread early to wait on the event. This allows more
scheduling overhead to be hidden while the task executes.
Each GPU also has two dedicated device queues: one for
compute tasks and another for data-move tasks. Launching
separately from each queue on dedicated streams increases the
effective overlap of computation and communication. Figure 6
shows pseudocode of the runtime launcher (Lines 14 to 21).
To prevent oversubscription of the copy engines and active
compute tasks, we limit to three tasks of each type running
on a device at any given time.

Tuning. As with all components of Parla, the runtime is
designed with gradual adoption in mind. The baseline mapping
policy is suitable for a variety of use cases. However, different
applications and topologies will naturally result in different
computation and memory access patterns, and finding one
policy to fit all scenarios is a difficult task. As such, the Parla
API provides means for users to leverage their own knowledge
in making mapping decisions.

A user needs to specify only minimal information for tasks
to run correctly. For example, to run a task on the GPU, a
user need only specify the architecture, as shown in Line 1 of
Figure 7. If users wish to leverage application- or machine-
specific features to improve the mapping schemes, the Parla
@spawn API enables them to specify necessary memory size
or ranges of devices. As an example, Figure 7 Line 6 demon-
strates a user’s ability to map tasks within a for loop in a
round-robin order based on the iteration count of the loop,
ensuring that work is evenly distributed across devices.

E. Parla Interoperability

We have highlighted Parla’s ability to seamlessly interop-
erate with NumPy, CuPy, and Numba. Beyond intra-node
interoperability, Parla can be combined with other systems
to support tasking not only across devices but also compute
nodes. A common pattern in scientific computing is MPI+X:
MPI is used for distributed programming combined with some
other system for intra-node programming. Parla does not
directly address distributed programming because it fits this
methodology. It can be used for intra-node programming in
the familiar and powerful MPI environment. Both Numpy [27]
and CuPy [28] already interoperate cleanly with the Python
bindings for MPI [29]. We validated the use of MPI in Parla
programs but exclude further discussion from this paper due
to space constraints.

IV. APPLICATIONS

We use a range of both real and synthetic benchmarks
to demonstrate the features and performance of Parla. We
compare Parla’s performance with theoretical estimates and
3rd party libraries, or a manual implementation of the same
algorithm with Python’s threading module. In complexity
estimates, ω is average bandwidth. p is the number of devices,
and l is the communication latency.
Synthetic Graphs. With a configuration file we specify for
each task: what other tasks they depend on, the data they
will read or write to, how long the task will run, where they
have valid placements, and how often they access and hold
the Python GIL.

The runtime of each task is enforced by a busy wait on
the device. As this busy waiting represents work given to
an external library we release the GIL while computation is
happening. Each task has a setting to interrupt this work at
intervals to acquire and hold the GIL for a set interval. For
all tests considered here, this is only done once and held for
200 microseconds.

For the simplicity of presentation and analysis, we focus on
three prototypical graphs. In the serial graph, each task simply
depends on the previously launched task. They each perform
read and write operations on the same data. The optimal
"user" placement decision is keeping all tasks on the same
device. In the independent graph, each task only performs a
read operation and every 64th launched task shares the same
data. Here the optimal "user" placement is to distribute the
tasks evenly in a round-robin order. The reduction graph is
an inverted tree where each task reads data passed to it by
its two parents and writes to the data of its left parent as
output. Optimal "user" placement is to distribute the largest
subtrees evenly among the devices, assigning tasks to the same
placement as their left parent once the width of the level is
less than the number of devices. In all of these tests, the data
blocks start evenly distributed across the GPUs in a round-
robin manner.
Block Matrix Multiplication. We compute C = ABT by a
block-row decomposition. Each task corresponds to multiply-
ing together a block of rows from A and a block of rows from

1 @specialized
2 def ltriangle_solve(a,b):
3 scipy.linalg.blas.dtrsm(a,b)
4

5 @ltriangle_solve.variant(gpu)
6 def gpu_ltriangle_solve(a,b):
7 cupy.cuda.cublas.dtrsm(a,b)
8

9 @spawn(tri_solve[j,i],
10 dependencies=[gemm[j,i,0:i], potrf[i]],
11 placement=gpu,
12 inout=[a[i,j]],
13 input=[a[i,i]])
14 def TRSM():
15 ltriangle_solve(a[i,i],a[i,j])

Fig. 8. TRSM kernel for blocked Cholesky in Parla

B to get a square sub-block of C. The full matrix B needs
to be communicated to each GPU in slices at a time. This
simple algorithm leads to a complexity of O(N

3

p + lp+ N2

ω).
Our 3rd party comparison is the ‘cublasMg’ multi-GPU matrix
multiplication sample code.
Jacobi Stencil. We implemented a distributed 2D 4-point
stencil across GPUs using a 1D block-row partitioning. This
process corresponds to a naive iterative solver for the heat
equation with a Dirichlet boundary condition. The stencil
itself is written in Python for the GPU using the Numba JIT
compiler [24]. At each iteration we update and communicate
the values on the boundary. Each task is the stencil update
of a single block-row and its boundary. Each iteration has
complexity O(Np +l+

√
N
ω), where N is the number of degrees

of freedom.
Block Cholesky Factorization. We compute A = LLT via a
right-looking block Cholesky factorization. Data is initialized
in a block row-cyclic distribution with blocks of size b. This is
a common tasking benchmark as it is a simple to understand
application with a surprisingly complicated task graph. We
compare performance with a theoretical estimate computed via
the critical path length on a level-by-level synchronous version
of the same algorithm. For a 3rd party comparison, we show
the performance of the optimized MAGMA implementation
of a left-looking multi-GPU block Cholesky.

Our implementation takes advantage of the specialized
variants for heterogeneous support. Figure 8 depicts CPU and
GPU kernels for the triangular solve kernel for device-based
dispatch. Lines 1 and 5 show the specialized variant for CPU
and GPU respectively. This allows kernels to be dispatched
to CPU or GPU devices dynamically at runtime. However,
for this algorithm with fixed size blocks having the CPU
steal work from the GPUs leads to degraded performance
(Section V-F). The data management API for PArrays can be
seen on Lines 12-13.
N-body. A 2D gravitational N -body solver [30] using a level
grid-decomposition. We apply the standard rank-1 approxima-
tion to compute the far-field interaction with local bodies as
the influence between them and the center of mass of the far
box. In the time stepping scheme, each particle computes the
total force exerted by other particles and updates its velocity

and position. The kernels are implemented using the GPU-
vectorization hints in Numba. There are four main task types
in this implementation: (1) mapping a group of particles to
a grid, (2) computing the center of mass for each box in
a set of boxes (spatial regions), (3) taking a group of grid
boxes and computing all interactions between boxes in a
set, and (4) updating positions of a group of particles given
computed forces on them. We maintain two applications, a
version with Parla and a manually threaded version without
Parla for comparison. The Parla app uses the slicing data
movement features of PArray to select the points for evaluation
at each iteration.
Block Low-Rank (BLR) Matrix Multiplication. For a rank-
structured matrix A, we compute a compressed approximation
Ã ≈ A by decomposing it into blocks (of size b) and
taking tiled low-rank factorizations over the matrix (via the
Singular Value Decomposition). The matrix starts on the host
machine and is streamed across the GPUs for compression.
The compressed form is then used to apply y = Âx.

V. EVALUATION

A. Evaluation Setup and Design

We perform five runs for each benchmark. If not specified
otherwise, we report the median over these samples. All
experiments were conducted on the Frontera cluster [31] of
the Texas Advanced Computing Center (TACC) [32]. All GPU
data was collected on a system with 4 NVIDIA Quadro RTX
5000 GPUs and dual-socket Intel Xeon E5-2620s (total of
16 cores, hyperthreading disabled). Each pair of RTX 5000s
on the same socket is connected with Peer-to-Peer (P2P)
communication links. All other communication between them
must pass through the host machine. CPU scaling data was
collected on dual-socket Intel Xeon Platinum 8280s (total of
56 cores, hyperthreading disabled).

To understand the performance of Parla features for dif-
ferent data movement and placement policies, we performed
a differential analysis on three synthetic applications and five
real applications, those mentioned in Section IV. The synthetic
applications were run with a task size of 16ms. Each task
communicated 50MB of data. This configuration gives a ratio
of 2:1 between computation and communication time. Serial is
a chain of 150 tasks, Reduction is an 8 level binary tree, and
Independent is 300 tasks. For the real applications we used
the following sizes: BLR (N = 104, b = 2.5k), Cholesky
(N = 28k, b = 2k), Jacobi (N = 30k, iter = 500),
Matrix Multiplication (N = M = K = 32k), and N-body
(N = 10M , d = 2). All tests are strong-scaling and all tasks
launched on the GPU. We summarize the Parla configurations
that were tested in Table I.

B. Data Management
We compare the performance of PArray features (Automatic

Data Movement) with data movement via clone_here (Manual
Data Movement). The comparisons are shown in Figure 9 and
Figure 11. These benchmarks are performed with the same

TABLE I
PARLA DATA MOVEMENT SUPPORT

Manual Automatic

Prefetching •
Data-Aware Scheduling •
Distributed Coherency •
Load Balancing Scheduling • •
User Placement • •

user-specified optimal placement policy to remove the influ-
ence of the scheduler’s mapping policy from the comparison.
This ensures that the same pattern of data movement occurs
in each.

Data management through PArrays schedules the data-move
task as a distinct task from the user-defined compute tasks.
This enables prefetching of the required data and overlapping
communication with computation. As an example, we isolate
this behavior with a longer chain of the DAG presented in
Figure 10. On this chain of tasks every other task reads and
writes data that the second next task will read. The odd
tasks skipped by the above always read a new untouched
piece of data. Each task is mapped to the device (tid/2)%2.
This ensures that data is always copied at each step without
using any cached data from the coherence protocol. This DAG
has 9 data copies. By using two P2P links and two copy-
engines per device all communication can be completed in 6
rounds when overlapped optimally. The optimal execution time
without data movement is 0.35 seconds, Parla achieves 0.351
seconds without data movement. In Figure 11 we observe that
prefetching is able to achieve close to the optimally overlapped
performance at each data size.

PArrays enable a coherence protocol. As such, if a PArray
has already been copied to a device and remains in a valid
state, no additional copy is performed. Both of these opti-
mizations benefit the suite of applications shown in Figure 9.
The impact is highly application-dependent. First, notice that
in nearly all cases the additional runtime overhead incurred
by automatic data movement is negligible compared to the
manual data movement. The serial synthetic workload has
strict chained dependencies among tasks and cannot benefit.
The independent synthetic workload, the matrix multiplication,
and the BLR have no dependencies among their compute
tasks. For these cases, it is hard to expect benefits from
data prefetching as manual movement is also colocated with
streams. The Cholesky factorization is a computation-intensive
application which masks the impact of a data movement
policy. On reduction, there is a benefit when gathering the
initial data to the subtrees at the leaf level and when one of
the parents finishes before the other. For these cases, automatic
data movement improves runtime about 23% over manual
movement within a task on 2 GPUs. On 4 GPUs the degree of
the overlap decreases. Similar behavior is seen when gathering
the initial blocks for BLR and N-body from the host machine.

Second, the coherency protocol for sliced objects can im-
prove performance significantly. Flexible finer-grained data
movement without large blocks increases memory bandwidth

Serial Reduction Independent

BLR Cholesky Jacobi Matmul Nbody

1 2 4 1 2 4 1 2 4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

0

50

100

150

0

2

4

6

0

20

40

0

1

2

3

4

0

5

10

15

20

25

0.0

2.5

5.0

7.5

0

20

40

60

0

1

2

3

#GPUs

T
im

e
 (

s
)

Non−Parla

Automatic Data Movement + Greedy Based Mapping

Automatic Data Movement + User Chosen Mapping

Manual Data Movement + User Chosen Mapping

Fig. 9. Runtime (s) comparison for Parla features [Automatic Data Movement/Greedy Mapping Policy, Automatic Data Movement/User Placement, Manual
Data Movement/User Placement] and non-Parla implementations on 1 to 4 GPUs.

Fig. 10. DAG for prefetching example with (right) and without (left)
prefetching tasks. Tasks for data movement are shown in yellow. Tasks for
computation are shown in grey. Untouched initial data is represented by black
nodes. Red edges represent a data dependency.

0.0 0.2 0.4 0.6
Time (seconds)

640

64

32

D
at
a
Si
ze

(M
B) Manual

Automatic
Ideal

Fig. 11. Total Runtime of DAG shown in Figure 10 for different sized data
transfers. We compare the performance of automatic data movement using
PArrays with manual data movement inside a task.

and overlaps more data copy operations. The PArray-based
N-body improves runtime about 24% over the manual data
movement. For Jacobi, we observe a performance hit due
to coherence overhead, contention of bandwidth with FIFO
scheduled boundary copies, and some locking around concur-
rent reads of a particular PArray object. This is ongoing work
and can be improved by better scheduling of data-move tasks.

C. Resource-Aware Mapping Policy

We study the performance of the mapping policy described
in III-D. The objective of the default mapping policy is
to make task placement decisions automatically (Automatic
Data Movement + Greedy Based Mapping) with comparable
performances to the hand-tuned mapping (Automatic Data
Movement + User Chosen Mapping). Figure 9 shows that the
runtime differences between the hand-tuned mapping and the
default policy do not exceed 0.5%. In many cases, this policy
is able to achieve a balance between managing device load
and data movement.

D. Comparison with Third Party Codes

Figure 9 shows comparisons between Parla and Non-
Parla implementations. First, we evaluated our Cholesky
factorization with a state-of-the-art multi-GPU implementa-
tion, MAGMA [33]. MAGMA’s implementation outperforms
Parla’s as it adopts optimizations to delay GEMM updates
and coalesces them into larger blocks. This leads to fewer
launch overheads, higher bandwidth, and improved memory
locality. Even with the algorithmic differences, the simple
Parla implementation with CuPy is able to achieve close
performance. Using the observed GEMM, TRSM, and POTRF
times in CuPy, we compute the expected theoretical runtime
for a bulk synchronous version of the algorithm without data
movement. This gives 24.4, 13.4, and 8.4 seconds on 1, 2, and
4 GPUs respectively. This is less than a 3% relative difference
from the Parla implementation. As this estimate assumes lower
parallelism than Parla but no communication overhead, we are
within a reasonable performance range.

Second, we evaluate our matrix multiplication against
cuBLAS’s multi-GPU implementation [34], which is opti-

mized for NVIDIA GPUs. Note that scaling at 4 GPUs is
hampered here due to there only being two P2P links. This
bottlenecks the large data transfers to communicate block-
columns of B onto all devices. In this evaluation, Parla’s
matrix multiplication showed comparable, but slightly better
performance than the architecture-specialized library. Last,
BLR and N-body, are compared against a non-Parla bulk-
synchronous implementation using the same task structure and
Python’s native threading module. In these cases we see an
advantage to using the tasking runtime and data movement
features. In summary, Parla enables the developement of
performant parallel algorithms with native Python libraries.

E. Comparison with Dask
O

u
t−

o
f−

M
e

m
o

ry

O
u

t−
o

f−
M

e
m

o
ry

CPU GPU

1 2 4 8 16 1 2 3 4

0

20

40

60

80

CPU cores or GPUs

T
o

ta
l

R
u

n
ti

m
e

 (
s

)

Parla Dask

Fig. 12. Total Runtime of Cholesky Factorization of Parla and Dask.

In Figure 13, we compare the strong scaling efficiency of
Parla and Dask (where the efficiency is computed w.r.t to
theoretically obtained optimal wall-clock time) for a set of
1000 independent CPU tasks at different task sizes. Although
Dask with the threading backend achieves slightly better
performance when scaling to more threads even at small
task sizes, it does not have the mapping policy, resource
management, or GPU support of its process-based equivalent
or of Parla. Dask also has the advantage of a static task
graph. Unlike Parla, the task graph is not streamed and the
tasks are not being spawned and running at the same time.
Its simplified scheduler leads to less overhead. Parla achieves
better performance than Dask (Process) at all configurations.
For a smaller number of workers, Parla remains competitive
with Dask (Thread). We can see that the optimal task sizes
for using Parla are greater than 20ms. In the bottom-right
sub-figure of Figure 13, we compare the robustness of Parla
and Dask to 50ms tasks that hold the GIL for 10% of
their execution time (5ms). In this regime, Parla achieves
significantly better performance when running with less than
12 workers.

Figure 12 shows a runtime comparison of a blocked
Cholesky factorization (N = 20k, b = 2k) in Parla and in Dask

254 10 40
Workers

0.00

0.25

0.50

0.75

1.00

Effi
ci
en

cy

Parla

254 10 40
Workers

0.00

0.25

0.50

0.75

1.00

Effi
ci
en

cy

Dask (Process)

20 404 10 40
Workers

0.00

0.25

0.50

0.75

1.00

Effi
ci
en

cy

Dask (Thread)

Size [ms]
1.6
3.2
6.4

12.8
25.6
51.2
102.4

20 404 10 40
Workers

0.00

0.25

0.50

0.75

1.00

Effi
ci
en

cy

w/ GIL

Dask
Parla

Fig. 13. Strong Scaling of Parla and Dask for a range of task granularities
from 1.6 ms to 102.4 ms on 1000 independent tasks. The GIL is released
for the entire task time. Parla [top-left], Dask (Process) [top-right], and Dask
(Thread) [bottom-left] are compared. Parla achieves performance only slightly
worse than Dask (Thread) while providing GPU support and memory man-
agement features similar to those in Dask (Process). Efficiency is calculated
w.r.t ideal runtime. In "w/GIL" [bottom-right] we run 1000 50ms tasks. This
time the GIL is held for 10% of total task time (5ms).

on multiple CPU cores and GPUs on a single node. Both
implementations use the same computation kernels and task
structure. However, Parla uses in-place modifications while
Dask communicates copies as data Futures. Parla experiments
are run with automatic data movement and the default greedy-
based mapping policy. Dask experiments are run with the
LocalCluster threading backend for CPU and the process
backend for GPUs via Dask-CUDA that creates a single
worker for each device. We use their default mapping policy in
each of these modes, and enable work stealing and the DAG
optimization functions. Parla and Dask showed comparable
runtimes on the CPU tests. On the GPU tests, Dask-CUDA
got out of memory on 1 and 2 GPUs, and showed around 5x
slowdown on 3 and 4 GPUs due to load imbalance, scheduling
overheads, and inter-process communication.

F. Demonstration of Task Variants

To demonstrate that heterogeneous dispatch can be useful,
we construct the following example: the independent batched
Cholesky factorization of 300 matrices of size 2000×2000 on
the host machine. We provide two function variants that per-
form the factorization of a single matrix: a host CPU Cholesky
function via BLAS on 6 threads and a GPU Cholesky function
that copies data to the device, performs the factorization with
cuBLAS, and copies back via manual data movement. On this
system, the GPU Cholesky function is about twice as fast as
the CPU Cholesky kernel and takes 0.03 seconds. Figure 14
shows the runtime of this test when mixing the two variants

0 1 2 4
GPUs

0
2
4
6
8

10
Ti
m
e
(s
)

Batched Cholesky with Variants
CPU + X GPUs
X GPUs

Fig. 14. Time for 300 independent Cholesky factorizations (N = 2k) with
heterogeneous dispatch.

compared to using the GPU kernel alone. When we use fewer
than 4 GPUs, there is a benefit to using the CPU to pick up
work while the GPUs are busy.

VI. CONCLUSIONS

Parla provides a Python-based programming system for
heterogeneous parallel programming along with a flexible
resource-aware runtime. All Parla components integrate seam-
lessly with the existing scientific Python ecosystem allowing
applications to reuse existing code or gradually adopt Parla.
Simple annotations and data wrappers enable programmers to
gradually adopt Parla to build powerful, multi-device HPC
applications. Features such as data prefetching and distributed
PArrays exhibit an advantage to user-written threaded code.
We’ve shown that Parla allows the development of parallel
Python programs that achieve competitive performance and
scale well within a single process on a heterogeneous system.

The Parla team continues to improve Parla’s interface,
data structures, and runtime system. Future work includes
multi-device tasks, improving the mapping, prefetching, and
data eviction policies, and integrating past task runtime and
variants into those policies. Work-stealing will be needed to
help load-balancing as we increase the batch size of mapped
tasks. Of particular note, Parla does not currently infer task
dependencies from data dependencies. While this provides
additional flexibility, adding a closer integration of data futures
and inferring dependencies from general ND-slices of data is
a key challenge to address for ease-of-use. Additionally, work
continues on incorporating Parla into larger HPC applications.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by NSF award
CNN-2006943, CNS-1846169, and CCF 1922862; by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics program
under Award Number DE-SC0019393; and by the U.S. De-
partment of Energy, National Nuclear Security Administration
Award Number DE-NA0003969. Any opinions, findings, and
conclusions or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of
the DOE, and NSF. Computing time on the Texas Advanced
Computing Centers Stampede system was provided by an
allocation from TACC and the NSF.

REFERENCES

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Advances in
Neural Information Processing Systems, 2019, pp. 8024–
8035.

[2] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan
et al., “Ray: A distributed framework for emerging
{AI} applications,” in Operating Systems Design and
Implementation, 2018, pp. 561–577.

[3] Dask Development Team, Dask: Library for dynamic
task scheduling, 2016.

[4] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford,
R. Kumar, L. Lacinski, R. Chard, J. M. Wozniak,
I. Foster, M. Wilde, and K. Chard, “Parsl: Pervasive
Parallel Programming in Python,” in Proceedings of
the 28th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: Association for Computing
Machinery, Jun. 2019, pp. 25–36. [Online]. Available:
https://doi.org/10.1145/3307681.3325400

[5] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M.
Badia, J. Torres, T. Cortes, and J. Labarta, “Pycompss:
Parallel computational workflows in python,” The
International Journal of High Performance Computing
Applications, vol. 31, no. 1, pp. 66–82, 2017. [Online].
Available: https://doi.org/10.1177/1094342015594678

[6] RAPIDS, “Dask-cuda,” 2022. [Online]. Available: https:
//docs.rapids.ai/api/dask-cuda/nightly

[7] H. Elshazly, J. Ejarque, and R. M. Badia, “Storage-
Heterogeneity Aware Task-based Programming Models
To Optimize I/O Intensive Applications,” IEEE Trans-
actions on Parallel and Distributed Systems, pp. 1–1,
2022, conference Name: IEEE Transactions on Parallel
and Distributed Systems.

[8] R. Amela, C. Ramon-Cortes, J. Ejarque, J. Conejero,
and R. M. Badia, “Executing linear algebra
kernels in heterogeneous distributed infrastructures
with PyCOMPSs,” Oil & Gas Science and
Technology – Revue d’IFP Energies nouvelles,
vol. 73, p. 47, 2018, publisher: EDP Sciences.
[Online]. Available: https://ogst.ifpenergiesnouvelles.fr/
articles/ogst/abs/2018/01/ogst180064/ogst180064.html

[9] J. J. Galvez, K. Senthil, and L. Kale, “CharmPy: A
Python Parallel Programming Model,” in 2018 IEEE
International Conference on Cluster Computing (CLUS-
TER), 2018, pp. 423–433.

[10] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Le-
gion: Expressing locality and independence with logical
regions,” in International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis,

https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1177/1094342015594678
https://docs.rapids.ai/api/dask-cuda/nightly
https://docs.rapids.ai/api/dask-cuda/nightly
https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2018/01/ogst180064/ogst180064.html
https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2018/01/ogst180064/ogst180064.html

2012, pp. 1–11.
[11] M. Bauer and M. Garland, “Legate numpy: Accelerated

and distributed array computing,” in Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC19), 2019.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vié-
gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015.

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet:
A flexible and efficient machine learning library for
heterogeneous distributed systems,” ArXiv, 2015.

[14] R. Mayer, C. Mayer, and L. Laich, “The TensorFlow
Partitioning and Scheduling Problem: It’s the Critical
Path!” arXiv:1711.01912 [cs], Nov. 2017, arXiv:
1711.01912. [Online]. Available: http://arxiv.org/abs/
1711.01912

[15] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “Starpu: a unified platform for task scheduling on
heterogeneous multicore architectures,” Concurrency and
Computation: Practice and Experience, pp. 187–198,
2011.

[16] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Her-
ault, and J. J. Dongarra, “PaRSEC: Exploiting Hetero-
geneity to Enhance Scalability,” Computing in Science
Engineering, vol. 15, no. 6, pp. 36–45, Nov. 2013,
conference Name: Computing in Science Engineering.

[17] M. Gonthier, L. Marchal, and S. Thibault, “Memory-
Aware Scheduling of Tasks Sharing Data on Multiple
GPUs with Dynamic Runtime Systems.” IEEE, May
2022, p. 1. [Online]. Available: https://hal.inria.fr/
hal-03552243

[18] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Mar-
tinell, X. Martorell, and J. Planas, “Ompss: a proposal for
programming heterogeneous multi-core architectures,”
Parallel processing letters, pp. 173–193, 2011.

[19] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and
P. Wyckoff, “Tapping into the fountain of cpus: on
operating system support for programmable devices,” in
Architectural Support for Programming Languages and
Operating Systems, 2008, pp. 179–188.

[20] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel, “Ptask: operating system abstractions to
manage gpus as compute devices,” in Symposium on
Operating Systems Principles, 2011, pp. 233–248.

[21] V. A. Saraswat, V. Sarkar, and C. von Praun, “X10:
Concurrent programming for modern architectures,” in
Principles and Practice of Parallel Programming, 2007,
p. 271.

[22] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An ef-
ficient multithreaded runtime system,” in Principles and
Practice of Parallel Programming, 1995, pp. 207–216.

[23] A. M. Peters, D. Kitchin, J. A. Thywissen, and W. R.
Cook, “Orco: A concurrency-first approach to objects,”
in Object-Oriented Programming, Systems, Languages,
and Applications, 2016, pp. 548–567.

[24] Anaconda, “Numba: A high-performance Python
compiler,” 2018. [Online]. Available: https://numba.
pydata.org/

[25] N. Al Awar, S. Zhu, G. Biros, and M. Gligoric, “A perfor-
mance portability framework for python,” in Proceedings
of the ACM International Conference on Supercomput-
ing, 2021.

[26] L. Dagum and R. Menon, “OpenMP: an industry standard
API for shared-memory programming,” IEEE computa-
tional science and engineering, pp. 46–55, 1998.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith et al., “Array programming with
numpy,” Nature, pp. 357–362, 2020.

[28] Preferred Networks, inc., “CuPy: A NumPy-compatible
matrix library accelerated by CUDA,” 2020. [Online].
Available: https://cupy.chainer.org/

[29] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo,
“Parallel distributed computing using Python,” Advances
in Water Resources, vol. 34, no. 9, pp. 1124–
1139, 2011, new Computational Methods and Software
Tools. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0309170811000777

[30] D. Heggie and P. Hut, The Gravitational Million–Body
Problem: A Multidisciplinary Approach to Star Cluster
Dynamics. Cambridge University Press, 2003.

[31] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghat-
tas, and D. K. Panda, “Frontera: The evolution of lead-
ership computing at the national science foundation,” in
Practice and Experience in Advanced Research Comput-
ing, 2020, pp. 106–111.

[32] “Texas Advanced Computing Center (TACC), The
University of Texas at Austin,” 2018. [Online]. Available:
https://www.tacc.utexas.edu/

[33] A. Haidar, A. YarKhan, C. Cao, P. Luszczek, S. Tomov,
and J. Dongarra, “Flexible linear algebra development
and scheduling with cholesky factorization,” in High Per-
formance Computing and Communications, Cyberspace
Safety and Security, and International Conference on
Embedded Software and Systems, 2015, pp. 861–864.

[34] NVIDIA, “cuBLAS,” 2021. [Online]. Available: https:
//developer.nvidia.com/cublas

http://arxiv.org/abs/1711.01912
http://arxiv.org/abs/1711.01912
https://hal.inria.fr/hal-03552243
https://hal.inria.fr/hal-03552243
https://numba.pydata.org/
https://numba.pydata.org/
https://cupy.chainer.org/
https://www.sciencedirect.com/science/article/pii/S0309170811000777
https://www.sciencedirect.com/science/article/pii/S0309170811000777
https://www.tacc.utexas.edu/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Hardware Details: All GPU experiments were run on a system with
dual-socket Intel Xeon E5-2620 v4 "Broadwell" CPUs (16 total cores,
hyperthreading disabled), 128 GB of DDR4 RAM, and 4 NVIDIA
Quadro RTX 5000s with 16 GB of video memory each. GPU 0 has a
Peer-to-Peer link to GPU 1, and GPU 2 has a Peer-to-Peer link to
GPU 3. All other device to device communication is done through
the host. CPU scaling experiments were tested on a dual-socket
Intel Xeon Platinum 8280 (56 total cores, hyperthreading disabled)
platform with 192 GB of DDR4-RAM.

All experiments were performed on a single node. We run strong
scaling on 1, 2, and 4 GPUs by changing CUDA_VISIBLE_DEVICES
to "0", "0, 1", and "0, 1, 2, 3" respectively.

Software Details:
For the results presented in the paper we install Parla into a

Python 3.8 environment that uses CuPy 8.3.0, Numba 0.54, and
CUDA 10.1. Other requirements (with versions that do not effect
runtime) are Cython, psutil, pexpect, and scipy. For Parla minimum
requirements view the root README in the github. The exact
environment we use can be viewed in the container artifact via
’conda list’ in the ‘parla‘ environment.

The main repository for the Parla tasking runtime is:
https://github.com/ut-parla/Parla.py (10.5281/zenodo.6975205).

For running and generating synthetic task graphs we
use: https://github.com/ut-parla/synthetic_graphs (10.5281/zen-
odo.6941883)

A docker container is available at:
https://hub.docker.com/r/utpecos/parla

Experiment Details:
In the paper, we run the Parla tasking system on 5 mini-apps:

Cholesky, BLR, Jacobi Stencil, Matmul, and NBody to demonstrate
the efficiency of the system and the effects of different provided
policies and data movement interfaces.

These can all be found in the github repo (and provided con-
tainer) under ‘Parla.py/examples‘. For each application, we perform
a strong scaling experiment on 1 to 4 GPUs. The sizes of each input
are: BLR (N = 10^4, b = 2.5k), Cholesky (N = 28k, b = 2k), Jacobi (N
= 30k, iter = 500), Matrix Multiplication (N = M = K = 32k).

We provide a launcher.py script that launches each of these
experiments. It is configured to take a figure number (or list of
figure numbers) and run sequentially through all experiments.

‘python examples/launcher.py –figures 9‘
To test one experiment in isolation we recommend changing

the test list (L1209 in the launcher.py) to include the wrapper
function you want to run. This list will be executed when the
launcher is run without any CLI. We additionally provide a ‘exam-
ples/commands.md‘ that lists the CLI for each script, options in
braces {} are to be filled with the parameter choice.

Running the launcher requires that the submodules have been
initialized, please run ‘git submodule update –init –recursive –
remote‘ in the Parla repo before running the launcher.

Additionally, the 3rd party comparisons are listed with separate
codes for the launcher CLI as ’9_cublas’, ’9_magma’, ’12_dask’,
’13_dask’. These require the 3rd party executables to be compiled
and put onto the PATH. Details are given in ‘artifact/README‘. We
provide source.sh, which should be run from PARLA_ROOT, to set
the recommended locations for environment variables.

For the Dask tests we recommend using a separate python en-
vironment as it can be difficult to satisfy the requirements of both
(Especially for DASK_CUDA) when matching the Parla test envi-
ronment for the SC22 submission. Please see the artifact/README
for additional details.

Most scripts (excluding synthetic) have been designed to allow
scaling over a custom CUDA_VISIBLE_DEVICE list (if your system
as mixed devices you want to exclude). But we strongly recommend
using 0,1,2,3 if possible as this is the most tested.

Slicing support is now in the main Parla.py branch -> nbody can
be run in the same environment as the other tests.

CLI for the apps (excluding nbody and synthetic due to a larger
number of needed changes and maintaining backwards compatibil-
ity) has been standardized. When calling an app ’-h’ provides a list
of the CLI options.

As an example in this AE cholesky for Figure 9 can
be run as follows: Manual + User Placement: ‘python
blocked_cholesky_manual.py -matrix chol_28000.npy -fixed
1‘

Automatic + User Placement: ‘python
blocked_cholesky_automatic.py -matrix chol_28000.npy -fixed 1‘

Automatic + Policy: ‘python blocked_cholesky_automatic.py
-matrix chol_28000.npy -fixed 0‘

An estimate for the runtime of a bulk-synchronous
parallel block cholesky is shown in the ‘exam-
ples/blocked_cholesky_theoretical_time.py‘. This is used in
text as a point of comparison.

Third party details are: - The GEMM sample ap-
plication in cuBLAS Multi-GPU Extension (cublasMg)
from https://developer.nvidia.com/cudamathlibraryea. We
have modified it slightly to perform A@B.T. - The ‘test-
ing/testing_dpotrf_mgpu‘ test script and sample in MAGMA/2.6.2
used with the same matrix size as in the Parla exam-
ple. (https://icl.cs.utk.edu/projectsfiles/magma/doxygen/
group__magma__potrf.html#ga95db876a9eb3392b00dbd846f229bc7
9) - Comparisons with Dask are run with ‘dask-core‘ and ‘dask-
distributed‘ versions 2022.5.0, used with dask-cuda 0.18.0 for
GPU configuration. The scripts to run the Cholesky and inde-
pendent task Dask comparisons are in the Parla and Synthetic
repos. We provide the requirements file to recreate this env in
’dask-requirements.txt’ in the Parla.py repo. For the Cholesky com-
parison, we used dask_cpu_choleksy.py and dask_gpu_cholesky.py.
The comparisons were run against manual movement without
automatic placement in Parla.

Lee, et al.

In addition to these mini-apps, we test with synthetic task graphs.
These are generated and run with the ‘synthetic_graphs‘ git reposi-
tory / complimentary Python module. Details on general use and
installation are provided in its README. This module is already
installed on the provided Parla Docker container for Nvidia Pascal
devices and later. Please note that even when installed it must be
configured for the system it is running on as the synthetic task
length is controlled by counting clock cycles. By default, this is
configured for RTX5000s. This is controlled by hard coding an ex-
perimentally collected "clock cycles per second" variable that is
used to estimate task length.

This repo contains scripts to generate task graphs in the ‘/graphs‘
folder. For the experiments shown in the paper the graphs can be
generated with the commands and scripts present in the ‘exam-
ples/synthetic/artifact‘ folder (or generated via the launcher). In ad-
dition to the scaling tests on the independent, serial, and reduction
graphs, this includes an experiment that demonstrates prefetching
on a small task graph for different data sizes.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/ut-parla/Parla.py
Artifact name: Parla Main Git Repository
Citation of artifact: 10.5281/zenodo.6975205

Artifact 2
Persistent ID: https://hub.docker.com/r/utpecos/parla
Artifact name: Parla Docker Container

Artifact 3
Persistent ID: https://github.com/ut-parla/

synthetic_graphs
Artifact name: Synthetic Graph Testing Module
Citation of artifact: 10.5281/zenodo.6941883

Reproduction of the artifact with container: Both the Parla and
synthetic_graphs git repository have installation and usage instruc-
tions provided in their README. 3rd party code usage is described
and enabled by the artifact/README, example/commands.md, ex-
ample/source.sh, and example/launcher.py

For the provided container the installation of Parla and syn-
thetic_graphs has already been completed in an environment that
matches our experimental setup. A ‘dask-requirements.txt‘ is pro-
vided to match the environment and software versions used for the
Dask comparison.

The Python environments can be installed as follows:
Parla: conda create –name parla_env –file requirements.txt –

channel conda-forge
Dask: conda create –name dask_env –file dask-requirements.txt

-c conda-forge -c intel -c rapidsai -c nvidia
Note that the Parla env only installs dependencies. It does not

install Parla itself or the "sleep" module that synthetic_graphs uses.
On most systems the Parla.py install is as simple as running ‘pip
install -e .‘ in the main Parla directory. The dependencies are: cupy,
numpy, psutil, pexpect, numba, scipy, and python>=3.7.

In addition to the above: synthetic_graphs needs CUDA and nvcc
on the path. It’s ‘sleep‘ module can be installed by running ‘pip

install .‘ in examples/synthetic. Note that if nvcc is not on the path,
this install might silently fail on your system. Look at the warnings
generated. This can lead to incorrect runtime behavior (as tasks
will not have busy work)

The docker container can be loaded via: ‘docker run –gpus 4 -it
utpecos/parla:latest‘ to load it from Docker hub or the equivalent
Singularity command on your cluster. If using Singularitymake sure
that you do not have a local conda environment that could conflict
with the one loaded by the container. When the container is loaded,
activate the Parla environment with ‘conda activate parla‘. If using
Singularity, one may need to first run ‘conda init <shell_name>‘
and restart your shell within the container. A system with NVIDIA
GPUs with an architecture of Pascal or later must be used to run
this container.

For the 5 applications used, scripts are in
‘/home/Parla.py/examples‘ and described in the artifact de-
scription provided above. If ever needed, one can revert Parla to
older runtimes while using the current launcher and examples
with ‘git checkout <commit> – parla‘

The synthetic graphs directory provides an installation config-
ured for RTX5000s. This configuration is the hard coded ‘clock
cycles per second field‘ in the GPUInfo class. An estimator for this
on your system is provided and its usage can be seen in the com-
mented section of ‘examples/synthetic/run.py‘. Details for tuning
and running are provided in the exaxmples/synthetic/README. If
the cycles per second count is not tuned to your system then the
internal task times and provided estimates will not be accurate, but
the script will still run. We provide the commands used to generate
the graphs used in the paper in the examples/synthetic/artifact
folder along with some output and SLURM scripts that were used
in the SC submission. For AE usage we recommend using the ex-
amples/launcher.py instead of these scripts.

For CPU tests, the number of threads that Parla schedules in
can be set with ‘-threads‘ in ‘run.py‘. This forces the number of
ACUs per task as 1/threads. Additionally CPU only tests in exam-
ples/synthetic should be run with the ‘-use_gpu 0‘ flag to prevent
reading available devices on the system.

	Introduction
	Related Work
	Heterogeneous Tasking Systems in Python
	Heterogeneous Tasking Systems

	The Parla Tasking System
	Parla Tasks
	The Parla Interface
	The Parla Array (PArray)
	The Parla Runtime
	Parla Interoperability

	Applications
	Evaluation
	Evaluation Setup and Design
	Data Management
	Resource-Aware Mapping Policy
	Comparison with Third Party Codes
	Comparison with Dask
	Demonstration of Task Variants

	Conclusions
	Acknowledgments

