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ABSTRACT
Algorithmic bias often arises as a result of differential subgroup
validity, in which predictive relationships vary across groups. For

example, in toxic language detection, comments targeting different

demographic groups can vary markedly across groups. In such set-

tings, trained models can be dominated by the relationships that

best fit the majority group, leading to disparate performance. We

propose framing toxicity detection as multi-task learning (MTL),

allowing a model to specialize on the relationships that are relevant

to each demographic group while also leveraging shared properties

across groups. With toxicity detection, each task corresponds to

identifying toxicity against a particular demographic group. How-

ever, traditional MTL requires labels for all tasks to be present for

every data point. To address this, we propose Conditional MTL
(CondMTL), wherein only training examples relevant to the given

demographic group are considered by the loss function. This lets

us learn group specific representations in each branch which are

not cross contaminated by irrelevant labels. Results on synthetic

and real data show that using CondMTL improves predictive recall

over various baselines in general and for the minority demographic

group in particular, while having similar overall accuracy.
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1 INTRODUCTION
In developing natural language processing (NLP) models to detect

toxic language [1, 44, 49], we typically assume that toxic language

manifests in similar forms across different targeted groups. For

example, HateCheck [36] enumerates templatic patterns such as “I

hate [GROUP]” that we expect detection models to handle robustly

across groups. Moreover, we typically pool data across different
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demographic targets in model training in order to learn general

patterns of linguistic toxicity across diverse demographic targets.

However, the nature and form of toxic language used to target

different demographic groups can vary quite markedly. Further-

more, an imbalanced distribution of different demographic groups

in toxic language datasets risks over-fitting forms of toxic language

most relevant to the majority group(s), potentially at the expense

of systematically weaker model performance on minority group(s).

For this reason, a “one-size-fits-all” modeling approach may yield

sub-optimal performance and more specifically raise concerns of

algorithmic fairness [1, 32, 43]. At the same time, radically siloing

off datasets for each different demographic target group would

prevent models from learning broader linguistic patterns of toxic-

ity across different demographic groups targeted. To characterize

this phenomenon in which toxic language exhibits both important

commonalities and important differences, we borrow the popular

phrase of “same same, but different” [53].
More formally, such heterogeneity of toxic language targeting

different groups can be conceptually framed in terms of differen-
tial subgroup validity [17]: a relationship 𝑓 : 𝑋 → 𝑌 mapping

the input data 𝑋 to labels 𝑌 may have different predictive power

across groups. The wide diversity of demographics targeted by toxic

language, and the ways in which minority groups may be dispropor-

tionately targeted, underscores the importance of understanding

and recognizing this phenomenon.

From an algorithmic fairness perspective, it has been shown that

excluding sensitive attributes from the features used in prediction,

also known as “fairness through unawareness” is ineffective [9].

Some methods, e.g., adversarial fairness approaches [55], address
this problem by penalizing models from learning relationships that

are predictive of sensitive attributes. Others have noted that making

use of such attributes may significantly improve performance for

minority groups and reduce algorithmic bias [20, 25], a reason that

is tightly linked to the presence of differential subgroup validity.

Prior work [7] has shown that differential subgroup validity can be

addressed by training models that learn group-specific idiosyncratic

patterns, such as decoupled classifiers [10]. In the context of toxic

language detection, inclusion of demographics has the potential

to boost performance in detecting toxic language targeting the

minority group(s) who are less represented in a given dataset.

To address the challenge of differential subgroup validity in tox-

icity detection, we propose to model demographic-targeted toxic

language via multi-task learning (MTL). MTL combines shared and

task-specific layers, allowing a model to specialize on relationships

relevant to different groups while leveraging shared properties

across groups. In this setting, each MTL task corresponds to de-

tecting toxic language targeting a different group. Shared layers
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can benefit from training across posts targeting multiple groups,

while task-specific layers are trained only on posts that target each

respective group. For e.g., if a post targets group 𝐴, it should in-

fluence the shared layers and its own task-specific layers, but not

task-specific layers for group 𝐵.

A key limitation of prior MTL work [26] is the assumption that

each training point is labeled for all tasks. In our context, this means

that a post targeting group 𝐴 is labeled as non-toxic for group 𝐵.

However, this risks contaminating group 𝐵 data because toxic terms

or phrases contained in such posts would then be associated with a

non-toxic label. We refer to this as label contamination.
In this work, we propose a novel Conditional MTL (CondMTL)

approach that is capable of learning group specific representation of

toxic language over sparse labels. Crucially, we abandon the tradi-

tional MTL assumption that each training instance is labeled for all

tasks. Instead, instances labeled only for one task influence shared-

layer trainingwithout contaminating training of task-specific layers

for other tasks. We achieve this by introducing a task-specific, con-

ditional representation of labels, combined with a novel conditional

loss function for MTL training that is a selective variant of the

widely-used binary cross-entropy loss.

To evaluate CondMTL for toxic language detection with differen-

tial subgroup validity, we use the Civil Comments [4] portion of the

Wilds [21] dataset, which provides toxicity labels with target demo-

graphics. We center the potential harms affecting the targets and

distinguishmisses (i.e., an undetected toxic post) vs. false alarms (i.e.,
a non-toxic post that is erroneously flagged) because the potential

harm of different types of errors is different. Recall, which is tightly

linked to the algorithmic fairness measure of Equality of Oppor-

tunity [14], is thus a central measure of interest in our study. Our

results show that CondMTL matches accuracy of baselines while

boosting recall across demographic target groups. For CondMTL,

we also observe improved Equality of Opportunity between the

groups. Further analysis investigates how the group specific na-

ture of our problem affects model predictions (Section 7). We also

present analysis of model performance vs. a prior baseline (Section
6.3) and conduct additional synthetic experiments to verify model

correctness (Appendix D). Finally, we show that CondMTL reduces

time and space required vs. other MTL baselines.

Key contributions of our work are as follows:

• We propose a novel Conditional MTL framework that supports

conditional labels in general and specifically addresses differen-

tial subgroup validity in the context of toxic language detection.

• Results show that CondMTL performs better than existing MTL

variants across demographic groups considered.

• We provide theoretical and empirical justification with bench-

marking scenarios for mathematically checking model validity.

• For reproducibility and adoption, we share our TensorFlow-based

source code for CondMTL
1
.

2 RELATEDWORK
Multi-task learning (MTL) has widespread use in many applications

of machine learning, from computer vision to natural language pro-

cessing and from hate speech detection to media bias diagnosis. We

1https://github.com/smjtgupta/CondMTL

present a focused overview of the existing MTL works as applicable

to our study. For detailed analysis, readers are referred to surveys

by Ruder [38], Crawshaw [8], and Vandenhende et al. [50].

MTL architectures broadly fall under two categories of a) hard;

and b) soft parameter sharing of hidden layers. Hard parameter

sharing shares the hidden encoder layers between all tasks while

keeping several task-specific output layers. It is the most commonly

used approach [18, 22, 28] to MTL and empirically reduces the risk

of over-fitting [3]. Soft parameter sharing maintains several inde-

pendent task-specific layers with either some form of regularization

in loss [54] or introduces correlation units across tasks [30]. It can

learn an optimal combination of shared and task-specific represen-

tations as shown in [11, 27, 39].

2.1 MTL in Computer vision
Works in Architecture. Long et al. [28] place matrix priors on

the fully connected layers, allowing the MTL model to learn re-

lationships between tasks. They rely on a pre-defined structure

for sharing, which may be well-studied for computer vision prob-

lems but less adaptable for non-vision tasks. Lu et al. [29] follows

a bottom-up approach starting with thin layers and dynamically

widens them greedily during training by promoting grouping of

similar tasks. This greedy grouping may inhibit the model from

learning similarities between tasks. Cross Stitch Networks [30]

maintain correlation units across tasks specific layers, called cross

stitch units. These units use a linear combination of the output of

the previous layers across tasks, allowing the units to learn appro-

priate weights if the tasks are correlated to each other.

Works in Loss Function. These methods do not alter the MTL

architecture, but rather use modified loss functions. Kendall et al.

[18] use a Gaussian likelihood with a task-dependant uncertainty

inspired loss function that assigns relative weights to each task

based on its difficulty. Chen et al. [5] constrains the task-specific

gradients to be of similar magnitude, thereby forcing all tasks to

learn at an equal trajectory. Guo et al. [13] assigns higher weights

to difficult tasks, forcing the network to learn better values on

these tasks. However, this requires manual parameter tuning. Liu

et al. [27] aims to maintain equal trajectory in losses across tasks,

irrespective of their difficulty, by readjusting weights across tasks

after each gradient update. Tasks with slower drop rate are assigned

more weights for the next update.

2.2 MTL in Natual Language Processing
In order to find better hierarchies across NLP tasks, methods are

developed to account for losses, not only at the outermost layer of

the model, but at intermediate layers as well. Søgaard and Goldberg

[46] empirically show that using supervision losses at the earlier

stages of an NLP pipeline improved model performance for tasks

such as part-of-speech tagging and named entity recognition on

a deep bi-directional RNN architecture. Hashimoto et al. [15] uses

the aforementioned idea to apply losses at different levels of the

hierarchical NLP pipeline. They propose a joint model for MTL

with supervising losses at the word, syntactic, and semantic levels.

2.3 MTL in Hate Speech
Liu et al. [26] use a fuzzy MTL setup for hate speech detection to

identify hate speech from single-labeled data. They employ a fuzzy

2
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rule based schema to identify potential groups of hate targets over

examples and update the rule thresholds w.r.t. training error. For

hate speech, typically the hate class is the smaller class with fewer

examples, so they mark all unlabelled examples in their dataset as

the larger class i.e., non-hate, which leads to the issue of label con-
tamination (see Section 4.1). Plaza-del Arco et al. [34] observe that

invoking labels of sentiment, emotion, and target of hate speech

jointly improves detection of hate speech. They employ a MTL

model where each tweet has labels corresponding to the mentioned

attributes, using transfer learning. Samghabadi et al. [41] develop

a MTL model to jointly predict aggression and misogyny across

datasets. Vaidya et al. [49] use a MTL model to jointly predict toxic-

ity and identity of target. Morgan et al. [31] frame the identification

of toxic, engaging, and fact-claiming comments on social media as

a MTL problem. Awal et al. [2] jointly learns hate speech detection

with sentiment classification as primary and target identification as

secondary task, and employ a model with independent task-specific

layers and a parallel shared layer. The output vectors from these

layers are merged using a gate fusion mechanism, which is a linear

combination unit between the shared and task specific vectors.

2.4 Applied MTL
Given the media’s ability to shape individuals’ actions and beliefs,

prior work has sought to improve media bias detection to identify

underlying biases and their influences. Spinde et al. [47] use a MTL

model which learns to detect bias using task-specific layers asso-

ciated with specific datasets, yielding performance that generally

surpasses their baseline single-task methods. The proliferation of

misinformation has driven prior work in automated fact-checking.

Vasileva et al. [51] use a MTL model to learn from multiple fact-

checking organizations simultaneously. Their MTL model yields

sizeable improvements over their single-task learning baseline, in-

dicating a benefit to jointly learning identification of fact-check

worthy claims for multiple news sources. In the context of data

annotation, collected labels may often be dominated by views of

the majority. To address this, Gordon et al. [12] introduce jury

learning to model individual labelers in the dataset and incorporate

dissenting voices when forming juries of diverse demographics.

Variations in language across posts targeting different groups

is at the core of our motivation. We aim to improve model per-

formance and fairness by learning group-specific variations. As

we explained in Section 1, this contrasts with approaches such as

adversarial fairness, which aim to prevent a model from relying

on group-specific variations. For instance, Huang and Paul [16]

argue that there is no unified use of language across different de-

mographics including gender, age, country and region. With the

goal of improving generalization across groups, they propose an

adversarial training approach; the adversarial branch predicts de-

mographics of the document, while the main branch does standard

text classification. In doing this, their objective is to learn pat-

terns that generalize across groups. Meanwhile, our goal is to learn

group-specific patterns, e.g., the model should be able to recognize

demeaning terms that are only used against one minority group.

3 PROBLEM STATEMENT
We are given a dataset D ∈ R𝑁×𝐹

, with 𝑁 samples (posts) and 𝐹

features. These 𝐹 dimensional features can be extracted using any

off-the-shelf NLP model. We assume binary labels for this dataset

asY ∈ R𝑁 , where each label (𝑦) corresponding to a post (𝑑) can be

either Non-Toxic (0) or Toxic (1). Furthermore, we are given the 𝐾

demographic groups pertaining to the targets of each post. Thus

each post can be mapped to an overall (group-agnostic) toxicity

label as well as multiple group-targeted toxicity labels as 𝑑 → 𝑦

and 𝑑 → 𝑦𝑘 ,∀𝑘 ∈ 𝐾 ,where the overall label 𝑦 =
⋃
𝐾 𝑦𝑘 considering

the data to be toxic/non-toxic, irrespective of the group. Due to

the nature of the 𝐾 independent groups, we have the combined

datasetD = D1 ∪ D2 ∪ . . . ∪ D𝐾 as the union of the demographic

specific data points D𝑘 ∈ R𝑁𝑘×𝐹
.

If our objective is to optimize a certain performance metric, i.e.,
minimizing Binary Cross Entropy (BCE), we can do it over: a) the

entire dataset D; or b) demographic group specific data subsets

D𝑘 , 𝑘 ⊆ 𝐾 . The Single Task (STL) model has independent classifiers

for each split D𝑘 , while the Multi Task Learning (MTL) variant has

one joint classifier with 𝐾 task-specific branches for each split D𝑘 .

4 CONDITIONAL MTL
Conditional loss is intuitive: for each demographic branch, we

should compute error across toxic and non-toxic class labels only

for examples that are relevant to that branch’s demographic group.

4.1 Labeling Schema
Traditional MTL (TradMTL) approaches assume that each train-

ing point has labels for all tasks. A post targeting group Green,

irrespective of toxicity label, is assumed to be non-toxic towards

group Orange as well. This formulation of the task leads to many

posts containing toxic language being labeled as non-toxic, by the

labels marked red as shown in Table 1. We argue that this label-

ing schema, which blends together the questions is the post toxic?
and who is the target of the post?, leads to label contamination. For
extended illustration, refer to Appendix C.

Post Traditional MTL Labels Correct Labels

Green Orange Green Orange

“I hate Green” Toxic Non-Toxic Toxic •
“I love Green” Non-Toxic Non-Toxic Non-Toxic •

Table 1: Label contamination occurs in a Traditional MTL label
assignmentwhen posts that target a given group (Green) are assumed
to be non-toxic toward any other group (e.g.,Orange). Red denotes
unsupported label assignments, while (•) correctly denotes that these
posts do not contain a label wrt. the Orange target group.

In order to let the model differentiate between demographic-

specific examples, we consider group-conditional labels from the

set {T, NT, •}, where • is an indicator denoting that the label of the

current example is irrelevant/unknownw.r.t. the group. To illustrate
the reasoning for the schema, we show a series of example post

templates and their corresponding labels in Table 2. Note that in
the traditional labeling schema, as proposed in [26] and widely

followed in the MTL literature, a) any post that is toxic towards a

specific group is considered non-toxic towards every other group

(see rows 2 and 3); and b) any post that is non-toxic to a group

is considered non-toxic towards every other group as well (see

rows 5 and 6). Our conditional schema enables each demographic

branch of the CondMTL model to conditionally filter out irrelevant
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examples (both toxic and non-toxic) for each group, and compute

the loss over the relevant examples only.

TradMTL Label CondMTL Label

Hypothetical Post Men Women Men Women

“I hate everybody” T T T T

“I hate men” T NT T •
“I hate women” NT T • T

“I love everybody” NT NT NT NT

“I love men” NT NT NT •
“I love women” NT NT • NT

Table 2: CondMTL group-specific labels vs.TradMTL labels for some
hypothetical posts. T and NT denote toxic and non-toxic labels, The
label (𝑡 ) denotes the toxicity 𝑡 of a post towards a target group 𝑘 . The
• indicates unknown toxicity wrt. the given group, whereas TradMTL
methods erroneously assume such training examples are non-toxic.

4.2 CondMTL Algorithm
We follow the same architecture as TradMTL (shown in Fig. 3), but

instead of standard weighted Binary Cross Entropy (wBCE), we use

a Conditional weighted BCE loss function. wBCE is a variation of

BCE that re-weights the error for the different classes proportional

to their inverse frequency in the data [24]. This strategy is available

in popular packages like SkLearn [33] and is useful to address class

imbalance (e.g., between toxic vs. non-toxic examples).

Algorithm 1 Conditional MTL Loss (𝑦true, 𝑦pred)

1: Input: True Label 𝑦true = 𝑦 ⊲ true label w.r.t. current branch
2: Input: Predicted Label 𝑦pred = �̂� ⊲ Predicted probability of classifier

3: Input: Class Weights 𝑤toxic, 𝑤non-toxic ⊲ Assigned weights of classes

Select demographic relevant examples in current mini batch

4: 𝑦𝑘
true
, 𝑦𝑘

pred
= {}, {} ⊲ Empty lists to hold selected examples

5: for 𝑖 ∈ 𝑛 do ⊲ Loop over examples in current mini batch

6: if 𝑦 ∈ 𝑘 then ⊲ current example is relevant to branch 𝑘

7: 𝑦𝑘
true

= 𝑦𝑘
true

∪ 𝑦 ⊲ Append current label for consideration

8: 𝑦𝑘
pred

= 𝑦𝑘
pred

∪ �̂�

Compute weighted BCE loss over relevant selected subset of examples

9: 𝑒𝑟𝑟 = 𝑤𝐵𝐶𝐸 (𝑦𝑘
true
, 𝑦𝑘

pred
, 𝑤toxic, 𝑤non-toxic )

10: Output: Error for backpropagation 𝑒𝑟𝑟

For a given MTL architecture, we can consider 𝐾 + 1 tasks: a

generic one and 𝐾 group-specific ones. For example, if groups

correspond to a simplified version of gender, with two possible

group labels, then we would have three tasks: T1) given a post, is it

toxic?; T2) given a post, is it toxic towards men? and T3) given a

post, is it toxic towards women? All the examples in D are passed

through the network, where the T1 branch learns a demographic-

independent toxic vs. non-toxic representation over 𝑁 examples.

While all𝑁 examples and their labels get passed to the demographic-

specific branches (T2 and T3) as well, CondMTL only allows back

propagation for the relevant instances. For instance, only the 𝑁1

examples of D1 that are targeted towards women demographics

would be considered by the women branch.

The Conditional Loss Function CondMTL is shown in Alg. 1,
which operates over each mini batch of examples to compute er-

rors for backpropagation (steps 5-8). It accepts two arguments, the

true labels (𝑦true = 𝑦) and the predicted labels (𝑦
pred

= 𝑦). Note

that in our CondMTL loss, we are using the conditional label for-

mat as shown in Table 2, thereby 𝑦true is the label conditioned on

the demographic flag. Iterating over each example (step 5) in the

mini batch, we only select relevant instances to that demographic

branch based on the demographic flag (𝑘) (step 6) and append the

true and predicted labels to 𝑦𝑘
true

, 𝑦𝑘
pred

, respectively (step 7-8). We

also have the weights for each class (𝑤toxic,𝑤non-toxic), which are

pre-computed during label generation. These weights can also be

computed over each mini batch on the basis of the number of toxic

vs. non-toxic examples in the selected subset 𝑦𝑘
true

. We leave the

choice of selecting weights up to the practitioner to account for

class imbalance. Finally, we compute the weighted BCE loss on the

selected relevant examples for backpropagation (step 9).
When considering the template posts fromTable 2, the TradMTL

model with its labeling schema [26] would correctly backpropagate

its losses for the all, men, and women branches for the example I
hate everybody. Given that this post does target both the men and

women groups and is toxic, the traditional label (T, T, T) is equiva-

lent to the conditional label (T, T, T). However, the template post I
hate men reveals an issue with the traditional labeling schema and

the subsequent information that a TradMTL model would learn;

the traditional MTL model would backpropagate a misleading loss

for the women branch due to the women label in the traditional

label (T, T, NT) being marked as non-toxic (NT). The traditional

MTL model would erroneously learn that a post which is toxic

towards men is nontoxic if it were targeted at women, ultimately

confusing the model. In contrast, the CondMTL model avoids back-

propagating the loss which may confuse the model by examining

the demographic flag corresponding to the label (T, T, •) and using

it to compute the loss only for the men branch.

5 EXPERIMENTAL DETAILS
We describe the dataset used for validation along with a stacked

single task model baseline and other MTL models for comparison

with CondMTL. Implementation details regarding setup, loss curves,

and class balancing strategy are enumerated in Appendix A.

5.1 Data
Target Identity Dataset. To assess differential subgroup validity

in toxic language detection, we focus on toxicity and gender [37, 52].

We use the Civil Comments [4] portion ofWilds [21]. The dataset
has 48,588 training posts labeled as Toxic or non-Toxic. Each post

has an explicit annotation for the demographics i.e., gender groups
of the target entity, with probability scores about the annotator

consensus. We select posts where more than 50% of annotators

agreed on the gender of the target. We include only women (W)

and men (M) genders, to construct a simplified binary sensitive

attribute for our experiments. However, we emphasize that this is

a simplification and acknowledge the non-binary nature of gender.

Moreover, we note that the reliance on annotators to identify the

gender of the target may contain errors.

We consider posts where either group (women: 22,149 and men:

15,305) or both groups (both: 11,134) are targeted. Table 3 shows

the distribution of targets and labels in the dataset. We use the same

procedure for both the train and test splits from the dataset. We

observe roughly a 15%-85% split between toxic vs. non-toxic labels
across all three branches for both the train and test splits.

4
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Train Split Test Split

Branch Toxic Non-Toxic Total Toxic Non-Toxic Total

All 7,099 (14%) 41,489 (86%) 48,588 3,350 (15%) 19,236 (85%) 22,586

Men (M) 3,940 (15%) 22,499 (85%) 26,439 1,920 (15%) 10,694 (85%) 12,614

Women (W) 4,560 (14%) 28,723 (86%) 33,283 2,068 (14%) 12,964 (86%) 15,032

Table 3: Statistics of the Wilds [21] dataset. We consider the binary
sensitive target gender as men vs. women. The all branch contains
all data points, while men and women branches contain the data
points in which posts target men or women groups, respectively.

5.2 Baselines
For a single task (STL) baseline, we use a DistilBERT [42] repre-

sentation layer to extract numerical features from posts. This is

followed by layers of dense neuron connections with relu activation
and added biases, ending in a classification node with sigmoid acti-

vation with 0.5 classification threshold (Fig. 1). For our experiments,

we freeze the weights of the DistilBERT [42] representation layer.

The only trainable parameters in the models are the dense neuron

units that follow the DistilBERT layer until the output branch. One

can replace the DistilBERT layer with any other advanced feature

representation without altering the rest of the model.

Figure 1: Architecture for Single Task, where all posts are passed
though a neural network and get classified as toxic vs. non-toxic.

Stacked STL model (Fig. 2) contains independent classifiers for
each demographics, distinguishing toxic vs. non-toxic. For theWilds

dataset, we construct All, Men, and Women classifiers resulting in

3× the trainable parameters of one Single task classifier.

Figure 2: Architecture for stacked STL contains three independent
single task models, one for each portion of the data.

Traditional Multi Task (TradMTL) model (Fig. 3) contains a
shared layer of 512 dense neurons across all the tasks, while the in-

dividual task-specific layers (enclosed in dashed boxes) have dense

connections of 128, 64 and 1 each, following the architecture of the

STL model. The shared layer is responsible for learning a represen-

tation that is common across all tasks, while the task specific layers

learn representations specific to their own tasks for differentiating

between toxic vs. non-toxic posts.
Cross Stitch Multi Task (CSMTL) model (Fig. 4) is similar to

the stacked STL model (Fig. 2) with Cross Stitch (CS) units [30]

placed between each dense layer. The CS layer is a 𝐾 × 𝐾 weight

matrix, initialized as Identity 𝐼𝐾 . The intuition is that if the 𝐾 tasks

are independent, then the identity holds even after training with

backpropagation. If the tasks are correlated, then the CS matrix at

each layer would deviate from identity and learn some common

correlation structure across similar tasks. However, both theoret-

ically and empirically, the CS structure does not always improve

Figure 3: Architecture for TradMTL and CondMTL, where the 512
dense neurons are shared across all three tasks while maintaining
independent task specific layers (mark by dashed boxes).

performance, while taking up more than 𝐾× trainable parameters.

We choose this framework for comparison, as it is one of the most

widely used ones in the MTL literature.

Figure 4: Architecture for CSMTL, which is replica of the Stacked
STL model, with cross stitch (CS) units between each dense layers,
allowing them to share weights across tasks for task similarity.

5.3 Inference
All models discussed (STL, TradMTL, CSMTL, and CondMTL) as-

sume group labels at inference time. Each post in theCivil Comments
[4] portion ofWilds [21] is human-annotated for the demographics,

which includes the gender group of the target entity of each post.

We acknowledge that human annotations may contain errors.

6 RESULTS
Wepresent the performance of CondMTLw.r.t. the stacked STL base-
line and other MTL variants in terms of trainable parameters and

training runtime. We examine post hoc classification performance

and recall disparities and compare confusion matrices for all of the

models. We also present analysis of our CondMTL and CSMTL in

terms of label contamination and contamination of weights.

6.1 Architecture and Runtime
Table 4 shows trainable parameters for the baseline models and

for CondMTL. Results shown are only over one run. For mean and

variance reports over multiple runs, please refer to Appendix B.
The single task model (Fig. 1) has 467,713 trainable parame-

ters, hence the stacked STL (Fig. 2) operating on the All, Men, and

Women portions of the data has 3× or 1, 403, 139 trainable parame-

ters. We report space reduction achieved by MTL models vs. this
reference of 3 STL models. The TradMTL and CondMTL models

(Fig. 3) have the same architecture but different labeling schema

and loss functions. They have a shared 512 unit layer representation

and three task specific branches which collectively have 56% fewer

trainable parameters when compared to the stacked STL model.

The CSMTL model (Fig. 4) is a replica of the Stacked Single Task

model with cross stitch (CS) units between each of the dense layers.

It has 27 (∼ +0%) more trainable parameters when compared to the

5
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Model type # Params Δ Time(s) Δ

Stacked STL (3 models) 1,403,139 - 7,200 -

CSMTL [30] 1,403,166 +0% 2,600 -64%

TradMTL 615,683 -56% 2,200 -69%

CondMTL (Ours) 615,683 -56% 2,050 -72%

Table 4: Space (parameter size) and training time (seconds for 10
epochs) required by STL vs.MTL models on the Wilds dataset. The
DistilBERT representation is frozen and the dense layers are train-
able, with each STL model having 467,713 trainable parameters. For
the 3 tasks considered, we assume 3 different STL models and report
space and time summed over all 3. We then report % space and time
reduction achieved by MTL models vs. this baseline of 3 STL models.

Stacked STL model due to the extra connections from the CS units.

In terms of training and further deployment, the traditional and

conditional MTL models are preferable due to significantly reduced

model size even when dealing with multiple tasks (three in this

case). One can observe that the trainable parameters in Cross Stitch

networks scale linearly w.r.t. number of tasks, causing memory

stagnation. This issue has been raised and studied in [48].

We report the training runtime in Table 4 w.r.t. 10 epochs. Both
TradMTL and CondMTL models have the same number of trainable

parameters. However the CondMTL model only trains over a subset

of the data in its men and women branches, which reduces runtime.

Empirically, we observe a reduction of 72% in CondMTL vs. 69% in

TradMTL. The stacked STL and CSMTL models take longer to train,

since they roughly have the same number of trainable parameters.

However, the CSMTL model operates on the three branches in a

single model rather than three independent models, resulting in a

lower GPU pipeline load and a 64% reduction in time.

6.2 Performance Measures
We show the performance comparison of the models on the Wilds-

Civil Comments [21] test dataset. The Accuracy numbers in Ap-
pendix B: Table 7 indicate that all of the models roughly perform

the same in terms of overall accuracy w.r.t. the Stacked STL (∼ 86%).

Since the dataset is imbalanced, with the non-toxic class encom-

passing 85% of the labels, a model which trivially predicts all testing

posts as non-toxic would also achieve a roughly 85% accuracy score.

Given that all models perform approximately the same as this trivial

baseline, we need to consider other metrics to more holistically

evaluate model performance.

In order to identify the discrepancies between the models, we

compare the Recall, F1 and Precision scores in Table 5. Since the
dataset is imbalanced with roughly a 85%-15% split between the

non-toxic vs. toxic labels, we observe the bias of the classifier to-
wards detection of non-toxic examples in spite of class re-weighting

during model training. For the non-toxic (NT) class, all of the post

hoc measures are roughly equivalent for the all branch (96% for Re-

call, 92% for F1, and 88% for Precision) across the compared models.

Similar behavior is observed over the men and women branches.

We observe in Table 5 that CondMTL achieves better recall values

w.r.t. baselines over the smaller i.e., toxic class. CondMTL produces

recall values of (29%, 31%) for the men and women branches respec-

tively, showing marked improvement over CSMTL and TradMTL,

which produce recall values of (13%, 5%) and (4%, 3%), and also

All Men Women

NT T NT T NT T

Recall

Stacked STL 96.9 25.2 96.8 23.8 97.1 23.6

CSMTL 97.2 23.6 98.8 13.3 99.7 4.6

TradMTL 94.4 20.1 95.8 4.2 95.6 2.8

CondMTL (Ours) 96.1 29.0 95.9 28.7 95.1 31.2

F1

Stacked STL 92.3 35.3 92.0 33.5 92.8 33.3

CSMTL 92.3 33.8 92.2 22.2 92.8 8.7

TradMTL 92.1 29.8 91.9 7.9 92.6 5.4

CondMTL (Ours) 92.2 38.3 92.9 37.9 93.6 39.5

Precision

Stacked STL 88.2 58.6 87.6 56.9 88.9 56.4

CSMTL 88.0 59.3 86.4 67.0 86.8 69.1
TradMTL 87.5 54.4 85.3 47.7 86.6 46.7

CondMTL (Ours) 88.6 56.1 88.2 55.9 89.7 53.7

Table 5: Statistic Comparison between different methods based on
internal stats: Recall, F1 and Precision. Numbers are bolded only
when they are significantly better than the other models. For a toxic
language detection task, Recall is of prime importance over the
smaller toxic class, since we want to detect as many of the toxic
posts as possible in deployment. We observe that CondMTL achieves
significantly better recall values for both groups on the toxic labels.

outperforming Stacked STL (24%, 24%). The superior performance

of CondMTL in terms of recall, likely driven by its more accurate

understanding of toxicity at a group-specific level, is crucial in the

context of automated toxicity detection, where we would like to en-

sure that toxic posts are notmislabeled as non-toxic (misses), as such

errors could disproportionately affect marginalized demographic

groups. For instance, women are disproportionately affected by

stalking and by sexualized forms of abuse [52].

In terms of precision, CSMTL performs the best (67%, 69%) com-

pared to TradMTL (48%, 47%) and CondMTL (56%, 54%). CSMTL’s

higher precision number suggests that it is more reserved when

predicting a test example to be toxic, which results in less false

alarms (i.e., a non-toxic post that is erroneously flagged).

F1 provides a joint view of both precision and recall. In terms of

F1, we observe that CondMTL (38%, 40%) provides the best results,

outperforming CSMTL (22%, 9%), TradMTL (8%, 5%) and Stacked

STL (34%, 33%). This is because CondMTL’s recall values are a scale

apart compared to the other models.

Although our CondMTL model is not optimized over any strict

differentiable measure of fairness, we post hoc observe that it has a

low false negative error rate balance i.e., improved equal opportu-

nity [14]. Mathematically, a classifier with equal false negative rate

(FNR) will also have equal true positive rate (TPR) or recall. We have

shown that CondMTL achieves much better recall values compared

to other MTL variants. Table 6 shows the post-hoc measured Equal

Opportunity (EO) gap across both groups for the models. All models

except for CSMTL (9.0) produce low EO gaps. Although having a

lower EO gap value is ideal, it is necessary to evaluate the EO gap

values of the different models with the context of their recall values.

Thus, while TradMTL has the lowest EO gap value (1.4) among the

MTL variants, given its poor recall values this model is unlikely to

be desirable in practice, whereas CondMTL produces a low EO gap

of 2.5 while maintaining higher recall values.

Comparing the confusion matrices of the three branches of the

MTL models in Fig. 5 reveals that CondMTL performs better in

6



Same Same, But Different: Conditional MTL WWW ’23, May 1–5, 2023, Austin, TX, USA

NT T
ypred

NT

T

y t
ru

e

83.02%

11.52%

2.14%

3.31%

All Branch

NT T
ypred

NT

T

82.04%

11.61%

2.74%

3.62%

Men Branch

NT T
ypred

NT

T

84.45%

11.16%

1.79%

2.60%

Women Branch

(a) Confusion matrices of 3 branches for Stacked STL.
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(b) Confusion matrices of 3 branches for Traditional MTL.
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(c) Confusion matrices of 3 branches for Cross Stitch MTL.
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(d) Confusion matrices of 3 branches for Conditional MTL.

Figure 5: Confusion matrices of 3 tasks (columns) for different models (rows). Values are shown as percentages in each block w.r.t. the number
of instances relevant to that branch. The performance of the models are comparable in the All branch, since they train over the full dataset.
CondMTL performs significantly better in the demographic specificmen and women branches, due to training over group relevant examples
only. This can be observed by the higher numbers in the red boxes of these branches for CondMTL compared to the other MTL variants. The
toxic class is the smaller class, hence a good toxicity detection model should be able to correctly identify as many of them as possible. A good
model should also have fewer misses (toxic posts identified as non-toxic), indicated by the orange boxes, where also CondMTL performs best.

Model Recall (Men) Recall (Women) EO Gap

Stacked STL 23.8 23.6 0.2

CSMTL 13.6 4.6 9.0

TradMTL 4.2 2.8 1.4

CondMTL (Ours) 28.7 31.2 2.5

Table 6: Recall per group and Equal Opportunity (EO) gapmeasured
as the absolute difference between recall values over the groups. For
recall, higher values are better. For EO, lower values are better.

the demographic group branches (men and women) for the smaller

toxic class. All models perform fairly well when classifying the

nontoxic examples i.e., the cyan sections. Non-toxic posts that are

erroneously flagged as toxic (i.e., false alarms) are shown in the blue

sections. On the other hand, TradMTL and CSMTL both struggle

to correctly identify toxic examples and instead classify a greater

portion of the toxic test examples as nontoxic (i.e., misses). These

misses correspond to the orange sections of the confusion matrices.

Comparing the red sections of the model confusion matrices re-

veals that CondMTL correctly classifies a greater proportion of the

smaller toxic class. Given that non-toxic language is more common,

CondMTL’s ability to capture a greater proportion of the toxic posts

would be valuable in a deployed toxicity detection model.

6.3 Analysis of Conditional MTL
We make two propositions based on the theoretical working and

empirical analysis of the CondMTL and CSMTL networks. Further-

more, we verify our stated propositions for CondMTL and CSMTL

through simple and verifiable benchmarking cases in Appendix D,
both on a regression and classification task.

Proposition 1. Our proposed Conditional MTL does not allow
contamination of weights across shared task layers and learns only
over the group specific distribution for each demographic branch.

The CondMTL architecture (Fig. 3) is an exact copy of TradMTL

with the distinction of the updated loss function and labeling schema.

Since the task specific layers (indicated by dashed boxes) do not

interact with each other, each loss function is strictly guided by the

examples that are relevant to its own branch. Assuming that the

data distribution w.r.t. two groups D1 and D2 are independent of

each other, each branch learns a representation of their own dataset

and does not take into account group irrelevant examples. The

CondMTL loss (Alg. 1) computes the loss over each group-specific

distribution (Eq. 1), thereby avoiding label contamination.

𝑒𝑟𝑟𝑎𝑙𝑙 = 𝑤𝐵𝐶𝐸 ( [𝑦𝑡𝑟𝑢𝑒 ]D , [𝑦𝑝𝑟𝑒𝑑 ]D )
𝑒𝑟𝑟𝑚𝑒𝑛 = 𝑤𝐵𝐶𝐸 ( [𝑦𝑡𝑟𝑢𝑒 ]D1

, [𝑦𝑝𝑟𝑒𝑑 ]D1
)

𝑒𝑟𝑟𝑤𝑜𝑚𝑒𝑛 = 𝑤𝐵𝐶𝐸 ( [𝑦𝑡𝑟𝑢𝑒 ]D2
, [𝑦𝑝𝑟𝑒𝑑 ]D2

) (1)

Proposition 2. Cross Stitch MTL [30] allows contamination of
weights across shared task layers.

The CS unit (Fig. 4) is initialized with an identity structure, where

the number of tasks dictates the size of the matrix. For illustration,

let us consider two tasks for 𝐶𝑆 ∈ 𝐼2. We find the following two

flaws w.r.t. the logic of CS units: a) if the two tasks are truly inde-

pendent, then the CS unit should not deviate from identity; and

b) even when two tasks are correlated, allowing deviation from

identity, the CS unit should still be a symmetric matrix since two

tasks talking to each other are symmetrically equivalent. However,

such constraints are not present in the implementation of the CS

units, which causes them to learn arbitrary weights during model

training. The weights become cross-contaminated across tasks.
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To verify illustration 2, we also show the final weights of the

CS units in our Wilds dataset training. One can observe that the

symmetric property of CS units is violated. Note that due to the

same same but different nature of group-targeted toxicity, they share
some commonality i.e., they are not fully independent of each other,

which would cause the CS matrix to deviate from identity. However,

since tasks talking amongst each other should be symmetrical in

nature, we would expect the updated CS matrix to hold the sym-

metric property. The values reported in Eq. 2 are w.r.t. Fig. 4 where
we have three CS matrices. These three CS matrices show clear

deviation from symmetry in the off-diagonal elements.

𝐶𝑆1 =


1.00 −3.69𝑒 − 3 −1.46𝑒 − 4

1.53𝑒 − 3 1.00 2.53𝑒 − 3

−4.28𝑒 − 3 −1.04𝑒 − 3 1.01


𝐶𝑆2 =


1.00 2.49𝑒 − 2 −2.29𝑒 − 2

1.05𝑒 − 2 1.01 2.99𝑒 − 3

−1.03𝑒 − 2 4.74𝑒 − 3 1.01


𝐶𝑆3 =


1.00 1.29𝑒 − 2 5.13𝑒 − 2

3.53𝑒 − 2 1.01 2.19𝑒 − 2

7.74𝑒 − 5 9.51𝑒 − 3 1.01

 (2)

7 DISCUSSION AND FUTUREWORK
Effect of Label Contamination. As a result of the misleading

labeling schema discussed in Section 4.1, the TradMTL and CSMTL

models learn to mostly label examples as non-toxic (NT). When

considering an example post I hate men, we know that this post

is both toxic and directed at men only; however, had this example

post been in the training set, it would have erroneously taught

the women branch of the baseline MTL models that the post was

non-toxic. Similarly, an example post I hate women, which is toxic

and targeted at women only, would have contaminated the weights

of the men branch of the baseline MTL models by skewing it to

make more non-toxic predictions. While this weight-skewing effect

of label contamination may result in higher accuracy scores for

TradMTL and CSMTL because the majority of the Wilds dataset

is nontoxic (85% of the dataset is non-toxic), these models will

subsequently acquire a poor understanding of toxicity. Conversely,

CondMTL ensures that the demographic group branches learn a

more accurate understanding of toxicity and correctly labels more

toxic posts as toxic, as illustrated by higher group-specific recall

values on the toxic posts in the testing dataset.

Measures of algorithmic fairness and their usage. Frequently,
models that seek to improve algorithmic fairness do so by directly

considering a fairness measure as part of the loss function, which

is often done in the form of a penalty term. In our optimization

objective, we do not incorporate any algorithmic fairness measure.

We use a variant of weighted Binary Cross Entropy (wBCE) for

optimizing the MTL model branches which correlates to giving

higher priority in detecting examples from the smaller toxic class.

Rather than modifying the loss function as a result of our fairness

concerns, we modify the network architecture and labeling schema

in a way that enables us to better capture heterogeneity across

groups. This approach is suitable for settings in which improving

recall for the minority group is a primary fairness consideration.

However, if the primary concern is the difference across groups, the
proposed approach may not always yield improvements, because

even if recall improves for both groups, the improvement could be

greater for the majority class. In such a scenario, we would like to

optimize the network w.r.t. a fairness measure, and thus we need

to use a differentiable version of that said fairness measure. There

exist works in the literature [45] that can optimize a network for a

fairness measure. Correspondingly, networks can also be optimized

for equal accuracy across groups [23] or equalized odds [35]. The

choice of the measure depends on the practitioner’s need and the

availability of a differentiable version of said measure.

When considering intersectional fairness, e.g., the intersection-
ality of gender and race, or a more fine-grained grouping of de-

mographics, the dimensions of groups increase. In these cases, the

performance of decoupled approaches drops due to data sparsity.

We anticipate that the benefits of the shared layer in CondMTL

would be even more salient in this setting.

Other stakeholders in toxicity detection. When considering

toxicity detection, there are multiple stakeholders who are involved.

We have primarily focused on the subject of the post, but other

stakeholders include the author of the post and the annotator. Pre-

vious work has shown risks of algorithmic bias affecting authors

of posts; for instance Sap et al. [43] shows that models may ex-

hibit disporportionately high false positive rates for posts written

in African American English. The importance of considering the

demographics of annotators involved in labeling data has also been

recently emphasized [40]. Using the proposed CondMTL to model

the problem in relation to other stakeholders’ demographics is a

natural extension of the proposed work.

Extension to other problemdomains.The proposed CondMTL

can be easily applied to tackle group specific labeling in domains

such as media bias detection and fact-checking, where sparsity in

dataset labels could similarly lead to label contamination.

8 CONCLUSION
In this work, we frame the challenge of demographic-specific toxic-

ity detection as a multi-task learning problem. We also note that the

traditional MTL labeling schema causes label contamination under

this problem setting, since posts targeted towards one group are

labeled in a way that is misleading to the loss of branches special-

ized in other groups. To bypass this issue and address differential

subgroup validity in the context of toxic language, we propose both:

a) an updated labeling schema to avoid label contamination; and

b) a conditional MTL framework with group-specific loss function

based on a selective binary cross entropy formulation. The proposed

architecture is shown to have significantly fewer trainable parame-

ters and runtime than the stacked single task baseline, making it

more suitable for deployment. Finally, we experimentally demon-

strate that our framework achieves higher group recall values for

the smaller toxic class over other baselines, and for the minority

demographic group in particular, at no cost in overall accuracy

compared to other MTL models.
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A EXPERIMENTAL DETAILS
A.1 Setup
Experiments use a Nvidia 2060 RTX Super 8GB GPU, Intel Core

i7-9700F 3.0GHz 8-core CPU and 16GB DDR4 memory. We use the

Keras [6] library on a Tensorflow 2.8 backend with Python 3.7 to

train the networks in this paper. For optimization, we use AdaMax

[19] with parameters (lr=1e-5) and 1000 steps per epoch. For each

configuration, we did five independent runs to report mean and

variance across different baselines and our method.

A.2 Training Loss Trajectory
We show the loss trajectory over the training data in Fig. 6. One
can observe that the use of AdaMax results in the classification loss

i.e., weighted Binary Cross Entropy (WBCE) dropping rapidly at

first and then stabilizing at around 10 epochs. Since the All branch

deals with the full dataset, it achieves the highest error value. Due

to the conditional nature of CondMTL, which only considers group

relevant examples for each branch, we see improved loss over both

the groups (men and women). More specifically, both groups start

roughly at the same loss, with the men group achieving lower error

values after stabilizing. This empirically highlights that CondMTL

is not biased towards the majority group (women), rather giving

importance to the minority group (men) as well.

0 2 4 6 8 10 12 14 16 18 20
# Epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

wB
CE

All Loss
Men Loss
Women Loss

Figure 6: Loss trajectory over training data for CondMTL for 20
epochs. Note that due to the conditional nature of the formulation,
the error in the men (minority group) goes down as well.

A.3 Class Balancing Strategy
As common in most toxic language tasks, the Wilds dataset has

a class label imbalance, with most (85%) of the posts belonging

to the non-toxic class. To account for this, we perform a class

balancing strategy to assign more weight to the toxic examples

during model training. We use a weighted version of Binary Cross

Entropy (BCE) measure that re-weights the error for the different

classes proportional to their inverse frequency in the data [24].

We use SKLearn’s [33] compute_class_weights=‘balanced’ flag
for extracting weights (𝑤toxic,𝑤non-toxic) for toxic and non-toxic

classes for each branch, given as
3
:

𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠/(𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡 (𝑦)) (3)

3
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.

compute_class_weight.html

B MEAN VARIANCE NUMBERS
We report mean and standard deviation results of five runs over

the model by using wBCE loss function. For simplicity, we show

the overall accuracy numbers in Table 7. We observe that all of the

models roughly perform the samew.r.t. the Stacked STL (∼ 86%) and

with negligible variance over runs. Note that all the five runs were

independent i.e., their network weights were randomly initialized

at start of each training run.

Loss type All Men Women

Stacked Single Task 86.3 ± 0.1 85.6 ± 0.2 87.0 ± 0.1

Cross Stitch Multi Task [30] 86.3 ± 0.0 85.8 ± 0.1 86.6 ± 0.0

Traditional Multi Task 86.2 ± 0.2 85.5 ± 0.2 86.7 ± 0.1

Conditional Multi Task (Ours) 86.2 ± 0.2 85.7 ± 0.1 86.7 ± 0.1

Table 7: Mean and Standard Deviation measures of models across
five runs. All the models perform the same w.r.t. Overall Accuracy.

C LABEL CONTAMINATION
To illustrate label contamination, let us consider a toxicity labeling

task with binary labels (NT and T) and binary groups (M and F).

Given the set of all possible posts, indicated by the grey rectangle

in Fig. 7 (a), the set of posts belonging to the groups M and F are

indicated by their respective circles, red (D1) and blue (D2) shades

respectively. The combined dataset D is a union of the two circles

(D = D1 ∪D2) with some post targeted towards individual groups,

and some targeting both groups (intersection). Within each group,

we have a set of toxic (T) vs. non-toxic posts, indicated by dark

and light shades respectively. The individual portions of the venn

diagram are marked with lower case alphabet for clarity, as e.g.,
region (𝑎) indicates toxic post targeted towards men only, while

region (𝑐) indicates toxic posts targeted at both men and women.

T T T

NT NT NT

a

b

c

d

p

q

WM

(a) True Labels

NT

WM

T

(b) TradMTL Label for Men

Figure 7: Illustration of label contamination when following
TradMTL labeling schema due to false consideration of group-
irrelevant posts as non-toxic (NT). (𝑎) shows the true labels for
each group, being toxic/non-toxic. However, following the TradMTL
scheme for group (M) results in both toxic/non-toxic posts explicitly
from group (W) (regions 𝑝 and 𝑞) to falsely be grouped with the
non-toxic labels for group (M) (ideally just regions 𝑏 and 𝑑).

Table 8 shows the ideal and cross contaminated labels for posts

w.r.t. toxic vs. no-toxic labels pertaining to each group. Due to label

contamination in TradMTL, the non-toxic parts 𝑁𝑇 |𝑀 and 𝑁𝑇 |𝐹
have additional group-irrelevant labels associated with them which

causes the classifier to learn incorrect boundaries.

11

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html


WWW ’23, May 1–5, 2023, Austin, TX, USA Soumyajit Gupta, Sooyong Lee, Maria De-Arteaga, and Matthew Lease

Group T | M T | F NT | M NT | F

True Label 𝑎 ∪ 𝑐 𝑐 ∪ 𝑝 𝑏 ∪ 𝑑 𝑑 ∪ 𝑞
TradMTL Label 𝑎 ∪ 𝑐 𝑐 ∪ 𝑝 𝑏 ∪ 𝑑 ∪𝑝 ∪ 𝑞 𝑑 ∪ 𝑞 ∪𝑎 ∪ 𝑏

Table 8: TradMTL schema assumes group-irrelevant posts, leading
to mislabeling in each non-toxic group, marked in red.

D BENCHMARKS
Weverify our stated propositions for CondMTL andCSMTL through

simple and verifiable benchmarking cases on a regression and clas-

sification task. We consider the integer group Z of numbers for

the tasks {1,2,. . . ,10}, with two groups (A and B), where group

[A] contains the numbers {1,2,. . . ,5} and group [B] contains the

numbers {6,7,. . . ,10}. To generate the actual data and mimic vari-

ability and imbalance, we replicate each number in the set in in-

crements of 100 i.e., D = [1 : 100, 2 : 200, . . . , 10 : 1000] with
each group data as D𝐴 = [1 : 100, 2 : 200, . . . , 5 : 500] and

D𝐵 = [6 : 600, 7 : 700, . . . , 10 : 1000]. The data notation 𝑑 = [𝑝 : 𝑞]
indicates that there are 𝑞 instances of element 𝑝 in the dataset.

D.1 Regression Task
For the regression task, we check each MTL model’s performance

on a multiplication task. We define the following three tasks: T1)

given data 𝑋 produce 𝑌 = 4𝑋 over the dataset D; T2) given data

𝑋 produce 𝑌 = 2𝑋 over the dataset D𝐴; and T3) given data 𝑋

produce 𝑌 = 6𝑋 over the dataset D𝐵 . The architecture contains a

shared layer of 4 dense neurons and two depths for the task specific

neurons containing 2 and 1 neurons respectively. Since scaling a

number is a linear operation, we keep the dense neurons in the

network with linear activations, and mean squared error loss.

Fig. 8 shows the results obtained by the MTL models, where due

to label contamination, both the CSMTL and TradMTL suffer in

predictions for Groups A and B. Since CondMTL makes branch [A]

learn over examples ofD𝐴 explicitly, it learns the representation of

𝑌 = 2𝑋 and is able to predict 2𝑋 both in and out of domain of D𝐴 .

Same logic holds for branch [B] which can predict 6𝑋 both in and

out of domain of D𝐵 . Also looking at the entries of the CS matrix,

one can observe that both identity and symmetry does not hold.

𝐶𝑆 =


1.20 0.41 −0.34
0.47 1.21 −0.11

−0.43 −0.46 1.29


In another regression variant, we intentionally set task T2 as:

given data 𝑋 produce 𝑌 = 0 over the dataset D𝐴 , which essen-

tially implies predicting a constant value for all input data. This

updated task T2 is independent of both tasks T1 and T3, where the

Cross Stitch unit should not communicate anything through T2.

However, after training, we still observe that the off-diagonal CS

matrix entries corresponding to Task 2 are still non-zero leading to

contamination of weights across other task layers.

D.2 Classification Task
For the classification task, we keep the same architecture, but re-

place linear activation with tanh and for the final layer a sigmoid
activation. We define the following three tasks: T1) given data 𝑋

classify 𝑌 = 1 if 4 ≤ 𝑋 ≤ 7 else 0 over the datasetD; T2) given data

𝑋 classify 𝑌 = 1 if 𝑋 ≥ 4 else 0 over the dataset D𝐴; and T3) given
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(b) Predictions for TradMTL
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Figure 8: Predictions of the three MTL models over the benchmark
regression tasks, where T1) 𝑦 = 4𝑥 , T2) 𝑦 = 2𝑥 and T3) 𝑦 = 6𝑥 . Since
the all branch looks at the full data D, it performs accurately over all
themodels. However, for the Group [A] and [B] branches, the CSMTL
and TradMTL learns from amix of labels of D𝐴 and D𝐵 , which leads
to its predictions overshooting and undershooting respectively.

data 𝑋 classify 𝑌 = 1 if 𝑋 ≥ 7 else 0 over the dataset D𝐵 . Similar

faulty performances occur in this setting as well in both CSMTL

and TradMTL due to label contamination, while CondMTL learns

the correct group specific representation.
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