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Abstract— Two distinct technologies have gained attention
lately due to their prospects for motor rehabilitation: robotics
and brain-machine interfaces (BMIs). Harnessing their com-
bined efforts is a largely uncharted and promising direction
that has immense clinical potential. However, a significant
challenge is whether motor intentions from the user can be
accurately detected using non-invasive BMIs in the presence
of instrumental noise and passive movements induced by the
rehabilitation exoskeleton. As an alternative to the straight-
forward continuous control approach, this study instead aims
to characterize the onset and offset of motor imagery during
passive arm movements induced by an upper-body exoskeleton
to allow for the natural control (initiation and termination)
of functional movements. Ten participants were recruited to
perform kinesthetic motor imagery (MI) of the right arm while
attached to the robot, simultaneously cued with LEDs indicating
the initiation and termination of a goal-oriented reaching task.
Using electroencephalogram signals, we built a decoder to
detect the transition between i) rest and beginning MI and
ii) maintaining and ending MI. Offline decoder evaluation
achieved group average onset accuracy of 60.7% and 66.6% for
offset accuracy, revealing that the start and stop of MI could
be identified while attached to the robot. Furthermore, pseudo-
online evaluation could replicate this performance, forecasting
reliable online exoskeleton control in the future. Our approach
showed that participants could produce quality and reliable
sensorimotor rhythms regardless of noise or passive arm
movements induced by wearing the exoskeleton, which opens
new possibilities for BMI control of assistive devices.

I. INTRODUCTION

In recent decades, two technologies have emerged with
the goal of understanding and improving rehabilitation af-
ter a stroke: robotics and brain-machine interfaces (BMIs).
Robot-mediated training increases afferent feedback (with
high dosage and intensity), but its overall impact on neural
recovery is yet low [1]. However, if the operation of the
exoskeleton was controlled by contingent neurophysiological
activity, then the impact of afferent feedback would be
maximized by inducing activity-dependent plasticity where
neural signals and feedback are specific to each other [2].

Recent studies combining exoskeletons and BMI have
shown promising results for rehabilitation [3]; however, most
approaches still suffer from limited control of the robot. The
control scheme often involves detecting a specific neural

1Chandra Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, USA. Email:
(mitrakanishka, satyam.kumar)@utexas.edu,
jose.millan@austin.utexas.edu,

2Department of Neurology, The University of Texas at Austin, Austin,
TX, USA. Email: fsr324@austin.utexas.edu

3Walker Department of Mechanical Engineering, The University of Texas
at Austin, Austin, TX, USA. Email: ashish@austin.utexas.edu

pattern that then triggers a pre-programmed set of move-
ments [4] or requires maintaining a certain state while the
motion is being performed [5]. Both approaches come with
their limitations: in the former, the set of executable motor
actions is limited to the number of distinguishable neural
patterns, while in the latter, once movement is initiated,
the maintained neural patterns will be superimposed by
sensory-evoked activity and instrumental noise induced by
the operation of the exoskeleton, making decoding more
difficult. Here we propose a novel scheme for exoskeleton
operation that might allow for more precise online control
and thus facilitate future applications combining BMI and
robotics technology, for motor rehabilitation especially.

Motor imagery (MI) is a widely used BMI modality [6].
During MI, a motor action is imagined without actually exe-
cuting it, evoking an event-related desynchronization (ERD)
and consequent decrease of spectral power in the µ (8-13
Hz) and β (13-30 Hz) bands of their electroencephalogram
(EEG). It appears as a reasonable approach that as long as
the BMI user performs MI, the robot moves continuously.
However, it has been shown that not only maintaining MI
but also its initiation and termination have distinct EEG
patterns [7]. As argued by the authors, these phenomena
could provide natural exoskeleton control: a first decoder
detects MI onset as compared to the idle state for movement
initiation, while a second decoder recognizes MI stop with
respect to maintaining MI. The problem is that, as mentioned
above, the EEG pattern associated with maintaining MI will
be superimposed by other sensorimotor rhythms induced by
the passive movement of the subject’s limb. In what follows,
we show the feasibility of the approach despite the impact of
robot motion on EEG during MI maintenance by evaluating
its performance in offline and pseudo-online settings. Our
results indicate that fast natural robotic exoskeleton control is
possible with this hierarchical classification strategy, which,
therefore, can provide a useful tool for future rehabilitation
applications combining BMI and robotics.

II. METHODS
A. Participants, Experimental Setup and Protocol

Ten young, healthy individuals (age 23.90±3.78, three
females, all right-handed) participated in the study. All par-
ticipants provided written informed consent. The study was
carried out in accordance with the Declaration of Helsinki
and was approved by the Institutional Review Board at the
University of Texas at Austin (2020-03-0073).

The Harmony Exoskeleton, designed for clinical and neu-
rological applications, was used for this study. Harmony is
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Fig. 1. Experimental setup and task paradigm pipeline. Panel A shows a representative subject and the Harmony robotic exoskeleton (a. LED indicating
trial phases, b. Harmony exoskeleton, c. EEG cap), while panel B shows the timeline of a task trial (see text for details).

a bilateral rehabilitation robot with seven active degrees of
freedom (DOF) per side, including five DOF for the shoulder
complex. The robot can move, guide, and perturb move-
ments of the upper limb of the participants and can record
end-effector kinematics and mechanical quantities such as
position, velocity, and torque [8]. In this study, Harmony
performed an active goal-directed, reaching task that empha-
sized shoulder and elbow movement using impedance control
[9]. The system also included three LEDs that were attached
to Harmony’s right arm (Fig. 1A), and the colored lights
would indicate the different tasks given to the participant
(see below). The participant was instructed to focus on their
right arm to observe the task cues for the trial but also to
maintain a strong peripheral level connection [2].

The timeline of the task paradigm is illustrated in Fig.
1B. The starting position involved the subject sitting with
their right arm by their side with an elbow flexed at a ∼ 90
degree angle while strapped to the exoskeleton. Each trial
started with a 3-second resting period followed by a 3-second
countdown indicated by the three white LEDs (turning on
one by one every second). At the end of the countdown, all
LEDs turned green, signaling the subject to begin performing
MI. The specific instruction given to the subject was to
imagine their right arm moving in a continuous manner (i.e.,
waving or reaching) without actually moving it. After a 1-
second latency (1-second begin-MI period, bMI), the robot
initiated the reaching movement while the subject’s arm was
passively extended to a horizontal reaching position. Exactly
2.2 seconds into the action, the LEDs turned red, indicating
the subject to stop MI, where they were instructed to think
about their arm stopping the continuous movement, and the
robotic arm came to a stop after a 1-second latency (1-second
end-MI period, eMI). The robotic arm remained stationary in
the extended position for 6 seconds before the LEDs turned
blue, and the robot returned to the starting position in 3.2
seconds, concluding one trial. The countdown period was
introduced so that subjects could time the onset of MI as
precisely as possible while they could learn to time MI-offset
based on visual and proprioceptive feedback. Between the
bMI and eMI phases, subjects were instructed to actively
maintain MI (2.2-second do-MI period, dMI), while for all
other periods (robot stops, returns, and resting state), they
were directed to remain relaxed and not to perform any

specific mental activity. Also, participants were explicitly
instructed to keep their arms relaxed so that the passive
movement is solely executed by the exoskeleton. This design
allowed for the following comparisons: i) onset: between
resting-state (RS) and bMI, where the robot is always sta-
tionary, and ii) offset: between dMI and eMI, where the robot
is moving, and therefore, we can expect substantial induced
sensorimotor activity (and plausible instrumental noise).

One measurement run consisted of 20 trials, and each
participant completed 6 runs with ∼2-3 minutes of rest in
between. A recording session lasted for about 90 minutes.

B. Data Collection and Pre-processing

EEG data were collected with an eego system (ANT
Neuro, The Netherlands) at a sampling rate of 512 Hz from
22 cortical locations according to the international 10-20
system, covering mostly the sensorimotor cortex (locations
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5,
CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz). The reference
electrode was placed over CPz. In addition, electrooculogra-
phy (EOG) data were recorded at 512 Hz with electrodes
positioned on the two temporals and above the left eye,
with a common reference under the left eye. Importantly, the
recording session for each participant began with collecting
90 seconds of calibration data while they were performing
various eye movements, which was then used to estimate the
EOG filter matrix (see below).

Signals were first band-pass filtered using a 4th order
zero-phase Butterworth filter with cutoff frequencies of 0.1
to 45 Hz. EOG-related components (such as blinks or eye
movements) were regressed out using the automated method
proposed by [10], where the subject-specific EOG-filter
matrix was obtained from prior calibration recordings. EEG
data were re-referenced to the common average reference.

C. Time-Frequency Analysis and Feature Extraction

In order to ensure that the subjects were engaged in
the task, we performed a time-frequency decomposition of
continuous trial data. In that, power spectral density for each
channel was computed in a sliding window fashion, utilizing
a window size of 0.5 seconds and a step size of 1/16 second.
In each window, the power spectrum was estimated using
the Welch’s method. To quantify ERD/ERS (event-related



Fig. 2. Grand average spectrogram from C3 region showing changes in
spectral power over the course of task trials. Data was obtained by averaging
over all trials and all subjects.

synchronization) at all frequencies on a comparable scale,
raw spectral power values were transformed according to [7]
as ERD(f)/ERS(f) = log10(A(f)/B(f)), where A(f)
indicates spectral power at frequency f and B(f) denotes
the baseline. Specifically, baseline power for each trial was
obtained as the average amplitude during the one-second
(resting-state) period before the countdown cue.

For motor intent classification, 1-second bMI and eMI
samples were obtained as the corresponding time periods (see
Figure 1B). For the RS vs. bMI comparison, RS data was
selected as the 1-second preceding the countdown cue, while
for dMI data was extracted from the middle of the period
when the robot was moving, and the subjects were instructed
to perform MI continuously (until the eMI cue). From these
1-second-long epochs, spectral power was estimated in the
same sliding window manner as described previously in the
8-30 Hz range at a one Hz resolution. This procedure yielded
22 channels ∗ 23 frequencies = 506 raw power features
for each window. As each epoch provided 9 windows, this
resulted in 9 windows∗20 trials∗6 runs = 1, 080 samples
per condition for each subject.

D. Classification Approach

Classification performances for the two tasks were as-
signed to the validation set, while the rest of the data was
used for training the model. Subject-wise performance was
assessed as the average LORO-CV classification accuracy
(# of correctly classified samples/# of all samples) taken
over the six CV iterations. In each run, we used only the
top 10 features with the highest Fisher scores (as obtained
only from training data) for training and evaluation [11].
Diagonal linear discriminant analysis (dLDA) was chosen
as the classification method. Chance level was estimated as
54.4% at significance level α = 0.05 assuming a binomial
distribution of misclassifications as proposed by [12].

III. RESULTS

A. EEG Modulations during the Task Paradigm

Figure 2 shows how spectral power changes over the
course of a trial in region C3. Compared to baseline (RS),
an ERD can be observed in the µ band and in the β band to
a lesser extent during bMI, followed by an overall increase
in power when the robot starts moving. This increase starts
fading away once subjects engaged in eMI, with a prominent

Fig. 3. Grand average classification accuracies over time during the 1-
second epochs. Shaded areas indicate standard deviation, and the dashed
black line denotes the chance level (54.4%).

µ ERD. In the transitory idle phase, there is practically
no change in power, while a concurrent increase in high-
frequency power and µ ERD can be observed while the robot
returns to the start position.

B. Offline Classification

TABLE I
CLASSIFICATION ACCURACIES

MI-onset MI-offset
ID train test train test
1 61.7% 57.0% 70.4% 64.7%
2 71.1% 69.3% 71.2% 68.1%
3 67.3% 65.9% 67.5% 63.7%
4 62.1% 55.7% 74.1% 64.7%
5 63.0% 57.8% 70.3% 69.1%
6 69.7% 66.4% 71.2% 64.4%
7 62.4% 58.2% 70.5% 68.6%
8 62.1% 59.9% 71.6% 66.3%
9 61.9% 50.1% 69.8% 68.5%

10 68.6% 67.2% 69.6% 64.8%

AVG 65.0% 60.7% 70.6% 66.6%
STD 3.8% 6.2% 1.7% 2.0%
MIN 61.7% 50.1% 67.5% 63.7%
MAX 71.1% 69.3% 74.1% 69.1%

Table I reports the classification results of the two de-
coders. bMI could be distinguished from RS with better-
than-chance (> 54.4%) accuracy for all but one subject
(subject 9), with a group average accuracy of 60.7±6.2%. In
comparison, eMI could be detected reliably for all subjects
with an overall average accuracy of 66.6± 2.0%.

Figure 2 clearly indicates that the movement of the ex-
oskeleton induced a strong noise component. It is important
to note that even though the exoskeleton was still moving
during the MI-offset phase (see Fig. 1), the movement did
not finish suddenly; instead, the robot decelerated gradually
until stopping. Despite this happening only very late in
the 1-second frame, if the extent of contamination was
proportional to movement velocity, it might have resulted in
the classifier picking up on the reduced noise content in later



Fig. 4. Top 10 most discriminative feature frequencies. The color indicates
how frequently a given feature was selected as one of the top 10 for the
MI-onset (left) and MI-offset (right) distinctions.

windows. Therefore, it must be verified that classification
(especially) in the MI-offset task is not based purely on
the presence/absence of external confounding factors in the
two conditions (dMI and eMI). To achieve that, we also
investigated how classification accuracy might change over
time in the 1-second windows for the two task conditions
(Figure 3). For MI-onset classification, performance appears
to be constant over time. In contrast, there is a slight increase
in accuracy over time for MI-offset detection; however, it is
worth noting that performance is above chance level even
for the first time window (∼ 57%).

C. Feature Importance Analysis

Finally, we wanted to explore if detection is indeed
achieved based on neurophysiological features relevant to
the onset and offset of MI. Figure 4 shows the frequency of
the top 10 most discriminate features across all the subjects
for the two classification tasks. Both in the case of MI-
onset (Fig. 4, left) and MI-offset (Fig. 4, right), the most
frequently selected features were from electrodes over the
somatosensory cortical regions, and in the µ frequency range
corresponding to sensorimotor rhythms.

IV. DISCUSSION

In this study, we set out to detect the onset and offset of
MI in individuals while the Harmony exoskeleton passively
moved their arm. We identified distinct EEG patterns related
to the onset and offset of MI (most prominently, a strong
ERD in the µ frequency range) that we could exploit to
achieve classification performances significantly better than
chance level in an offline evaluation setting.

In addition to the strong µ ERD during the active period,
we observed two additional patterns in Fig. 2: i) a strong,
mostly broadband synchronization coinciding with the robot
movement, and ii) a similar µ ERD during the passive period
when the robot returned to the home position. This raises
two potential issues. First, µ ERD is associated with senso-
rimotor stimulation [13], [14], which in this case is elicited
by the passive arm movements driven by the exoskeleton
that overlaps with MI-related activity in the active phase.
Second, during the maintain-MI period, in addition to the
superposition of these patterns, there seems to be external
noise introduced by the moving exoskeleton.

Therefore, in order to confirm that subjects indeed pro-
duced MI-related activity — and what we detect is not
merely evoked sensorimotor activity or instrumental noise —
we performed additional recordings, where active MI trials
were randomly interspersed with fully passive trials. In the
latter, the subject was instructed not to perform MI at all
and just remain relaxed until the exoskeleton completed the
movement cycle. Trial timing was kept exactly the same
as for active trials. We re-recruited two of the subjects
of the study for these additional recordings, where they
completed 6 runs comprised of 10 control (passive) and
10 test (active MI) trials in randomized order. Figure 5
illustrates average spectrograms of both conditions of the two
subjects. In the test condition, µ ERD starts during the begin-
MI phase, well before the exoskeleton initiates movement,
indicating that subjects were actively engaging in performing
MI. This µ ERD is absent in the control condition and
is only elicited after movement initiation by Harmony. To
test this difference more rigorously, we compared spectral
power values averaged over the 1-second begin-MI period
for all frequencies between the test and control trials for
both subjects independently using Mann-Whitney U tests.
For both subjects, spectral power was significantly lower for
frequencies 9 to 13 Hz (p < 0.05, Bonferroni-adjusted) in the
active condition when compared to the control. For subject
2 (Fig. 5, left), we also observed an MI-related ERD in the
β band (21-25 Hz) during the begin-MI phase; however, this
difference did not appear significant following Bonferroni
adjustment. Notably, the periods when the exoskeleton was
returning to its home position exhibited identical patterns in
the test and control trials. Additionally, the instrumental noise
component also appeared very similar in both conditions,
further supporting that this was induced by the exoskele-
ton system and is not an endogenous neurophysiological
activity. However, why this instrumental noise is different
in the reaching and returning movements requires further
investigations beyond the scope of the current study. We
conjecture that it might be due to different activity in the
trapezius muscle elicited by the passive arm extension and
flexion that propagates to the EEG electrodes.

The obtained results clearly indicate that a two-stage
hierarchical classification approach for movement initiation
and termination is viable for robotic exoskeleton control,
even in the presence of instrumental noise and with the
superposition of additional sensorimotor rhythms induced
by passive arm movements. However, one of the main
limitations of our study is that analysis was carried out
offline, and our experiments did not involve online recordings
where subjects had to operate the Harmony system in real
time. To alleviate this issue, we performed a pseudo-online
analysis of the collected data, accurately replicating an online
setting in its design. For this purpose, the data was band-
pass filtered using a 2nd order causal Butterworth filter with
cutoff frequencies from 8 to 30 Hz, and EOG activity was
regressed out as-if in an online method proposed by [10].
Previous studies indicated that Riemannian geometry-based
classifiers (RGBCs) could achieve superior performance in



Fig. 5. Average spectrograms of the two subjects (Left: subject 2; Right: subject 8) re-recorded with the task protocol that includes control trials. The
top and bottom rows correspond to the test and control trials, respectively.

Fig. 6. Time-resolved performance of Riemannian classifier. The charts
show the grand average of predicted labels over time in the relevant segments
of task trials. Top: RS (class 0) vs. bMI (class 1). Bottom: dMI (class 0) vs.
eMI (class 1). As a reference, the horizontal dashed lines indicate chance
level (54.4%).

classifying MI-related neural patterns [15], [16]. In addition,
RGBCs allow for online distribution matching of training
and test samples, promoting robust and stable performance
over multiple BMI sessions [17]. From these considerations,
we decided to use a Riemannian geometry-based, minimum
distance to the mean (MDM) classifier — which utilizes
covariance matrices estimated from epoched EEG data as
features — to detect the transitions from rest to begin-
MI and from maintaining-MI to end-MI in the pseudo-
online pipeline. Decoders were trained on the same 1-
second data segments as previously, but the performance
was also evaluated continuously over the test run trials. We
employed the same LORO-CV scheme; however, to replicate
an online scenario, data in each validation run was processed
and analyzed continuously in temporal order, applying the

adaptive online re-centering method described in [17]. Fig.
6 shows the results of this analysis. In general, the Rieman-
nian approach slightly surpassed the dLDA in performance
(even with less efficient pseudo-online pre-processing) with
a group-average accuracy of 64.0±7.6% and 66.6±7.7% for
MI-onset and MI-offset, respectively. Notably, performance
for all subjects was above chance level. Fig.6 shows that the
RGBC successfully captures the transition from RS to bMI
during the countdown period and, similarly, from dMI to
eMI. Notably, for dMI, data from -1.25 to -0.25 was used for
training the decoder, and indeed, in that period, the classifier
mostly predicted the correct class (class 0). Surprisingly, in
the preceding period — in which the subjects are assumed
to actively perform MI — the performance deteriorates.
However, this only indicates that since the classifier was
trained on a different segment, it did not classify those
patterns reliably as dMI. Nevertheless, these results show
great potential that the hierarchical movement onset/offset
approach would indeed perform well in a true online setting.

Orset and colleagues [7] found that MI-onset was charac-
terized with a sudden β ERD followed by a slower, gradual µ
ERD, while MI-termination exhibited an increase in β power
with µ returning to baseline. Importantly, both conditions
could be reliably distinguished from RS. Here we did not
observe the exact same patterns: bMI was characterized by
a strong µ ERD and a weaker β ERD, as well as we did
not find a ‘rebound’ in β power post-eMI. These differences
could be explained by the fact that the induced sensorimotor
rhythms (i.e., proprioceptive feedback due to passive arm
movement that gives rise to ERD) masked the β rebound.
Thus, the EEG patterns that we found are still consistent
with expectations in an MI-based paradigm.

We also found a slight increasing trend in performance
toward later windows in the MI-offset detection task. This



might be due to two reasons. First, even though the stop-MI
cue was delivered at the same time in every trial, there was
no countdown (unlike with the MI-onset case) to help sub-
jects time their actions precisely. Therefore, we can expect
some response latency after the end-MI cue delivery, which
would explain why EEG activity could be better separated
later in the time window. Second, as already mentioned
throughout the results, confounding factors introduced by
the exoskeleton might be proportional to movement velocity.
Unfortunately, we could not extract joint angles with the cur-
rent setup to quantitatively assess this question, a limitation
that we must overcome in future studies. Nevertheless, the
minor nature of the increase in accuracy and the fact that
classification performance was over chance level even in the
first windows (Fig. 3, bottom), as well as RGBC picking up
on the eMI pattern right after the eMI-cue (Fig. 6, bottom)
suggest that this effect did not play a substantial role in
separating eMI from dMI.

The biggest limitation of the current study is that it
lacks a true online evaluation of our approach. Therefore,
our immediate goal is to test the method in real time to
confirm that subjects can indeed learn to perform BMI-driven
reaching movements with the Harmony system utilizing the
hierarchical classification scheme. Notably, previous research
indicates that closed-loop online feedback and longitudinal
training greatly facilitate subject learning and BMI skill ac-
quisition [11], [18], [19]. Therefore, we can expect a further
increase in detection performance. This would pave the way
to test our system in a clinical rehabilitation setting, focusing
primarily on stroke patients. However, motor rehabilitation
is relevant in other clinical conditions, such as spinal cord
injury [20] or traumatic brain injury [21]. We anticipate that
our presented method will also facilitate new interventions
in a multitude of motor system pathologies.

V. CONCLUSIONS
Here we proposed a novel hierarchical detection scheme

of MI onset and offset for signaling the initiation and
termination of movement to a robotic exoskeleton. Both
offline and pseudo-online analyses produced promising per-
formances, indicating that the approach might be viable for
exoskeleton control. Our method thus could provide a useful
tool for future neurorehabilitation applications combining
BMI technology and robotic systems.
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