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iAbstra
tThis thesis studies the Constraint Language for Lambda Stru
tures (CLLS), whi
h isinterpreted over lambda terms represented as tree-like stru
tures. Our main fo
us is onthe pro
essing of parallelism 
onstraints, a 
onstru
t of CLLS. A parallelism 
onstraintstates that two pie
es of a tree have the same stru
ture.We present a sound and 
omplete semi-de
ision pro
edure for parallelism 
onstraints,whi
h tests satis�ability and makes stru
tural isomorphism expli
it. This pro
edure isextended to a semi-de
ision pro
edure for CLLS.We dis
uss two appli
ations of CLLS. First, CLLS has been developed as a formalismfor underspe
i�ed natural language semanti
s. In this 
ontext, parallelism 
onstraintsare used for modeling parallelism phenomena. Se
ond, we 
onsider underspe
i�ed betaredu
tion, whi
h is beta redu
tion on partial des
riptions of lambda terms. For theseappli
ation areas, we present extensions both to the language CLLS and to the semi-de
ision pro
edure.



iiKurzzusammenfassungDiese Dissertation untersu
ht die Constraint Language for Lambda Stru
tures (CLLS),eine Constraint-Spra
he zur Bes
hreibung von Lambda-Termen in einer baum�ahnli
henRepr�asentation. Der S
hwerpunkt der Arbeit liegt auf Verfahren f�ur Parallelismus-Constraints, ein Konstrukt der Spra
he CLLS. Ein Parallelismus-Constraint besagt, dasszwei Berei
he eines Baumes dieselbe Struktur haben.Wir stellen ein korrektes und vollst�andiges Semi-Ents
heidungsverfahren f�urParallelismus-Constraints vor, das Erf�ullbarkeit feststellt und Strukturglei
hheitexplizit ma
ht. Dies Verfahren wird zu einem Semi-Ents
heidungsverfahren f�ur CLLSerweitert.Wir diskutieren zwei Anwendungen der Spra
he CLLS. Zum einen ist CLLS als Bes
hrei-bungsformalismus f�ur unterspezi�zierte nat�urli
hspra
hli
he Semantik entwi
kelt wor-den. In diesem Zusammenhang werden Parallelismus-Constraints zur Modellierung vonParallelismus-Ph�anomenen verwendet. Zum anderen betra
hten wir unterspezi�zierteBeta-Reduktion, Beta-Reduktion auf partiellen Bes
hreibungen von Lambda-Termen.F�ur diese Anwendungsgebiete stellen wir Erweiterungen sowohl der Spra
he CLLS alsau
h des Semi-Ents
heidungsverfahrens vor.



iiiExtended abstra
tThis thesis studies a 
onstraint language that is interpreted over lambda terms repre-sented as tree-like stru
tures. The language has been developed in the 
ontext of naturallanguage semanti
s, where it is used for an underspe
i�ed representation of meaning.Our main fo
us is on determining satis�ability of these 
onstraints, in parti
ular for a
onstru
t of this 
onstraint language that 
an be used to model parallelism phenomena.The 
onstraint language that we study is the Constraint Language for Lambda Stru
-tures (CLLS), and the language 
onstru
t that we fo
us on is the parallelism 
onstraint.Parallelism 
onstraints are formulas that state that two pie
es of a tree have the samestru
ture. The 
entral issue of this thesis is the pro
essing of parallelism 
onstraints.An important 
hara
teristi
 of CLLS is that it allows for statements of parallelism on ades
ription that leaves open the relative position of tree nodes. We 
onsider two relatedappli
ations of parallelism 
onstraints, whi
h both 
entrally make use of this property.First, the language CLLS has been developed as a formalism for underspe
i�ed naturallanguage semanti
s. In this framework, parallelism 
onstraints have been used to modelthe parallelism phenomenon, whi
h is ubiquitous in linguisti
s. Prominent examples ofparallelism are ellipti
al 
onstru
tions like \John sleeps, and Mary does, too". The se
ondappli
ation is underspe
i�ed beta redu
tion. The idea is to perform beta redu
tion on thepartial des
riptions of lambda terms, rather than on the terms themselves.This thesis 
onsists of two parts. The �rst part presents the 
entral 
ontribution: a pro-
edure for solving parallelism 
onstraints. The se
ond part of the thesis studies questionsof the pra
ti
al appli
ability of the formalism as well as the pro
edure.Solving parallelism 
onstraints. We present a sound and 
omplete semi-de
isionpro
edure for parallelism 
onstraints and extend it to a semi-de
ision pro
edure for CLLS.It has the following properties:� The pro
edure is stated in terms of high-level transformation rules.� The pro
edure 
omputes 
onstraints from whi
h models 
an be dire
tly read o�.In parti
ular, it 
omputes all minimal 
onstraints with this property for a giveninput 
onstraint. During the 
omputation, stru
tural isomorphism imposed byparallelism 
onstraints is made expli
it.� The pro
edure terminates on the 
lasses of 
ases relevant for the appli
ations.� The 
entral 
on
ept of the pro
edure is 
orresponden
e: In a

ordan
e with thenode-
entered perspe
tive on trees that CLLS adopts, the pro
edure relates nodesthat o

upy mat
hing positions in the two parallel tree pie
es.Appli
ability. In the 
ontext of the two appli
ations named above, underspe
i�ednatural language semanti
s and underspe
i�ed beta redu
tion, the thesis fo
uses on twoissues:



ivEmpiri
al adequa
y: Is the formal language adequate for modeling the phenomenaarising both in underspe
i�ed beta redu
tion and in underspe
i�ed semanti
s? Wepresent two extensions to the standard CLLS formulation of parallelism 
onstraints,whi
h are of use both for underspe
i�ed beta redu
tion and for modeling ellipsis.Underspe
i�
ation: In solving parallelism 
onstraints, the above pro
edure makes therelative position of nodes expli
it. However it may be desirable to maintain un-derspe
i�
ation as far as possible while making stru
tural isomorphism expli
it.We dis
uss a pro
edure whi
h, exploiting knowledge about the relative positions ofparallel tree pie
es in underspe
i�ed beta redu
tion, 
an avoid disambiguation inmany 
ases.For both issues, the notion of 
orresponden
e again proves essential.



vAusf�uhrli
he ZusammenfassungDiese Dissertation untersu
ht eine Constraint-Spra
he zur Bes
hreibung von Lambda-Termen in einer baum�ahnli
hen Repr�asentation. Die Spra
he wurde als Modellierungs-formalismus in der nat�urli
hspra
hli
he Semantik entwi
kelt und wird f�ur eine unter-spezi�zierte Bes
hreibung von Bedeutung verwendet. Unser S
hwerpunkt liegt aufErf�ullbarkeitstests f�ur diese Constraints, insbesondere f�ur ein Spra
hkonstrukt, das zurModellierung von Parallelismus-Ph�anomenen verwendet werden kann.Die Constraint-Spra
he, die wir untersu
hen, ist die Constraint Language for LambdaStru
tures (CLLS), und das Spra
hkonstrukt, das im Mittelpunkt dieser Arbeit steht,ist der Parallelismus-Constraint. Ein Parallelismus-Constraint ist eine Formel, die be-sagt, dass zwei Berei
he eines Baumes dieselbe Struktur haben. Das Hauptthema dieserDissertation ist ein Verfahren f�ur Parallelismus-Constraints.Ein wi
htiger Punkt an CLLS ist, dass Parallelismus formuliert wird im Rahmen vonpartiellen Bes
hreibungen, die die relativen Positionen von Baumknoten o�enlassen.Wir betra
hten zwei Anwendungen f�ur Parallelismus-Constraints, die si
h beide zentralauf diese Eigens
haft von CLLS st�utzen. Zum einen wurde die Spra
he CLLS als For-malismus f�ur unterspezi�zierte nat�urli
hspra
hli
he Semantik entwi
kelt. Parallelismus-Constraints werden hier zur Modellierung des Ph�anomens Parallelismus verwendet. Ty-pis
he Beispiele dieses verbreiteten Ph�anomens sind elliptis
he Konstruktionen wie z.B.,,Hans s
hl�aft, und Maria au
h." Die andere Anwendung ist die unterspezi�zierteBeta-Reduktion. Hier geht es darum, Beta-Reduktion auf partielle Bes
hreibungen vonLambda-Termen anzuwenden statt auf die Terme selbst.Die Dissertation besteht aus zwei Teilen. Der erste Teil stellt den Hauptbeitrag derArbeit dar: ein Verfahren zum L�osen von Parallelismus-Constraints. Der zweite Teil derArbeit bes
h�aftigt si
h mit Fragen der praktis
hen Anwendbarkeit des Formalismus sowiedes Verfahrens.Das L�osen von Parallelismus-Constraints. Wir stellen ein korrektes undvollst�andiges Semi-Ents
heidungsverfahren f�ur Parallelismus-Constraints vor, das wir zueinem Semi-Ents
heidungsverfahren f�ur CLLS erweitern. Es hat die folgenden Eigen-s
haften:� Das Verfahren ist in Form von Transformationsregeln auf Constraints formuliert.� Das Verfahren bere
hnet Constraints, von denen Modelle direkt abgelesen werdenk�onnen. F�ur einen gegebenen Eingabe-Constraint bere
hnet es alleminimalen Con-straints mit dieser Eigens
haft. Die Bere
hnung ma
ht die Strukturglei
hheit, dieein Parallelismus-Constraint bes
hreibt, explizit.� F�ur die Klasse von F�allen, die f�ur die Anwendungen relevant ist, terminiert dasVerfahren.� Das zentrale Konzept des Verfahrens ist Korrespondenz: Es werden Paare von



vi Knoten in Beziehung gesetzt, die in den beiden parallelen Baum-Berei
hen dieselbePosition einnehmen. Das Konzept von Korrespondenz folgt damit der Knoten-zentrierten Perspektive auf B�aume, die CLLS einnimmt.Anwendbarkeit. Im Zusammenhang mit den zwei oben genannten Anwendungen, un-terspezi�zierter nat�urli
hspra
hli
her Semantik und unterspezi�zierter Beta-Reduktion,betra
hten wir zwei Fragen:Empiris
he Ad�aquatheit: Werden die Ph�anomene, die in den Anwendungenauftreten, von dem Formalismus ad�aquat modelliert? Wir stellen zwei Generali-sierungen von Parallelismus-Constraints vor, die sowohl f�ur die unterspezi�zierteBeta-Reduktion als au
h f�ur eine Modellierung von Ellipsen-Ph�anomenen vonNutzen sind.Unterspezi�kation: Das oben genannte Verfahren ma
ht beim L�osen vonParallelismus-Constraints relative Positionen von Baumknoten zu einem gewissenGrad explizit. In der Anwendung auf unterspezi�zierte Beta-Reduktion ist esaber w�uns
henswert, Unterspezi�kation so weit als m�ogli
h aufre
htzuerhaltenund glei
hzeitig Strukturglei
hheit explizit zu ma
hen. Wir stellen ein Verfahrenvor, das Wissen �uber die relativen Positionen von Baum-Berei
hen in der unter-spezi�zierten Beta-Reduktion ausnutzt und so in vielen F�allen Disambiguierungvermeiden kann.F�ur beide Fragen erweist si
h das Konzept der Korrespondenz als essentiell.
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Chapter 1Introdu
tion
Das Merkw�urdige an einem Lo
h ist der Rand. Er geh�ort no
h zum Etwas, sieht aberbest�andig in das Ni
hts, eine Grenzwa
he der Materie. Das Ni
hts hat keine Grenzwa
he:w�ahrend den Molek�ulen am Rande eines Lo
hes s
hwindlig wird, weil sie in das Lo
hsehen, wird den Molek�ulen des Lo
hs ... festlig ? Daf�ur gibt es kein Wort. Denn unsereSpra
he ist von den Etwas-Leuten gema
ht; die Lo
h-Leute spre
hen ihre eigene.Kurt Tu
holsky, Zur soziologis
hen Psy
hologie der L�o
herThis thesis studies a 
onstraint language that is interpreted over lambda terms repre-sented as tree-like stru
tures. The language has been developed in the 
ontext of naturallanguage semanti
s, where it is used for an underspe
i�ed representation of meaning.Our main fo
us is on determining satis�ability of these 
onstraints, in parti
ular for a
onstru
t of this 
onstraint language that 
an be used to model parallelism phenomena.The 
onstraint language that we study is the Constraint Language for Lambda Stru
tures(CLLS) [42℄, a logi
al language interpreted over lambda stru
tures, tree-like stru
turesthat represent lambda terms. The language 
onstru
t that we fo
us on is the parallelism
onstraint. Parallelism 
onstraints are formulas that state that two pie
es of a tree,
alled segments, have the same stru
ture. The 
entral issue of this thesis is a pro
edurefor parallelism 
onstraints.The main question that we address is:Given a partial des
ription of a tree, in
luding statements of stru
tural iso-morphism between some tree segments, how 
an we test the satis�ability ofthe des
ription and at the same time make the stru
tural isomorphism ex-pli
it?We examine the formalism as well as the question of pro
essing with respe
t to two ap-pli
ation areas. On the one hand, the language CLLS has been used for an underspe
i�eda

ount of natural language semanti
s. On the other hand, we study the question ofunderspe
i�ed beta redu
tion, i.e. beta redu
tion on partial des
riptions of lambda terms.The main result that we report in this thesis is a sound and 
omplete semi-de
isionpro
edure for CLLS. It is a high-level, rule-based pro
edure that 
omputes all minimal1



2 Introdu
tionresult 
onstraints for a given input 
onstraint. We introdu
e extensions to the formalismof parallelism 
onstraints that are suÆ
ient for modeling the phenomena o

urring inthe two appli
ation areas, and we present an extension to the CLLS pro
edure geared atappli
ation in underspe
i�ed beta redu
tion.In the next few se
tions, we establish the 
ontext in whi
h the language CLLS is situated.There are three areas to be mentioned: CLLS is a 
onstraint language; CLLS is a treedes
ription language; and it was developed to model some phenomena of natural languagesemanti
s. Next we sket
h the language CLLS and its appli
ation to underspe
i�edsemanti
s as well as underspe
i�ed beta redu
tion. Then we dis
uss the question ofpro
essing CLLS: we sket
h the main problems and the te
hniques we will use to solvethem. Finally, we summarize the results we present in this thesis, and we give an overviewof its organization.1.1 ConstraintsConstraints are formulas that des
ribe sets of data from a spe
i�
 domain, like �nitedomains of integers, or (in our 
ase) �nite trees (see e.g. the overview arti
le by Comonet al. [24℄). A 
onstraint system 
omprises a 
onstraint language and a 
lass of inter-pretations, whi
h is typi
ally given either by a theory, or by a stru
ture in whi
h theformulas are interpreted. Some de�nitions also in
lude a 
onstraint solver, an algorithmthat tests satis�ability.Constraint systems have the following interesting properties:� Constraints give a 
ompa
t and simple impli
it des
ription of possibly in�nite sets.� Constraints provide a 
lean separation between the des
ription (in the 
onstraintlanguage) and the 
omputation (by the 
onstraint solver).� Constraint solvers 
an exploit knowledge about the domain, the 
lass of interpre-tations.� Constraint solvers 
ompute with data stru
tures that are only partially known andgiven only impli
itly by the 
onstraint formulas.� Computing with 
onstraints is often seen as simpli�
ation: The information aboutthe variables, whi
h is given only impli
itly in the formulas, is made as expli
it aspossible.� Constraints are well suited to handling partial des
riptions that are augmentedin
rementally. Adding more 
onstraints means de
reasing the size of the set ofdata des
ribed.The 
onstraint language that we will study in this thesis is interpreted over lambdastru
tures, �nite 
onstru
tor trees augmented by a 
onstru
t for lambda binding. Themain problem that we will be dealing with is: How 
an we test a 
onstraint of the



Introdu
tion 3Constraint Language for Lambda Stru
tures for satis�ability, while making the datades
ribed more expli
it?1.2 Tree Des
ription Languages f �a � b �There are two standard tree representations that we will use very often.First, ground terms are (
onstru
tor) trees. For example the ground termf(a; b) is the tree drawn to the right. Se
ond, nodes of a tree 
an beaddressed by, and en
oded as, their paths from the root down, where apath is a word of edge labels. For example in the tree to the right, " is the root, its left
hild is 1, and its right 
hild is 2. The edge labels 
an be just numbers, as in the examplewe have just seen, or they 
an be arbitrary symbols, as long as di�erent outgoing edgesof a node are labeled by di�erent symbols. With this en
oding of nodes as paths, a tree
an be des
ribed simply by the set of its nodes together with a node labeling fun
tion.There is a large body of resear
h on tree des
ription languages, both in 
omputer s
i-en
e and in 
omputational linguisti
s. One way of stru
turing it is by the languages'perspe
tive on trees. In the terminology of Bla
kburn, Meyer-Viol and De Rijke [10℄, alanguage that takes an external perspe
tive des
ribes relations between trees, while tak-ing the internal perspe
tive means talking about relations between nodes of a single tree.The di�eren
e in perspe
tive usually impli
ates a di�eren
e in the notion of identity:In external perspe
tive languages, identity usually means identity of stru
ture, while ininternal perspe
tive languages identity usually is identity of o

urren
e.As an example for the external perspe
tive, suppose that we have variables x; y standingfor trees, then a statement like x = f(y; y) 
ould be used to say that the root of x islabeled f , and that x has two identi
al subtrees { with the notion of identity of stru
ture,the two o

urren
es of y mean that we have two y-shaped trees. As an example for theinternal perspe
tive, suppose x; y; z are variables standing for nodes, then the expressionx:f(y; z) 
ould be used to state that the node x is labeled f and has y; z as 
hildren.Note that with identity meaning the same o

urren
e, an expression like x:f(y; y) 
annotdes
ribe a tree, be
ause it would mean that the node y o

urs as two distin
t 
hildren ofthe node x.In the following, we sket
h three 
lasses of tree des
ription languages. We fo
us mainlyon the internal perspe
tive, sin
e this is the one that we will adopt, and we pay spe-
ial attention to two 
onstru
ts: the an
estor relation between nodes (dominan
e), andrelations expressing stru
tural isomorphism between parts of trees (parallelism).(W)SkS. SkS, the se
ond-order monadi
 logi
 with k su

essors, and its weak variantWSkS are among the most expressive de
idable logi
s. The de
idability of (W)SkS isdue to famous results by Doner, That
her and Wright and Rabin [113, 32, 98℄. Doner,That
her and Wright linked de�nability in WSkS to re
ognizability by �nite tree au-tomata. Rabin showed that de�nability in SkS 
oin
ides with re
ognizability by Rabintree automata over in�nite trees.



4 Introdu
tionTerms of SkS are formed from the 
onstant ", �rst-order variables x; y; z; : : :, and right
on
atenation with (unary fun
tion symbols) 1; : : : ; k. Atomi
 formulas are equations andinequations t1 � t2 between terms, and expressions \t 2 X" for terms t and se
ond-ordervariables X. Formulas are built using atomi
 formulas, all the usual 
onne
tives, andexistential and universal quanti�
ation over both �rst-order and se
ond-order variables.While se
ond-order variables range over arbitrary sets in SkS, they are restri
ted toranging over �nite sets in WSkS.There are several ways of en
oding sets of trees in (W)SkS [78, 23℄. They share the samebasi
 idea: The terms denote tree nodes, 
on
atenation ti stands for the i-th 
hild of thenode denoted by t, and � is interpreted as the pre�x relation: t1 � t2 means that thenode denoted by t1 dominates the node denoted by t2.While a huge number of properties of and relations between sets of nodes 
an be expressedin (W)SkS (e.g. union, interse
tion, pre�x-
losedness), there are interesting ex
eptions,relations that would be easy to state from an external perspe
tive on trees. One exampleis the statement that a 
ertain tree has two identi
al subtrees at depth one. We havealready seen an \external perspe
tive" formulation of su
h a situation, the equationx = f(y; y), where x; y stand for trees. This statement 
annot be expressed in SkS.Feature des
ription languages. Feature des
ription languages [103℄ des
ribe featuregraphs, whi
h 
an be regarded as logi
al des
riptions of re
ords. Roughly, a featuregraph is a dire
ted graph with node and edge labels. The edge labels are 
alled features;di�erent outgoing edges of a node are always labeled by di�erent features. So if we �x one\
urrent node" in the feature graph, then we 
an address another (rea
hable) node by theword of features on the path to it. Feature trees are just a spe
ial 
ase of feature graphs.And the tree notation that en
odes nodes as words over the set of natural numbers 
anbe regarded as a spe
ial 
ase of feature trees in whi
h the features are just numbers. Themain di�eren
e between feature trees and 
onstru
tor trees (ground terms) is that in afeature tree ea
h 
hild of a node 
an be addressed individually via its feature.Feature des
riptions have their origins in phonology [20℄ and be
ame a widespread for-malism for linguisti
 theories in the 70s in uni�
ation grammars [68, 65℄, whi
h 
omprisesome of the most widely used grammars in theoreti
al linguisti
s, like LFG and HPSG.These formalisms are 
alled 
onstraint-based. Of the properties of 
onstraint systemsthat we have listed above, those that are relevant for these formalisms are: they providede
larative des
riptions, and they work with partial des
riptions that 
an be augmentedin
rementally.An in
uential language for feature graphs is the one by Kasper and Rounds [66, 67℄.The language is interpreted on one distinguished \
urrent node" of a feature graph, andits most important 
onstru
ts 
an express the following things: the 
urrent node hasa 
ertain node label; two paths (= feature words) leading o� the 
urrent node end atthe same node; and some formula ' holds at the node that we rea
h from the 
urrentone by the label `. This last statement is expressed by a formula ` : '. Smolka [110℄proposes a 
onstraint system over feature graphs and studies 
onstraint solvers. He is



Introdu
tion 5the �rst to use plain �rst-order logi
 to des
ribe feature graphs, and he introdu
es themore general notion of feature algebra. Building on this work, Ba
kofen and Smolka[7℄ introdu
e a �rst-order feature theory FT that is 
omplete and de
idable; A��t-Ka
i,Podelski and Smolka [1℄ further explore the same feature tree des
riptions, presenting a
onstraint system and a simpli�
ation system.Espe
ially interesting for our purposes are logi
s that pursue the modal aspe
t of theKasper-Rounds logi
: They view the feature graph as the rea
hability relation and pro-vide modal operators for traveling in the graph. Whereas in the Kasper-Rounds logi
 wehave formulas pre�xed by features, expressions of the form ` : ', Bla
kburn [8℄ turns su
hfeature pre�xes into modal operators h`i. Bla
kburn and Meyer-Viol [9℄ and similarlyKra
ht [79℄ go one step further. They work with feature trees and, abstra
ting over thefeatures labeling a path, they use a modal #� ' to state that ' is true at some nodedominated by the 
urrent node. Likewise "� ' states that ' is true at some an
estor ofthe 
urrent node. So again, as in SkS, the dominan
e relation plays an important role.Context uni�
ation. Context uni�
ation [22℄ is a variant of linear se
ond order uni-�
ation [84, 95, 85℄. A 
ontext uni�
ation (CU) equation system is a 
onjun
tion ofequations between terms. These terms may 
ontain �rst-order variables standing fortrees, and 
ontext variables standing for 
ontexts. Intuitively, a 
ontext is a tree witha hole, whi
h 
an be written as a term with a 
onstant �, the hole, that o

urs exa
tlyon
e. A 
ontext 
an also be seen as a 
ontext fun
tion from trees to trees, for examplethe 
ontext f(�; b) would map the tree g(a) to the tree f(g(a); b): It just plugs g(a) intothe hole.An example for a CU equation system isf(C(a); b) = C(f(a; b)):A solution of this formula is a mapping of 
ontext variables to 
ontexts that gives us thesame tree on both sides of the equation. Figure 1.1 shows one su
h solution, whi
h mapsC to f(�; b). The o

urren
es of this 
ontext are shown in the pi
ture as shaded areas.
f

f b

a b

f

f b

a b
=Figure 1.1: One solution of the CU equation system f(C(a); b) = C(f(a; b))So this language adopts the external perspe
tive on trees, where di�erent o

urren
es ofthe same 
ontext variable stand for stru
turally isomorphi
 
ontexts, but not the sameo

urren
e of the 
ontext. That means that CU 
an express stru
tural isomorphism intrees by using the same variable repeatedly. As we will see, this is quite similar to thenotion of parallelism that we have in CLLS, and the 
ontexts that we have here are almostthe same as the segments that parallelism in CLLS is about.



6 Introdu
tionInstead of des
ribing CU as a restri
tion of se
ond-order uni�
ation, we 
an also say thatit is a generalization of string uni�
ation from words to trees. String uni�
ation is theproblem of solving word equations. For example, all solutions of the equation ax = xamap x to a word in a�. String uni�
ation has been dis
overed and studied under severalnames and in several resear
h 
ontexts [6℄. Makanin was the �rst to present an algorithmfor string uni�
ation [86℄. So 
ontext uni�
ation lies between string uni�
ation, whi
h isde
idable, and se
ond-order uni�
ation, whi
h is not [54℄. But the de
idability of 
ontextuni�
ation is still an open problem [104℄ { whi
h is also interesting for our purposes,as 
ontext uni�
ation and the parallelism 
onstraints of CLLS are equally expressive[93, 92℄.1.3 Natural Language Semanti
s, Underspe
i�
ation, and ParallelismPhenomenaThe language CLLS was developed to model phenomena of natural language semanti
s:
ertain stru
tural ambiguities and their intera
tion with parallelism phenomena. In thisse
tion, we pro
eed in three steps: First we brie
y talk about formal semanti
s and itsuse of lambda 
al
ulus. Then we introdu
e the 
on
ept of underspe
i�
ation and itsappli
ation to stru
tural ambiguities with respe
t to quanti�er s
ope. Finally we dis
ussparallelism phenomena and their intera
tion with quanti�er s
ope ambiguity.1.3.1 Lambda Cal
ulus and Natural Language Semanti
sFormal semanti
s des
ribes those aspe
ts of the semanti
 stru
ture in natural languagethat 
an be 
aptured with the tools of mathemati
al logi
. An important work in this
ontext is Montague Grammar [89℄, whi
h is still often used as a basis for semanti

onstru
tion. The aim of Montague Grammar is to show the logi
al stru
ture of naturallanguage and des
ribe it with the means of universal algebra and mathemati
al logi
.The meaning of a senten
e is 
onstru
ted 
ompositionally by assembling simpler meaningunits, a

ording to the Fregean prin
iple that the meaning of a senten
e is built upre
ursively from the meaning of its well-formed parts. The meaning of individual wordsis given in the form of lambda terms. For an overview, see e.g. Gamut [49℄.As an example, 
onsider senten
e (1.1). Its (oversimpli�ed) semanti
s is shown in (1.2),and the meanings of the individual words are given in (1.3). Assembling the meaningsof the words in the order pres
ribed by the syntax of the senten
e, we �rst apply thelambda term for \every" to the lambda term for \plan". We apply the result to thelambda term that represents the meaning of \worked", and we get the formula shown in(1.4). Completely beta redu
ing this formula, we arrive on
e again at the formula shownin (1.2).(1.1) Every plan worked.(1.2) 8x:plan0(x)! work0(x)



Introdu
tion 7(1.3) every: �P�Q8x:P (x)! Q(x)plan: �x:plan0(x)worked: �x:work0(x)(1.4) every plan worked: ��P�Q8x:P (x)! Q(x)��x:plan0(x)�x:worked0(x)Lambda 
al
ulus plays a double role in this formalism: On the one hand it serves as atool for a 
ompositional semanti
 
onstru
tion, as sket
hed in the previous paragraph.On the other hand the lambda operator is used as a 
lass-building operator, to representsemanti
 aspe
ts of some natural language expressions.1.3.2 Underspe
i�
ationAmbiguity is a pervasive problem in natural language pro
essing, at all levels of linguisti
stru
ture. Multiple sour
es of ambiguity lead to a 
ombinatori
 explosion in the numberof readings for a senten
e. There are many ways of dealing with ambiguity, the simplestbeing to enumerate all readings and to pro
ess them separately. The te
hnique that weare interested in is underspe
i�
ation: the 
onstru
tion of a single 
ompa
t des
riptionof all readings. Underspe
i�
ation has the following interesting properties:� It provides a single representation instead of many.� Choi
e points are lo
alized.� Operations on the underspe
i�ed representation operate on all readings at on
e.� Monotoni
 augmentation of an underspe
i�ed des
ription 
an be used instead ofdestru
tive 
hanges on a fully spe
i�ed data stru
ture.� In some 
ases of ambiguity di�erent readings 
an be distinguished, but a listenerdoes not ne
essarily de
ide between them (see e.g. Pinkal [95, 96℄). Su
h 
ases 
anbe modeled by underspe
i�
ation.� In ambiguity resolution, roughly two groups of 
ases 
an be distinguished: thosethat for
e listeners to stop and re
onsider, and those that go unnoti
ed. For a
ognitively adequate modeling of human language understanding, the �rst groupof 
ases 
an be modeled e.g. by ba
ktra
king, the se
ond group by augmentationof an underspe
i�ed representation (see e.g. Mar
us, Hindle and Fle
k [87℄).S
ope Ambiguity is a kind of ambiguity that is 
onsidered espe
ially hard. It arises whenin the logi
al formula des
ribing a senten
e meaning, there is more than one possibilityfor the s
ope that some element of the formula 
an take. This is a phenomenon for whi
han underspe
i�ed representation has often been proposed.(1.5) Every plan has a 
at
h.



8 Introdu
tionAs an example for s
ope ambiguity, 
onsider senten
e (1.5). To get a better understandingof its two readings, we put this senten
e into a 
ontext: an es
ape from prison. Thesenten
e 
an either mean that there is one spe
i�
 drawba
k that all plans su�er from;we get this meaning if we 
ontinue (1.5) by . . . namely the big wat
hdog in the prisonyard. Or it 
an mean that ea
h plan is 
awed in a di�erent way, e.g. plan A fails be
ausewe do not possess the key to the prison door, and plan B will not work be
ause we aretoo lazy to dig our way out. This ambiguity results in two di�erent logi
 formulas forthe senten
e. The �rst reading is shown in (1.6) and the se
ond in (1.7). For betterreadability, we have written \a 
at
h" for �Q:9z:
at
h0(z) ^ Q(z), and likewise \everyplan" for �Q:8z:plan0(z)! Q(z).(1.6) (a 
at
h)(�x(every plan)(�y(have0(x; y)))) (1.7) (every plan)(�x(a 
at
h)(�y(have0(x; y))))The important point is that the two formulas di�er only in the order of the two quanti�ers\a 
at
h" and \every plan". This is the basi
 idea of all underspe
i�ed representations ofs
ope ambiguity [100, 91, 15, 95, 26℄. A representation like the one in Fig. 1.2 is often used:The two upper partial formulas have holes, and these holes need to be plugged whi
hother partial formulas. The dotted lines stand for outs
oping. That is, both quanti�ersneed to outs
ope \have(x; y)", but it is not spe
i�ed in whi
h order. Intuitively, thereare two ways of satisfying this des
ription, and they 
orrespond to the two formulas in(1.6) and (1.7).
(every plan) xλ (a catch) y( λ(

have(x,y)))Figure 1.2: The basi
 idea of an underspe
i�ed representation of s
ope, exempli�ed onsenten
e (1.5), \Every plan has a 
at
h."1.3.3 ParallelismParallelism phenomena are ubiquitous in natural language. Intuitively, parallelism meansthat some stru
ture is repeated in the same or a very similar way. Parallelism often o

urstogether with ellipsis: Some linguisti
 material is left out even though it should have beenpresent by some synta
ti
 or lexi
al restri
tions.(1.8) John found the error before Bill did.(1.9) John sent a letter to Bill, and a par
el too.



Introdu
tion 9(1.10) No student laughed, ex
ept John.(1.11) The bike has a 
at tire { no, two.(1.12) Who is the next to jump? { John.A few examples are shown in (1.8) through (1.12). Senten
e (1.8) is a 
ase of VP ellipsis:The target senten
e \Bill did" means the same as the non-ellipti
al \Bill found the error."The meaning of the target senten
e 
an be re
overed by re
ourse to the sour
e senten
e\John found the error". \John" and \Bill` are 
alled the 
ontrasting elements of thesour
e and target senten
es. Senten
e (1.9) is a bare argument ellipsis, senten
e (1.10)shows an ex
eption phrase fragment, and senten
e (1.11) is a 
orre
tion: \no, the bikehas two 
at tires". The answer in (1.12) means the same as \John is the next to jump."There have been many di�erent approa
hes to modeling ellipsis, involving di�erent levelsof linguisti
 stru
ture. Levels of linguisti
 stru
ture relate the surfa
e stru
ture of anexpression to its meaning. Examples of su
h levels are (surfa
e) synta
ti
 stru
ture,morphology, and the level of formal semanti
 stru
ture that we have brie
y dis
ussed inSe
. 1.3.1. The approa
h of Dalrymple, Shieber and Pereira [30℄ fo
uses on the level offormal semanti
s; it views ellipsis as a missing property of the target 
ontrasting element,whi
h is re
overed using higher order uni�
ation. In the 
ase of our �rst example senten
e(1.8), the meaning of the target senten
e would be given as P (bill), where the propertyP 
ould be determined by an equation like find(john; the error) = P (john). Lappinand Shih [82℄ re
onstru
t the missing pie
es within the surfa
e synta
ti
 stru
ture ofthe target senten
e, taking them from 
orresponding positions in the sour
e senten
esyntax. Hardt [59℄ sees ellipsis as a 
ase of referential identity: Both the sour
e andthe target senten
e refer to the same kind of event, mu
h like in the senten
e \John 
uthimself", \John" and \himself" refer to the same referent. Kehler [70℄ gives a 
entralrole to dis
ourse stru
ture: In his analysis, the way in whi
h the target senten
e meaningis re
overed relies 
ru
ially on the 
oheren
e relation that holds between the sour
e andthe target senten
e.Interestingly, ellipsis and s
ope ambiguity intera
t. This phenomenon, quanti�er paral-lelism, �rst be
ame apparent in examples proposed by Hirs
hb�uhler [62℄. An example ofthis intera
tion is shown in (1.13).(1.13) Every linguist attended a workshop. Every 
omputer s
ientist did, too.The �rst senten
e in (1.13) 
ontains two s
ope-bearing elements, \every linguist" and\a workshop". So it has two readings, just like (1.5) above. The se
ond senten
e in(1.13) means the same as \Every 
omputer s
ientist attended a workshop". Here wehave two s
ope-bearing elements again, so (1.13) should have four readings all in all.But of those four, only two exist, plus an additional third reading: Either all linguistsattend one 
ommon workshop, and all 
omputer s
ientists visit a (potentially di�erent)
ommon workshop; or everybody has a di�erent workshop that he or she is traveling
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tionto; or one and the same workshop is attended by everybody. There are no \mixed"readings in whi
h, e.g., all linguists gather at one workshop, while the 
omputer s
ientistsdisperse to di�erent workshops. That is, if \a workshop" takes wide s
ope in the �rstsenten
e, it has to take wide s
ope in the se
ond senten
e too { parallelism enfor
es aparallel resolution of s
ope ambiguities. The third reading, where one single workshop isattended by everybody, arises when \a workshop" moves out of the sour
e senten
e andtakes s
ope over both the sour
e and the target senten
e.How 
an s
ope ambiguity, parallelism, and their intera
tion be modeled formally? Thisis the question that stood at the beginning of the Constraint Language for LambdaStru
tures, whi
h we present in the next se
tion.1.4 The Constraint Language for Lambda Stru
tures (CLLS)The Constraint Language for Lambda Stru
tures (CLLS) is a 
onstraint language inter-preted over the 
lass of lambda stru
tures [42, 41℄. A lambda stru
ture is a 
onstru
tortree augmented by fun
tions modeling binding. It 
an be des
ribed as a lambda termviewed as a tree. A CLLS 
onstraint des
ribes relations between nodes of a lambda stru
-ture, i.e. it adopts the internal perspe
tive on trees. The two most important 
onstru
tsof the language are dominan
e and parallelism:
f

0

1Y

X 0

X 1

X 1

X 0

X 2

X 0
X 1

X 0

X 1

(d)

lam

var

(b)(a) (c)

YFigure 1.3: Labeling, dominan
e, parallelism, and lambda binding� Dominan
e is the an
estor relation between nodes, or, more pre
isely, the re
exiveand transitive 
losure of the \parent-of" relation. It is illustrated in Fig. 1.3 (a).We write X0/�X1to state that X0 dominates X1. (X0 and X1 are variables standing for nodes of alambda stru
ture.)� Parallelism is stru
tural isomorphism between pairs of tree pie
es, 
alled segments.This is illustrated in Fig. 1.3 (b). The segments are the deeper shaded regions. Asegment is a subtree from whi
h zero or more subtrees have been 
ut out, leavingbehind holes. In the pi
ture, X0 and X1 delineate one segment: X0 addresses theroot and X1 the single hole. In the other segment, Y0 stands for the root and Y1 forthe hole. (Again, X0;X1; Y0; Y1 stand for nodes in a lambda stru
ture). We writeX0=X1�Y0=Y1
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tion 11to state that the segment between X0 andX1 has the same stru
ture as the segmentbetween Y0 and Y1. This notation is extended 
anoni
ally to parallelism with 0 ormore holes.Furthermore, the language CLLS 
an express labeling, as shown in Fig. 1.3 (
): A labeling
onstraint states the label of a node along with all its 
hildren. The 
onstraint drawn inthe pi
ture is written as X:f(X1;X2):It states �rst that X is labeled f , and se
ond, that X has X1 as its left 
hild and X2 asits right 
hild. (a) lam �var � (b) � �lam �� �var � a � f �Figure 1.4: Lambda stru
tures representing (a) �x:x, (b) (�x:x(a))fThe fourth 
onstru
t in Fig. 1.3 is lambda binding. Above we have said that a lambdastru
ture is a 
onstru
tor tree augmented by fun
tions modeling binding. Figure 1.4 (a)shows the lambda stru
ture for the lambda term �x:x. The variable x of the lambda termis 
ompletely nameless in the lambda stru
ture. Instead, lambda binding is expressedby the lambda binding fun
tion, whi
h maps the var-labeled node to its binder. In thepi
ture this mapping is represented by the dashed arrow. Likewise, Fig. 1.4 (b) showsthe lambda stru
ture for (�x:x(a))f . Here, as in the rest of this thesis, we representappli
ation by the symbol �.Returning to the lambda binding 
onstraint in Fig. 1.3 (d), this 
onstraint states that the(var-labeled) X1 is bound at the (lam-labeled) X0. We write it as�(X1)=X0:(a) lam � �0f � �1f � �2var � �3
(b) X0:lam(X1) ^X1:f(X2)^X1=X2�Y1=Y2^X2/�Y1 ^ �(Y2)=X0 (
) lam � X0f � X1� X2� Y1� Y2X1=X2�Y1=Y2Figure 1.5: (a) A lambda stru
ture, (b) a 
onstraint that it satis�es, and (
) the 
onstraintgraph for the 
onstraint in (b)
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tionA CLLS 
onstraint is a 
onjun
tion of literals, atomi
 
onstraints like for example domi-nan
e, parallelism, labeling and lambda binding literals. Figure 1.5 demonstrates all thesefour types of literals. Pi
ture (a) shows a lambda stru
ture, whi
h is non-bran
hing forreasons of simpli
ity. As a lambda term, it would read �x:ffx (modulo alpha-renaming)for a string ff . Pi
ture (b) shows a 
onstraint that is satis�ed by the lambda stru
turein (a) with the valuationX0 7! �0;X1 7! �1;X2 7! �2; Y1 7! �2; Y2 7! �3:The 
onstraint X0:lam(X1) is satis�ed sin
e the node �0 is labeled lam and is the parent of�1, whi
h is labeled f and is the parent of �2, so this satis�es X1:f(X2). The parallelism
onstraint X1=X2�Y1=Y2 is satis�ed sin
e the segment starting at �1 and ending at �2has the same stru
ture as the segment starting at �2 and ending at �3: They both havethe stru
ture f �� . Note that the label of the hole node does not 
ount as part ofthe segment. The dominan
e 
onstraint X2/�Y1 is satis�ed sin
e �2 dominates itself,and lam(Y2)=X0 is satis�ed be
ause �3 has its lambda binder at �0. CLLS 
onstraints
an easily be visualized as tree-like graphs, as pi
ture (
) shows: It is the 
onstraintof pi
ture (b) drawn as a 
onstraint graph. Labeling and lambda binding look as in alambda stru
ture. Dominan
e is shown as a dotted line. Parallelism is written below the
onstraint graph; additionally it may be sket
hed using bra
kets, as we have done here.How do the literals of CLLS relate to the tree des
ription languages that we have seenearlier on? Dominan
e is the same relation that we have seen in SkS and in Bla
kburnand Meyer-Viol's modal tree logi
. Parallelism is similar to the repeated use of the same
ontext variable in CU. The segments that parallelism is about are almost the same asthe 
ontexts of CU, ex
ept that a segment is always a segment of a lambda stru
ture,with whi
h it is 
onne
ted via the lambda binding fun
tion.Another point worth noting is that apart from the lambda binding fun
tion, lambdastru
tures o�er a se
ond binding fun
tion, whi
h models anaphori
 binding. An anaphoris an element or a 
onstru
tion that, in order to be interpreted, needs to be asso
iatedwith something else in the 
ontext. For example, in \John 
ut himself" the anaphori
\himself" needs to be asso
iated with \John". Like the lambda binding fun
tion, theanaphori
 binding fun
tion is des
ribed by mat
hing literals of the language CLLS.1.4.1 CLLS in Underspe
i�ed Semanti
sThe language CLLS 
an be used to model s
ope ambiguity and ellipsis: S
ope ambiguity
an be modeled with dominan
e 
onstraints, and ellipsis with parallelism 
onstraints[42, 41℄.S
ope ambiguity. Consider again the senten
e we dis
ussed above, \Every plan hasa 
at
h," shown in (1.5). Its two readings, shown in (1.7) and (1.6), are lambda terms,so they 
an also be seen as lambda stru
tures. Above we have remarked that these tworeadings just di�er in the s
ope of the s
ope-bearing elements \a 
at
h" and \every plan",where s
ope in the formula is the same as dominan
e in the lambda stru
ture.
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tion 13� �� �ev � plan � lam �� � �� �a � 
at
h � lam ��� �� �have � var �var �Figure 1.6: Constraint for Every plan has a 
at
h.These two readings 
an be des
ribed by one 
ommon 
onstraint: the one shown in Fig. 1.6.(This is again a 
onstraint graph, like the one in Fig. 1.5 (
), a graphi
al representationof a 
onstraint.) The graph has all the symbols of the two higher-order formulas (1.7)and (1.6) as node labels. Variable binding is again indi
ated by dashed lambda bindingedges, and dominan
e is again drawn as dotted lines.The important point is this: The 
onstraint states that the \
onstraint fragment" for\every plan" outs
opes the fragment for \have", and that the fragment for \a 
at
h"outs
opes the fragment for \have", but it does not spe
ify any order for the fragmentsfor \a 
at
h" and \every plan". However, trees do not bran
h upwards, so one of two
ases must hold: Either the fragment for \every plan" outs
opes that for \a 
at
h", orvi
e versa. So it is exa
tly the partial information given by the dominan
e 
onstraintsthat des
ribes the s
ope ambiguity.More generally, ea
h individual reading of a senten
e is represented by a lambda stru
ture.A CLLS 
onstraint with several models is an underspe
i�ed representation for the setof all these models (i.e. lambda stru
tures). So we 
an view lambda 
al
ulus as our\obje
t-level language" and CLLS as a \meta-language" for talking about formulas inthe obje
t-level language.1(1.14) Every man sleeps, and so does Mary.Ellipsis. Senten
e (1.14) shows a simple 
ase of VP ellipsis. The meaning of the targetsenten
e \. . . and so does Mary" is the same as the meaning of the sour
e senten
e \Everyman sleeps", ex
ept that the sour
e 
ontrasting element \every man" is repla
ed by thetarget 
ontrasting element \Mary". This 
an be modeled by the 
onstraint in Fig. 1.7:First, the part of the 
onstraint below X0 represents the meaning of the sour
e senten
e,\every man sleeps". Se
ond, the part of the 
onstraint below Y0 represents the meaningof the target senten
e: We only know that it 
ontains the meaning of \Mary", whi
h isthe nodeX1. Finally, the parallelism 
onstraintX0=X1�Y0=Y1 states that the meaning of1Note that we do not take the term meta-language as a formal notion here. Formally, CLLS is just anobje
t-level language that we use to des
ribe obje
ts of another obje
t-level language.
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tionthe sour
e and the target senten
e are the same, ex
ept for the substru
tures representingthe 
ontrasting elements. and �� X0� �� � X1every � man � lam ��� �sleeps � var � � Y0mary � Y1X0=X1�Y0=Y1Figure 1.7: Constraint representing the meaning of senten
e (1.14): \Every man sleeps,and so does Mary."And in fa
t the lambda stru
ture representing the meaning of senten
e (1.14), shown inFig. 1.8, satis�es the 
onstraint in Fig. 1.7.and �� �� �every � man � lam �� �sleeps � var � � �mary � lam �� �sleeps � var �Figure 1.8: Lambda stru
ture representing the meaning of senten
e (1.14): \Every mansleeps, and so does Mary."So we 
an model ellipsis using parallelism 
onstraints. But how about the intera
tionbetween ellipsis and s
ope ambiguity? This phenomenon, quanti�er parallelism, is illus-trated in senten
e (1.13) (p. 9) above: If we have a s
ope ambiguity in the sour
e senten
eof an ellipsis, then this s
ope ambiguity must be resolved in the same way in the sour
eand in the target senten
e. But this is automati
ally enfor
ed by parallelism: A s
ope-bearing element in the sour
e senten
e and its 
opy in the target senten
e must have thesame positions in their respe
tive segments { that is what stru
tural isomorphism means.1.4.2 CLLS in Underspe
i�ed Beta Redu
tionCLLS is a language for partial des
riptions of lambda terms. So an obvious question toask is: Can we do beta redu
tion dire
tly on CLLS 
onstraints? This is the question ofunderspe
i�ed beta redu
tion. Ideally, we would like to be able to beta redu
e a CLLS
onstraint without disambiguating it �rst in any way.An obvious approa
h to solving this problem would be to lift beta redu
tion 
anoni
allyfrom term rewriting on lambda terms to graph rewriting on 
onstraint graphs. But thisdoes not work. The problem is that in a CLLS 
onstraint the stru
ture of the lambdaterm that it des
ribes may be only partially known. And this 
an lead to the simplerewriting approa
h generating spurious solutions { it is unsound.
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lam
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(b)
B

C

Aredu
ing tree redu
tFigure 1.9: Beta redu
tion on lambda stru
tures { abstra
t s
hemaBut there is an alternative approa
h that is sound, an approa
h that is de
larative insteadof pro
edural [11, 12℄: des
ribing the result of beta redu
tion using parallelism 
onstraints.Consider Fig. 1.9. Pi
ture (a) is a sket
h of a lambda stru
ture with a redex, and pi
ture(b) sket
hes the result of beta redu
tion. In (a), we have the lambda abstra
tion withbodyB and (in this 
ase) one o

urren
e of the bound variable, and we have the argumentA that is to be substituted for the bound variable. The 
ontext C that surrounds theredex will not be 
hanged during beta redu
tion. All three, body B, argument A and
ontext C, are segments of this lambda stru
ture. In the result of beta redu
tion, (b),all three segments reappear, although their relative positions have 
hanged.Now the idea is to regard both the lambda term before beta redu
tion and the redu
tas parts of the same bigger lambda stru
ture, and to relate the two 
ontext segments,the two body segments, and the two argument segments by one parallelism ea
h. Thenthe parallelism 
onstraints naturally enfor
e that all ambiguities in the redu
ing tree areresolved in the same way there as in the redu
t { this is the same e�e
t that we get forquanti�er parallelism 
ases.1.5 A Pro
edure for CLLSThe 
entral topi
 of this thesis is a pro
edure for CLLS 
onstraints, in parti
ular par-allelism 
onstraints. The tasks of the pro
edure are to 
he
k satis�ability, and to makeexpli
it information that is given only impli
itly in the 
onstraint.For a fragment of CLLS, dominan
e 
onstraints, 
onstraint solvers exist. Dominan
e
onstraints in
lude the dominan
e and labeling literals we have seen above, but notparallelism literals.2 The satis�ability problem for dominan
e 
onstraints is de
idable:it is an NP-
omplete problem [78℄. For the language of dominan
e 
onstraints thereis a solver in the 
onstraint programming paradigm, based on �nite set 
onstraints, byDu
hier and Niehren [34℄. For a fragment of dominan
e 
onstraints, normal dominan
e
onstraints, whi
h seems to suÆ
e for the linguisti
 appli
ation, satis�ability 
an be2The fragment does not 
omprise binding 
onstraints, but only for the sake of 
larity; adding themdoes not pose any problems.
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tiontested in polynomial time [76℄. For this fragment Koller, Mehlhorn, Niehren, Althaus,Du
hier and Thiel have proposed polynomial-time solvers based on graph algorithms [3℄.How 
an these solvers be extended to pro
edures for all of CLLS? The only 
onstru
tsin CLLS that are not present in dominan
e 
onstraints are parallelism and binding lit-erals. The main problem is to 
onstru
t a pro
edure for parallelism 
onstraints; binding
onstraints are relatively easy to handle. As we have mentioned above, parallelism 
on-straints are equally expressive as CU, and the de
idability of CU is still an open problem.As this is a problem that we will not attempt to solve here, our aim must be to 
onstru
ta semi-de
ision pro
edure for parallelism 
onstraints. Now a naive pro
edure is very easyto put up: Just enumerate lambda stru
tures and 
he
k for ea
h of them if it satis�esthe given 
onstraint. But su
h a pro
edure is of 
ourse not satisfa
tory { it is neitherfeasible, nor does it provide insights into the nature of the problem. In 
ontrast, we willpresent a pro
edure that� terminates for the linguisti
ally relevant 
ases of CLLS 
onstraints, and 
omputesresult 
onstraints for them.� in
ludes a solver for dominan
e 
onstraints. Given a dominan
e 
onstraint as aninput, the parallelism 
onstraint pro
edure behaves exa
tly like the dominan
e
onstraint solver that it en
ompasses. This is advantageous be
ause dominan
e
onstraints play an important role in the linguisti
 appli
ation.� is built in a modular fashion, so that in prin
iple di�erent dominan
e 
onstraintsolvers 
an be in
orporated.� introdu
es a data stru
ture, 
orresponden
e, that will prove useful in stating theformalism as well as in pro
essing.
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π  /π  ∼ ψ  /ψ0 1 0 1

a a

X  /X   ~ Y  /Y0 1 0 1

0

ψ
1

ψπ
0

π
1Figure 1.10: Parallelism in a lambda stru
ture, and a parallelism 
onstraintNext we sket
h the main ideas of the pro
edure for parallelism 
onstraints that we in-trodu
e. Consider Fig. 1.10. Pi
ture (a) shows an example of parallelism in a lambdastru
ture: the two segments are stru
turally isomorphi
 up to their holes. Pi
ture (b)shows an example of a CLLS 
onstraint, in
luding the parallelism literal X0=X1�Y0=Y1.We 
all the two terms X0=X1 and Y0=Y1 segment terms. A pro
edure for CLLS has to
he
k whether the two segments des
ribed by the segment terms X0=X1 and Y0=Y1 
anhave the same shape. But as sket
hed in pi
ture (b), we only have a partial des
ription
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tion 17of these two segments: We know that either U0 dominates U1 or vi
e versa, but we don'tknow whi
h of the two 
ases holds, and we know that V0 dominates both V1 and Y1, butwe don't know the relative positions of V1 and Y1.How 
an we test su
h a 
onstraint for satis�ability? Can a look at the 
losest relativeof parallelism 
onstraints, CU, help us here? No, unfortunately the pro
edure for CUequation systems is not parti
ularly suitable for parallelism 
onstraints: It determinesthe shape of a 
ontext in a top-down fashion, starting at the root of the 
ontext andworking downward. In the pro
ess, it sometimes has to guess labels. However, in par-allelism 
onstraints there is no preferred dire
tion, and we do not want to guess labels.Furthermore, and more importantly, dominan
e 
onstraints do not seem to 
orrespondto any 
lear-
ut fragment of 
ontext uni�
ation, and it is essential for our pro
edure towork well for dominan
e 
onstraints.Instead, we use a new data stru
ture that makes use of the node-
entered perspe
tive ontrees that CLLS takes: A 
orresponden
e fun
tion between two parallel segments mapsea
h node in one segment to the node in the same position in the other segment. InFig. 1.11 (a), 
orresponding nodes are linked by ar
s. Note that any two 
orrespondingnodes bear the same labels and have 
orresponding 
hildren, ex
ept for the holes of thetwo segments. Among other things, 
orresponden
e fun
tions allow for a straightforwardformulation of the 
onditions on binding in intera
tion with parallelism.
X 0

X 1

f f Y
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X  /X   ~ Y  /Y0 1 0 1

Figure 1.11: Corresponden
e: (a) 
orresponden
e fun
tion in a lambda stru
ture, (b)
orresponden
e formulas in a 
onstraintWe use the same idea in our pro
edure for parallelism 
onstraints: We link 
orrespondingvariables by 
orresponden
e formulas, whi
h state that the two linked variables denote
orresponding nodes. Then, the general modus operandi of the pro
edure will be asfollows: First we 
opy all variables from one parallel segment term to the other, and welink ea
h variable to its 
opy by a 
orresponden
e formula. Se
ond, any relation betweentwo variables \inside" the left segment term must also hold between their 
orrespondentsin the right segment term, and vi
e versa; that is what stru
tural isomorphism is about.If we augment the 
onstraint in Fig. 1.10 (b) a

ordingly, we arrive at the 
onstraint inFig. 1.11 (b). For the sake of readability we have drawn in only a few 
orresponden
eformulas, again as ar
s. Third, we use the dominan
e 
onstraint solver to sort out therelative positions of the variables \inside" ea
h of the two segment terms. All the whilewe make sure that one invariant is maintained: Any relation that holds between variables
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tion\inside" one parallel segment term will also hold between their 
orrespondents \inside"the other segment term.We will formulate this semi-de
ision pro
edure for CLLS as a high-level, rule-based pro
e-dure. It transforms 
onstraints, or more a

urately, it augments them, until a saturationis rea
hed. A saturation is similar to a solved form: It is a 
onstraint from whi
h a model
an be dire
tly read o�. We are going to prove the following properties of the pro
edure:� Any saturation that the pro
edure 
omputes is satis�able.� The pro
edure is sound in the sense that all its rules are equivalen
e transforma-tions.� It is 
omplete in the sense that it 
omputes all minimal saturations for a giveninput 
onstraint.� The notion of minimal saturation 
an be 
ompared to the most general uni�ers ofuni�
ation problems. While uni�ers are 
ompared by the subsumption ordering,we 
ompare CLLS 
onstraints by a partial order that 
an be des
ribed roughly asthe subset relation modulo �-renaming of variables introdu
ed during pro
essing.As mentioned above, there are two di�erent appli
ations of CLLS that we will study:underspe
i�ed natural language semanti
s, and underspe
i�ed beta redu
tion. From thepoint of view of these appli
ations, the CLLS pro
edure enumerates readings in the 
aseof s
ope ambiguities, and makes stru
tural isomorphism expli
it in the 
ases of ellipsisresolution and underspe
i�ed beta redu
tion. For these appli
ation areas, extensions toboth the language and the pro
edure are ne
essary.� Is the formal language adequate for modeling the phenomena arising in underspe
-i�ed semanti
s and in underspe
i�ed beta redu
tion? It turns out that a straight-forward extension of parallelism is needed for both appli
ations: In the sket
h forbeta redu
tion on lambda stru
tures (Fig. 1.9), we have used several pairs of par-allel segments to relate the redu
ing tree and the redu
t. Similarly there are 
asesof ellipsis for whi
h several pairs of parallel segments are needed. However it is notsuÆ
ient to use independent parallelism relationships, sin
e normal parallelism istoo restri
tive in its 
onditions on lambda binding. For example, in Fig. 1.9 (a) (p.15) we need to allow a lambda binder from the B segment to the C segment, andthis binder has to parallel a lambda binder from the B segment to the C segment inpi
ture (b). What we need in these 
ases is to be able to treat a group of segmentsas if it were a single segment. The new relation that ensues is 
alled the group par-allelism relation. Its 
onditions on binding are less stri
t than in normal parallelismand 
an be expressed straightforwardly in terms of 
orresponden
e fun
tions.� In the appli
ation to modeling ellipsis a further extension to the parallelism relationwill prove useful. Normal parallelism might state something like �0=�1� 0= 1,\node �0 up to �1 is parallel to node  0 up to node  1", whi
h means that thesubtrees below �1 and  1 are ex
luded from the parallelism. But sometimes it is
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essary to ex
ept not subtrees but segments, stating something like \node � up tothe segment between �1 and �2 is parallel to node  up to the segment between  1and  2". As in normal parallelism, the ex
luded segments have to be in the sameposition within the two parallel segments, as sket
hed in Fig. 1.12. This 
an againbe des
ribed by a 
on
ept of 
orresponden
e. The new parallelism relation will be
alled jigsaw parallelism. It does not add any expressive power { any situation thatthe jigsaw parallelism relation 
an des
ribe 
an already be expressed using groupparallelism. However there are 
ases where a single jigsaw parallelism 
onstraint
an only be des
ribed by a disjun
tion of group parallelism 
onstraints.
’

’

α α

γ γFigure 1.12: Jigsaw parallelism: Segment � up to segment 
 is parallel to �0 up to 
0� We use the same 
onstraints to des
ribe the result of a beta redu
tion step that weuse to des
ribe the meaning of ellipti
al senten
es. So in prin
iple we 
an use thesame pro
edure to handle both appli
ations. However, in performing underspe
i�edbeta redu
tion we would like to maintain as mu
h underspe
i�
ation as possible {the CLLS pro
edure that we have sket
hed above makes expli
it more 
hoi
es thatare impli
it in the 
onstraint than we would like for this appli
ation. In parti
ular,it disambiguates s
ope ambiguities.So we introdu
e a pro
edure spe
ialized on 
omputing the result of an underspe
i-�ed beta redu
tion step. It makes the stru
tural isomorphism expli
it, but, at the
ost of being in
omplete, it 
an avoid disambiguation in many 
ases by exploitingknowledge about the relative positions of parallel segments in underspe
i�ed betaredu
tion. To do that, we use yet another variant of the 
on
ept of 
orresponden
e:underspe
i�ed 
orresponden
e.1.6 ContributionsSumming up the points mentioned in the previous se
tion, the 
ontributions of this thesisare as follows:� The most important result is a semi-de
ision pro
edure for CLLS. It is a high-level,rule-based pro
edure that 
omputes saturations, from whi
h models 
an be dire
tlyread o�. We show that the pro
edure is sound and 
omplete, and we introdu
e anotion of minimal saturation.A 
entral 
on
ept both for the des
ription of the formalism and for the pro
edureis the notion of 
orresponden
e, whi
h also proves vital for extensions both to thelanguage and the pro
edure.



20 Introdu
tion� We extend the language CLLS by moving from parallelism to group parallelism,where the 
onditions on binding are more liberal, and we extend the pro
edure forsolving the 
onstraints a

ordingly.We further extend the language to en
ompass jigsaw parallelism 
onstraints, wheresegments rather than subtrees are ex
epted from parallelism. We show how boththese extensions 
an be used for modeling ellipsis.� We present a pro
edure that 
omputes the result of an underspe
i�ed beta redu
tionstep, building on the CLLS pro
edure. It is in
omplete, but avoids disambiguationin many 
ases.Sour
e MaterialPart of the material presented in this thesis has already been published in the followingpapers:� Katrin Erk and Joa
him Niehren. Parallelism Constraints, 2000 [46℄.� Katrin Erk, Alexander Koller and Joa
him Niehren. Pro
essing Underspe
i�edSemanti
 Representations in the Constraint Language for Lambda Stru
tures, 2000[44℄.� Manuel Bodirsky, Katrin Erk, Alexander Koller and Joa
him Niehren. Beta Re-du
tion Constraints, 2001 [12℄.� Manuel Bodirsky, Katrin Erk, Alexander Koller and Joa
him Niehren. Underspe
-i�ed Beta Redu
tion, 2001 [13℄.� Katrin Erk and Alexander Koller. VP Ellipsis by Tree Surgery, 2001 [43℄.Part of the dis
ussion of underspe
i�ed beta redu
tion also appeared in the master'sthesis of Manuel Bodirsky [11℄.1.7 Plan of this ThesisThis thesis 
onsists of two parts, A Pro
edure for CLLS Constraints and Applying Par-allelism Constraints.A Pro
edure for CLLS Constraints. In this part of the thesis we present a semi-de
ision pro
edure for CLLS. The �rst 
hapter lays the ground for all others that follow:It introdu
es the formalism, gives the basi
 de�nitions and some examples and dis
ussesrelated formalisms and modeling approa
hes. The following three 
hapters present thesemi-de
ision pro
edure for CLLS. In Chapter 3 we dis
uss the part of the pro
edure thathandles dominan
e 
onstraints, and we prove soundness and 
ompleteness for this part.We reuse and extend the same proof outlines in the two 
hapters that follow. Chapter 4introdu
es the part of the pro
edure that deals with parallelism 
onstraints. This is the
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entral 
hapter, and the one with the most interesting proofs. Chapter 5 
ompletes thepro
edure with the part that handles binding.Applying Parallelism Constraints. In this part of the thesis we 
onsider two ap-pli
ations of parallelism 
onstraints: modeling ellipsis in a framework of underspe
i�edsemanti
s, and underspe
i�ed beta redu
tion. In Chapter 6 we dis
uss underspe
i�edbeta redu
tion. We de�ne group parallelism, and we present two pro
edures for 
om-puting the result of a beta redu
tion step: a 
anoni
al extension to the CLLS pro
edurethat 
an handle group parallelism literals, and a pro
edure that is in
omplete but 
anavoid disambiguation in many 
ases. Chapters 7 and 8 are about modeling ellipsis withparallelism. In Chapter 7 we introdu
e jigsaw parallelism, and we show how both groupparallelism and jigsaw parallelism 
an be used to model ellipsis. In Chapter 8 we takea 
loser look at the phenomenon of ellipsis, we dis
uss di�erent approa
hes to modelingellipsis, and we position the CLLS approa
h in relation to them.Finally, Chapter 9 lists further resear
h questions, and Chapter 10 sums up and 
on
ludes.
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Chapter 2CLLS
This 
hapter 
ontains the basi
 
on
epts and de�nitions that we will use throughout thethesis. It de�nes lambda stru
tures and the Constraint Language for Lambda Stru
tures(CLLS), whi
h was �rst introdu
ed in 1998 by Egg, Niehren, Ruhrberg and Xu [42℄.Lambda stru
tures are 
onstru
tor trees augmented by a fun
tion that maps boundvariables to their lambda binders, plus another node mapping fun
tion that is needed forthe appli
ation to linguisti
s. Ea
h lambda stru
ture 
orresponds to a lambda term thatis unique up to �-equivalen
e. CLLS o�ers 
onstraints that des
ribe relations betweennodes of a lambda stru
ture.In this 
hapter, we present the language CLLS as a hierar
hy of three languages. Thelanguage of dominan
e 
onstraints Cd des
ribes trees. The most important node relationsthat it 
an des
ribe are labeling, whi
h des
ribes a node's label as well as its immediatedes
endants, and dominan
e, whi
h states that one node is above another, without spe
-ifying how far apart they are. The language of parallelism 
onstraints Cp extends Cd byparallelism, whi
h says that two segments have the same stru
ture. Finally, the languageCLLS extends Cp by binding and thus moves beyond tree des
riptions to des
riptions oflambda stru
tures.The tripartite hierar
hy of languages mat
hes three major 
lasses of linguisti
 phenomenathat they 
an be used to model: dominan
e 
onstraints 
an be used for a 
ompa
t un-derspe
i�ed representation of s
ope ambiguities. Parallelism 
onstraints 
an additionallymodel parallelism phenomena. The binding literals of CLLS handle anaphori
 binding.2.1 Lambda Stru
turesIn this se
tion we introdu
e lambda stru
tures in three steps: First we de�ne 
onstru
tortrees. Then we augment trees by a parallelism relation. The third step extends trees bybinding fun
tions, whi
h yields lambda stru
tures.2.1.1 Constru
tor TreesWe assume a signature � of fun
tion symbols ranged over by f; g; : : :, ea
h of whi
h isequipped with an arity ar(f) � 0. We assume that � 
ontains at least one 
onstant anda symbol of arity at least 2. 25



26 CLLSA �nite (
onstru
tor) tree � is a ground term over �. A node of a tree 
an be identi�edwith its path from the root down, expressed by a word over N (the set of natural numbersex
luding 0). We use the letters �,  for paths. We write " for the empty path and �1�2for the 
on
atenation of two paths �1 and �2. A path �1 is a pre�x of a path � if thereexists some (possibly empty) path �2 su
h that �1�2 = �. f � "g � 1a � 11 a � 12A tree 
an be 
hara
terized uniquely by a tree domain (the set of itspaths) and a labeling fun
tion. A tree domain D is a �nite nonemptypre�x-
losed set of paths. A labeling fun
tion is a fun
tion L : D ! �from a tree domain to � ful�lling the 
ondition that for every node� 2 D and k � 1, �k 2 D i� k � ar(L(�)). We write D� for thedomain of a tree � and L� for its labeling fun
tion. For instan
e, the tree � = f(g(a; a))shown to the right satis�es D� = f�; 1; 11; 12g, L�(�) = f , L�(1) = g, and L�(11) = a =L�(12).Sin
e we will be talking about lambda stru
tures later on, it is useful to view �nite treesas tree stru
tures. The tree stru
ture of a �nite tree � over � is a �rst-order stru
turewith domain D�. It provides a labeling relation :f for ea
h f 2 �::f = f(�; �1; : : : ; �n) j L�(�) = f; ar(f) = ngOverloading notation somewhat, we also write � for the tree stru
ture of a tree �. Wewrite � j= �0:f(�1; : : : ; �n)for (�0; �1; : : : ; �n) 2 :f . This relation states that the node �0 of � is labeled by f andhas �i as its i-th 
hild (for 1 � i � n). The labeling relation is illustrated in Fig. 2.1 (a)for a symbol f of arity 2.Every tree stru
ture � 
an be extended 
onservatively by relations for inequality, domi-nan
e, and disjointness:De�nition 2.1 (Dominan
e, disjointness). Let � be a tree stru
ture.� The dominan
e relation on D� is de�ned as /� = f(�0; �1) j �0 is a pre�x of �1g.� The disjointness relation on D� is de�ned as ? = f(�0; �1) j neither �0/��1 nor�1/��0 holds in �g.For better readability, we use the in�x notation �/� , �? instead of the tuple no-tation. The dominan
e relation is illustrated in Fig. 2.1 (b): It is the re
exive andtransitive 
losure of the parent relation. So a node �0 dominates �1 i� it is its an
estor.We also use stri
t dominan
e: We write �0/+�1 if both �0/��1 and �0 6= �1 hold in�. Two nodes �0; �1 lie in disjoint position i� there is some other node  0 su
h that 0:f(: : :  i; : : : ;  j : : :) holds in � for distin
t 
hildren  i,  j of  0, and  i/��0 while j/��1. Disjointness is illustrated in Fig. 2.1 (
).
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π0

Figure 2.1: Labeling, dominan
e, and disjointness2.1.2 The Parallelism Relation
π0

π1
π2Figure 2.2: A segment

We extend tree stru
tures by a parallelism relation, whi
hstates stru
tural isomorphism between pairs of tree pie
es,
alled segments.A segment is a subtree in whi
h some subtrees have been re-pla
ed by holes. For example, Fig. 2.2 shows a segment withroot node �0, and the holes of the segment are at the tree nodes�1 and �2. A segment is uniquely de�ned by its root node andthe sequen
e of its hole nodes from left to right. We write asegment with root �0 and holes �1 and �2 as �0=�1; �2.De�nition 2.2 (Segments). A segment � of a tree � is a tuple �0=�1 : : : ; �n of nodesin D� su
h that �0/��i and �i?�j hold in � for all 1 � i 6= j � n. The root r(�) of thesegment is �0, and hs(�) = �1; : : : ; �n is its (possibly empty) sequen
e of holes orderedfrom left to right. The set b(�) of nodes of � isb(�) = f� 2 D� j r(�)/��; and for all 1 � i � n;:(�i/+�)gTo ex
lude the holes of the segment, we de�ne b�(�) = b(�)� hs(�), and to ex
lude all\border nodes", we use i(�) = b�(�) � r(�).When two segments have the same stru
ture, there exists a 
orresponden
e fun
tionbetween them:De�nition 2.3 (Corresponden
e fun
tion). A 
orresponden
e fun
tion between twosegments �; � is a bije
tive mapping 
 : b(�)! b(�) su
h that 
 maps the root of � to theroot of � and the i-th hole of � to the i-th hole of � for ea
h i, and for every � 2 b�(�)and every label f , �:f(�1; : : : ; �n), 
(�):f(
(�1); : : : 
(�n)):Two 
orresponding nodes must bear the same labels and have 
orresponding 
hildren, ex-
ept when the nodes are holes. Whenever it exists, the 
orresponden
e fun
tion betweentwo segments � and � is unique.We now de�ne the parallelism relation between pairs of segments. We base the de�nitionon 
orresponden
e fun
tions.



28 CLLS(a) g � "f � 1f �b � 111 a �a � f � 2f �
 � 211 a �a � (b) f � "f � 1f � 11b � 111 a � a � a �Figure 2.3: In (a) 1=111 and 2=211 are parallel, in (b) "=11 and 1=111 are parallel.De�nition 2.4 (Parallelism relation). Parallelism in a tree stru
ture � is the two-pla
erelation � � � on segments of � that holds of a pair �; � i� there exists a 
orresponden
efun
tion between � and �.For example, in the left tree in Fig. 2.3 the two segments 1=111 and 2=211 are parallel,and in the right tree the two segments "=11 and 1=111 are parallel. (Note that parallelsegments may overlap.)To provide a better idea of 
orresponden
e fun
tions, we prove the following 
hara
ter-ization: A 
orresponden
e fun
tion is a bije
tion that relates ea
h node in one segmentto the node that o

upies the same position in the other segment.Proposition 2.5. If 
 : b(�)! b(�) is a 
orresponden
e fun
tion, then 
(r(�)�) = r(�)�for all paths � su
h that r(�)� 2 b(�).Proof. By indu
tion on the length of the path �. We have 
(r(�)") = 
(r(�)") be
ause
 maps root to root. Now suppose that r(�)� 2 b(�) with 
(r(�)�) = r(�)�, andr(�)�i 2 b(�). Then 
(r(�)�i) = 
(r(�)�)i = 
(r(�))�i by the last 
ondition of Def.2.3.De�ning parallelism in terms of a 
orresponden
e fun
tion is in keeping with the CLLSperspe
tive on trees, whi
h fo
uses on relations between nodes of a single tree. The
on
ept of 
orresponden
e fun
tions will prove important for the CLLS pro
edure thatwe develop, in parti
ular for pro
essing parallelism literals (Chapter 4).2.1.3 Lambda Stru
tures lam � "� � 1f � 11 var � 12A lambda stru
ture is a 
onstru
tor tree extended by two nodemappings. The mapping � en
odes lambda binding. For example,the lambda term �x:f(x) is represented by the graph to the right.In this 
ase, the lambda binding fun
tion, represented as a dashedarrow, 
ontains �(12) = ". An o

urren
e of a �-abstra
tion inthe lambda term is represented as a node labelled lam in the lambda stru
ture, ano

urren
e of an appli
ation is represented as a node labelled �, and an o

urren
eof a bound variable is represented as a node labelled var. We will also allow 8 and 9 tobind variables, so the range of the fun
tion � will 
onsist of lam-, 8- and 9-labelled nodes.



CLLS 29Apart from the lambda binding fun
tion �, lambda stru
tures possess a se
ond mappingante from nodes to nodes. This se
ond mapping will be used in the linguisti
 appli
ationto model anaphori
 binding, the kind of binding that is expressed by the 
ommon index1 in senten
e (2.10) (p. 38).So we assume from now on that the signature � 
ontains, on top of the nullary andthe binary fun
tion symbol we have assumed above, the unary fun
tion symbol lam (forlambda abstra
tion), the unary fun
tion symbols 8 and 9, the symbol � of arity 2 (forfun
tional appli
ation), the 
onstant var (for o

urren
es of a bound variable in a lambdaterm), and the 
onstant ana (whi
h will be the label of all nodes in the domain of theante fun
tion).De�nition 2.6 (Lambda stru
tures). A lambda stru
ture L� over � is a tuple(�; �; ante), where� � is a tree stru
ture over �,� � is a total fun
tion � : L�1� (var) ! L�1� (flam;9;8g) su
h that �(�) is always apre�x of �, and� ante is a partial fun
tion ante : L�1� (ana)* D�.In the following de�nition, we deal with the intera
tion of parallelism and binding: In alambda stru
ture, two parallel segments need to have not only the same stru
ture, butalso a parallel binding stru
ture. We de�ne the parallelism relation � on segments of alambda stru
ture in two steps: First we de�ne a symmetri
 relation �� that des
ribes
onditions on lambda binding, then we de�ne � as a non-symmetri
 subrelation of ��.
lam

var

lam

var varvar var

lam

lam

(a) (b) (c)

Figure 2.4: Illustrating (a) (�.same), (b) (�.out), (
) (�.hang)De�nition 2.7 (Parallelism relation). The relation �� of a lambda stru
ture L� isthe largest symmetri
 relation between segments of L� su
h that � �� � implies that�rst, there exists a 
orresponden
e fun
tion 
 between � and �, and se
ond, the following
onditions are ful�lled for all � 2 b�(�):(�.same) For a var-labeled node � bound within the segment, the 
orresponding node isbound 
orrespondingly: �(�) 2 b�(�)) �(
(�)) = 
(�(�))



30 CLLS(�.out) For a var-node bound outside the segment, the 
orresponding node has the samebinder: �(�) 62 b�(�)) �(�)=�(
(�))(�.hang) There are no "hanging binders":��1(�) � b�(�)Parallelism � in a lambda stru
ture L� is the largest relation between segments of L�su
h that � � �implies � �� �, and for the 
orresponden
e fun
tion 
 between � and � the following
onditions are ful�lled for all � 2 b�(�):(ante.same) For an ana-node bound within the segment, the 
orrespondent has two pos-sible ante
edents:ante(�) 2 b(�)) ante(
(�))=� _ ante(
(�))=
(ante(�))(ante.out) If an ana-node is bound outside the segment, then its 
orrespondent has thesame anaphori
 binder: ante(�) 62 b(�)) ante(
(�)) = �
anaana

(a) (b)

anaanaFigure 2.5: Illustrating (ante.same). The dotted ar
s stand for 
orresponden
e, and thesolid arrows stand for anaphori
 binding.The 
onditions on lambda binding are symmetri
, that is, they enfor
e binding in � tofollow binding in � as well as the other way round, while the 
onditions on anaphori
binding are not symmetri
. Figure 2.4 illustrates the 
onditions (�.same), (�.out) and(�.hang). (Corresponden
e is represented as a dashed ar
.) Figure 2.5 illustrates the twopossibilities of binding that 
ondition (ante.same) allows.2.2 The Constraint Language for Lambda Stru
turesNow we de�ne the Constraint Language for Lambda Stru
tures [42, 41℄, whi
h is inter-preted over lambda stru
tures.



CLLS 31We assume an in�nite set Var of (node) variables ranged over by X;Y;Z; U; V;W . Theabstra
t syntax of the language CLLS is given in Fig. 2.6: A CLLS 
onstraint is a
onjun
tion of predi
ates that des
ribe relations between a lambda stru
ture's nodes.1A a single su
h predi
ate is a literal.'; & ::= X/�Y j X:f(X1; : : : ;Xn) j X?Y j X 6=Y (ar(f) = n) (1)j X0=X1; : : : ;Xn�Y0=Y1; : : : ; Yn n � 0 (2)j �(X)=Y j ante(X)=Y (3)j false j ' ^ & (4)Abbreviations: X=Y for X/�Y ^ Y /�X and X/+Y for X/�Y ^X 6=YFigure 2.6: The Constraint Language for Lambda Stru
tures (CLLS)For simpli
ity, we view inequality (6=) and disjointness (?) literals as symmetri
. Wealso write XRY , where R 2 f/�; /+;?; 6=;=g.A parallelism literal relates two segment terms X0=X1; : : : ;Xn and Y0=Y1; : : : ; Yn, whi
hdenote segments. We will use the letters A;B;C;D to denote segment terms:A;B;C;D ::= X0=X1; : : : ;Xn n � 0If n = 0, then the segment is a subtree. A segment term denotes a segment, but it is notthe 
ase the the i-th hole variable of a segment term has to denote the i-th hole node:Rather, ea
h hole node has to interpret at least one hole variable, and ea
h hole variablehas to denote some hole node.In a lambda binding literal �(X)=Y , X denotes a var-labeled node that is bound atthe lambda binder for whi
h Y stands. In an anaphori
 binding literal ante(X)=Y , Xdenotes an ana-labeled node for whi
h the anaphori
 binder is the node for Y .First order formulas � built from 
onstraints and the usual logi
al 
onne
tives are inter-preted over the 
lass of lambda stru
tures in the usual Tarskian way. We write Var(�)for the set of variables o

urring in �. If a pair (L�; �) of a lambda stru
ture L� anda variable assignment � : G ! D�, for some set G � Var(�), satis�es �, we write thisas (L�; �) j= �. Overloading notation a bit, we 
all both L� and (L�; �) a model of �.We say that � is satis�able i� it possesses a model. Entailment � j= �0 means that allmodels of � are also models of �0.So the semanti
s of the language CLLS is given by a 
lass of models: the set of lambdastru
tures.1The relation symbols that CLLS uses are the same as the mat
hing relations on lambda stru
tures.There should be no danger of 
onfusion, as relation symbols are always applied to node variables whereasrelations 
an only be applied to the nodes of a lambda stru
ture.



32 CLLS2.2.1 SublanguagesThe language CLLS 
an be viewed as a hierar
hy of languages:� The language Cd of dominan
e 
onstraints 
onsists of lines (1) and (4) of Fig. 2.6.� The language Cp of parallelism 
onstraints 
onsists of lines (1), (2), and (4) of Fig.2.6.� The language CLLS 
onsists of lines (1), (2), (3), and (4) of Fig. 2.6.This hierar
hy of languages Cd, Cp and CLLS 
orresponds to a hierar
hy in the models:tree stru
tures, tree stru
tures with a parallelism relation, and lambda stru
tures.2.2.2 Constraint GraphsWe often draw 
onstraints as graphs with the nodes representing variables; a labeled vari-able is 
onne
ted to its 
hildren by solid lines, while a dotted line represents dominan
e.For example, the graph for X:f(X1;X2) ^X1/�Y ^X2/�Y is displayed in Fig. 2.7. Astrees do not bran
h upwards, this 
onstraint is unsatis�able. In these 
onstraint graphs,we represent lambda binding by a 
urving arrow and anaphori
 binding by a straightarrow from the bound variable to the binder.
X f

X

Y

X1 2Figure 2.7: Anunsatis�able 
on-straint
An important 
on
ept related to 
onstraint graphs is that of afragment: It is a tree-shaped subgraph in whi
h all the nodes are
onne
ted by solid lines. A fragment has a root and leaves; anunlabeled leaf is 
alled a hole. We also 
all a single unlabelednode a fragment if it is 
onne
ted to the rest of the graph only bydominan
e edges. For example, the 
onstraint graph in Fig. 2.7
ontains two fragments. The upper fragment 
omprises X;X1;X2,while the lower fragment, 
onsisting of Y , is a fragment of a singleunlabeled graph node.A 
onstraint graph does not 
ontain all the information of the 
onstraint that it repre-sents, i.e. there may be literals in the 
onstraint that are not represented in the graph:� Disjointness and inequality literals are not represented in a 
onstraint graph.� Parallelism literals are not always represented in a 
onstraint graph. If we wantto indi
ate the segment terms in the graph, we use either a shaded triangle withholes, or a bra
ket 
onne
ting the root variable to the hole variable. Likewise,
orresponden
e is not always represented in a 
onstraint graph. If we want tovisualize it, we use a dashed ar
.� A dominan
e literal X/�Y is shown only if it links two di�erent fragments of the
onstraint graph.



CLLS 33That means that among others, the following dominan
e literals are not representedin the 
onstraint: re
exive dominan
e X/�X; a dominan
e literal X/�Y where Xis also the parent of Y by some labeling literal; dominan
e literals that are in thetransitive 
losure of two or more other dominan
e edges shown in the graph.2.2.3 VariationsThere exist a number of variations on the de�nition of CLLS. Several previous papersde�ne segments and segments terms to have exa
tly one hole [42, 46, 44, 41℄. The reasonwhy we 
onsider the more general 
ase is that the appli
ation to underspe
i�ed betaredu
tion uses segments with more than one hole.Of the language Cd of dominan
e 
onstraints, there are two quite di�erent versions: theone we have used here, and a language that allows for set operators on relation symbols[34, 44℄. For example, this language 
ontains expressions like X(/� [ ?)Y , whi
h statesthat the node interpretingX must be either above the node for Y , or in a disjoint positionfrom it. Note that this is not a disjun
tion but a single relation. The language with setoperators allows for solvers with better propagation. However, these solvers are more
ompli
ated than the one we present in Chapter 3, and as our fo
us is on parallelism, wewant to keep our a

ount of dominan
e 
onstraints as simple as possible.Some predi
ates that we in
lude in the de�nition of CLLS are missing in other a

ounts,notably disjointness and inequality (whi
h we will need for the pro
essing of parallelism
onstraints).For the 
ondition (�.out) on lambda binding and parallelism (Def. 2.7) the re
ent overviewpaper by Egg, Koller and Niehren gives a slightly weaker version [41℄, whi
h is used forthe proper treatment of an ellipsis phenomenon 
alled ante
edent-
ontained deletion.2.3 Modeling S
ope, Ellipsis, and Anaphora with CLLSIn this se
tion, we illustrate the language CLLS by dis
ussing three important linguisti
phenomena that 
an be modeled with it: s
ope ambiguity, ellipsis, and anaphori
 binding.2.3.1 Modeling S
ope with Dominan
e ConstraintsSenten
e (2.1) (repeated from (1.5) in the introdu
tion) is an example of a s
ope am-biguity: There are two readings of the senten
e that only di�er in the s
ope of the twoquanti�ers \every plan" and \a 
at
h". In the representation of these two readings aslogi
al formulas, shown in (2.2) and (2.3), this ambiguity translates to di�erent s
opesof the variables x and y.(2.1) Every plan has a 
at
h.



34 CLLSIn the formula in (2.2) \a 
at
h" takes wide s
ope over \every plan", whi
h gives us thereading where all plans have the same 
at
h; in the formula (2.3) \every plan" takes wides
ope, that is, ea
h plan has its own reason for not working.(2.2) (a 
at
h)(�x(every plan)(�y(have x) y)) (2.3) (every plan)(�x(a 
at
h)(�y(have x) y))
� � X0� � X1ev � X3 plan � X4 lam � X2� X5 � � Y0� � Y1a � Y3 
at
h � Y4 lam � Y2� Y5� � Z0� � Z1have � Z3 var � Z4var � Z2Figure 2.8: Constraint for \ Every plan has a 
at
h."Figure 2.8 shows the 
onstraint representing the meaning of senten
e (2.1). It 
ontainsthree fragments. Roughly speaking, the two upper fragments represent the meaningsof the quanti�ers \every plan" and \a 
at
h", while the lower fragment represents themeaning of \has". The three fragments are 
onne
ted only by dominan
e literals, whi
h
onne
t the leaves X5 and Y5 of the two upper fragments to the root Z0 of the lowerfragment.The 
onstraint graph in Fig. 2.8 is a graphi
al representation of the following 
onstraint:X0:�(X1;X2) ^X1:�(X3;X4) ^X3:every ^ X4:plan ^X2:lam(X5) ^X5/�Z0 ^Y0:�(Y1; Y2) ^ Y1:�(Y3; Y4) ^ Y3:a ^ Y4:
at
h ^ Y2:lam(Y5) ^ Y5/�Z0 ^Z0:�(Z1; Z2) ^ Z1:�(Z3; Z4) ^ Z3:have ^ Z4:var ^ �(Z4)=Y2 ^ Z2:var ^�(Z2)=X2The 
onstraint, let us 
all it ' for short, states that both X5 and Y5 must dominate Z0.Ea
h model of ' is a tree. Sin
e trees do not bran
h upwards, either the node denotedby X5 must dominate the tree node for whi
h Y5 stands, or the other way round. Ifwe take a 
loser look at the tree fragments for \every plan" and \a 
at
h", we 
an seethat they 
annot overlap: If we want to identify some variable Yi with a variable Xj , wehave exa
tly two possibilities: We 
ould set either X0=Y5 or Y0=X5, anything else wouldmake the whole 
onstraint unsatis�able be
ause the labels 
on
i
t. So, as we have said,the fragments of Fig. 2.8 
annot overlap, whi
h means that in ea
h model of ' either the



CLLS 35node for X5 must dominate the node for Y0, or the node for Y5 must be above the onethat X0 stands for.(a) � �� �ev � plan � lam �� �� �a � 
at
h � lam �� �� �have � var �var �
(b) � �� �a � 
at
h � lam �� �� �ev � plan � lam �� �� �have � var �var �Figure 2.9: Two models of the 
onstraint in Fig. 2.8Figure 2.9 shows two models of ' that exa
tly mat
h the the two readings of senten
e(2.1). These are not the only models of '. In fa
t, it has in�nitely many. One reason forthis is that CLLS 
annot spe
ify the root node of a tree. That means that any tree thathas the left or right tree in Fig. 2.9 as a subtree is also a model of '. Another reason isthat when we only know that X6 dominates Z0, a segment of arbitrary size 
an separatethem in a model.The existen
e of these larger models is indispensable for a treatment of parallelism 
on-straints. For our 
urrent example in Fig. 2.8 the intended models only 
ontain nodesthat are mentioned in the 
onstraint, i.e. nodes for whi
h the 
onstraint 
ontains a vari-able. However it is not 
lear how su
h a minimality 
ondition 
ould be formulated inthe presen
e of parallelism literals. For example the lambda stru
ture in Fig. 2.11 is the\intended" model of the 
onstraint in Fig. 2.10, but the lambda stru
ture 
ontains nodesthat do not interpret any variable of the 
onstraint.(2.4) Peter began a book.Moreoever, these larger models are ne
essary for a CLLS analysis of a linguisti
 phe-nomenon 
alled reinterpretation [77, 36, 37, 38℄ as illustrated in senten
e (2.4): Peter 
anonly begin an a
tivity; maybe he began to read the book, or he began to write it, et
.In 
onstru
ting the semanti
s of this senten
e, the missing a
tivity has to be added tothe senten
e meaning. So in the end the intended model, the senten
e semanti
s, will
ontain material (e.g. the representation of \to read") that is not present in the originalCLLS 
onstraint that we have put up for the senten
e.2.3.2 Modeling Ellipsis with Parallelism ConstraintsAn ellipsis is a 
onstru
tion in whi
h linguisti
 material is left out even though it isne
essary by either synta
ti
 or lexi
al 
onditions. One possible reason for su
h anomission is that the missing material is already present somewhere else, as for examplein senten
e (2.5). The ellipti
al part \so does Mary", the target senten
e, means \Mary



36 CLLSsleeps" { the missing material is found in the sour
e senten
e or ante
edent \every mansleeps". \Every man" is the sour
e parallel element or sour
e 
ontrasting element, and\Mary" is the target parallel element (or target 
ontrasting element).(2.5) Every man sleeps, and so does Mary. and �� X0� � U0� � X1every � man � lam � U1�� �sleeps � var � U2 � Y0mary � Y1X0=X1�Y0=Y1Figure 2.10: Constraint for \Every man sleeps, and so does Mary."We represent the meaning of the senten
e by the 
onstraint in Fig. 2.10. The part of the
onstraint graph dominated by X0 represents the meaning of the sour
e senten
e \everyman sleeps". For the target senten
e, we have a representation for \Mary", as well as aparallelism literal: The meaning of the sour
e senten
e \every man sleeps" is the sameas the meaning of the target senten
e, ex
ept for the 
ontributions of the two subje
ts\every man" and \Mary". (Note that in the semanti
s 
onstru
tion for senten
e (2.5),the fun
tion words \so does" do not re
eive any representation at the level of linguisti
meaning, ex
ept as the parallelism literal X0=X1�Y0=Y1.)In ea
h model of the 
onstraint in Fig. 2.10, the segment denoted by X0=X1 must bestru
turally isomorphi
 to the one denoted by Y0=Y1. Furthermore, the lambda binding�(U2)=U1 links U2 to a binder within X0=X1, so if U2 denotes a node �, then bindingfor the 
orrespondent of � must obey 
ondition (�.same) of Def. 2.7. Figure 2.11 showsa model of the 
onstraint in Fig. 2.10; again it is the intended one.and �� �� �every � man � lam �� �sleeps � var � � �mary � lam �� �sleeps � var �Figure 2.11: A model of the 
onstraint shown in Fig. 2.102.3.3 Intera
tion of Parallelism and S
ope: Quanti�er ParallelismWhy is it interesting to deal with parallelism phenomena within a formalism for under-spe
i�ed semanti
s? The point is that s
ope ambiguity and parallelism are not indepen-dent phenomena; they intera
t in quite interesting ways, a fa
t that �rst be
ame apparent
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es that Hirs
hb�uhler [62℄ proposed. This phenomenon, quanti�er parallelism,is exempli�ed in senten
e (2.6), repeated from (1.13).(2.6) Every linguist attended a workshop. Every 
omputer s
ientist did, too.The sour
e senten
e of (2.6) 
ontains two s
ope-bearing elements, \ever linguist" and \aworkshop", and thus has two readings. The meaning of the target senten
e is \. . . every
omputer s
ientist attended a workshop", two s
ope-bearing elements again, so the sen-ten
e should have 4 readings all in all. But it only has three: either \a workshop" takess
ope over both the sour
e and the target senten
e, whi
h means that one single workshopis attended by everybody; or \a workshop" has wide s
ope within both the sour
e andthe target senten
e, whi
h means that all linguists attend one 
ommon workshop, andall 
omputer s
ientists visit a (potentially di�erent) 
ommon workshop; or \a workshop"takes narrow s
ope in both senten
es, whi
h means that everybody is travelling to his orher own workshop. This means that parallelism enfor
es a parallel resolution of s
opeambiguities. and � Z� X0� � U1� �a � ws � lam �� � � U2� � X1ev � ling � lam �� � Y0� � Y1ev � 
s �X0=X1�Y0=Y1� � U3� �attend � var �var �Figure 2.12: Constraint for senten
e (2.6): \Every linguist attended a workshop. Every
omputer s
ientist did, too."Let us see how CLLS handles this intera
tion. Figure 2.12 shows the CLLS 
onstraintfor senten
e (2.6). X0 is the root of the sour
e senten
e semanti
s, and Y0 is the rootof the target senten
e semanti
s. The 
ontrasting elements, \every linguist" and \every
omputer s
ientist", are dominated by X0 and Y0 respe
tively. But the 
onstraint doesnot 
ontain any dominan
e literal between X0 and U1: Most quanti�ers, in
luding uni-versal quanti�ers, must not move outside their senten
e (i.e. they are dominated by theuppermost node of their senten
e); this is 
alled a s
ope island 
onstraint. But this 
on-straint does not hold for inde�nite quanti�ers: the fragment for \a workshop" is allowedto dominate Z.There are three possible positions for the fragment for \a workshop". It 
an either bedominated by the fragment for \every linguist", or it 
an go between X0 and U2, or it
an dominate Z. In either 
ase, the parallelism literal enfor
es stru
tural isomorphismbetween the two segments interpreting X0=X1 and Y0=Y1. This gives us the three 
orre
t



38 CLLSreadings of the senten
e, sket
hed in Fig. 2.13. Note that while in Fig. 2.13 (a) and (b),lambda binding is parallel a

ording to 
ondition (�.same), in (
) the binder is above bothparallel segments and thus binds both a node in the sour
e segment and its 
orrespondentin the target segment a

ording to (�.out).
a ws.

a ws

a wsa ws

ev. csev. ling

attendattend attendattend

ev. csev. ling

attendattend

c)a) b)

ev. csev. ling

a ws.

Figure 2.13: Sket
h of three models for the 
onstraint in Fig. 2.122.3.4 Modeling Anaphori
 Binding with Binding ConstraintsAn anaphor is an element or a 
onstru
tion that, in order to be interpreted, needs to beasso
iated with something else in the 
ontext. A few examples are given in senten
es (2.7)through (2.9). In these examples, the anaphora are underlined, and they are asso
iatedwith the itali
ized part of the senten
e.(2.7) Mary likes her 
at.(2.8) Mary and Sue like ea
h other.(2.9) Some 
ats who shred 
arpets do so repeatedly.Coreferen
e between an anaphori
 element and its ante
edent, i.e. the element that it isasso
iated with, is often indi
ated by 
oindexing the two elements, as shown in senten
e(2.10), where \Mary" and \her" are 
oindexed. So the 
ommon index 1 means that the\her" in (2.10) refers to \Mary".(2.10) Mary1 likes her1 
at.In lambda stru
tures, 
oreferen
e 
an be expressed by the anaphori
 binding fun
tionante of Def. 2.6. Figure 2.14 shows an example of a lambda stru
ture with anaphori
binding: ante(�) =  . This lambda stru
ture is the semanti
s for senten
e (2.10).2 Thesemanti
 
ontribution of \her" is the ana-labeled node along with the anaphori
 bindingfrom that node to the node labeled \mary".2In the lambda stru
ture in Fig. 2.14, the representation of \Mary" is just \mary", while in Fig.2.11, the representation of \Mary" is \�P:P (mary)". We use the simpler form here just for reasons ofsimpli
ity, sin
e it does not make a real di�eren
e: In both 
ases the 
ompletely beta redu
ed term is thesame.



CLLS 39� �� �
at of � ana � � lam �� �� �likes � var �mary �  Figure 2.14: Lambda stru
ture for senten
e (2.10). Note the anaphori
 binding.2.3.5 Intera
tion of Parallelism and Anaphora: Stri
t/Sloppy AmbiguitiesAgain, anaphora and parallelism are not separate phenomena. An anaphor in the sour
esenten
e of an ellipsis 
an lead to what is 
alled a stri
t/sloppy ambiguity. Considersenten
e (2.11). As before, 
oindexing indi
ates that the \her1" in the ellipsis sour
esenten
e refers to \Mary1". The meaning of the ellipti
al target senten
e is \. . . and Suelikes her 
at". But what does the \her" in the target senten
e refer to? There are twopossibilities: It 
an refer either to \Mary" or to \Sue". The reading in whi
h Sue likesMary's 
at is 
alled stri
t, and the reading in whi
h Sue likes her own 
at is 
alled sloppy.(2.11) Mary1 likes her1 
at, and Sue does, too.and �� X0� �� �
at of � ana � X lam ��� �� �likes � var �mary � X1� Y0sue � Y1
X0=X1�Y0=Y1Figure 2.15: The 
onstraint for senten
e (2.11): \Mary1 likes her1 
at, and Sue does,too."Handling the intera
tion of parallelism and anaphori
 binding is exa
tly what the 
on-ditions (ante.same) and (ante.out) of Def. 2.7 are about. We 
an illustrate 
ondition(ante.same) on the example we have just been dis
ussing, senten
e (2.11). A CLLS 
on-straint representing the meaning of this senten
e is shown in Fig. 2.15. Here, 
ondition(ante.same) li
enses two possible anaphori
 binders for the 
orrespondent of X: eitherthe 
orrespondent is bound by X { this gives the stri
t reading {, or it is bound by the
orrespondent of X1, whi
h leads to the sloppy reading.Fig. 2.16 shows two models of Fig. 2.15 that re
e
t the two readings of the senten
e. Forthe sloppy reading (pi
ture (b)), the anaphori
 referen
e 
an be read o� in a straightfor-



40 CLLS(a) and �� �� �
at of � ana � lam �� �� �likes � var �mary � � �� �
at of � ana � lam �� �� �likes � var �sue �(b) and �� �� �
at of � ana � lam �� �� �likes � var �mary � � �� �
at of � ana � lam �� �� �likes � var �sue �Figure 2.16: Two models for the 
onstraint in Fig. 2.15ward way. For the stri
t reading in pi
ture (a), we get a 
hain of anaphori
 links, whi
hwe have to follow to the end to �nd the referent: The ana-labeled node in the targetsubtree is mapped to the ana-node in the sour
e subtree, whi
h again is mapped to themary-node.Why is the target ana-node not linked dire
tly to the mary-node in the sour
e subtree?The reason is that there are more 
ompli
ated 
ases, 
alled many-pronoun puzzles, like(2.12) and (2.13), where a simpler analysis would fail. See Egg, Koller and Niehren [41℄for a dis
ussion of senten
e (2.12), and Dalrymple, Shieber and Pereira [30℄ for (2.13).Xu [118℄ proposed the link 
hain analysis for CLLS and showed that it derives the rightreadings for many-pronoun-puzzles like (2.12) and (2.13).(2.12) John revised his paper before the tea
her did, and so did Bill. [52℄(2.13) John realizes that he is a fool, but Bill does not, even though his wife does. [29℄2.3.6 Intera
tion of S
ope, Parallelism, and AnaphoraIn senten
e (2.14), we have an intera
tion of ellipsis with both s
ope and anaphora. TheCLLS 
onstraint for this senten
e is shown in Fig. 2.17. For the sake of readability,we have abbreviated the semanti
s of \a book she liked" as an empty triangle with aana-labeled variable Z. The de�nition of the parallelism relation and its 
onditions onbinding ensure that the s
ope ambiguities are resolved the same way in sour
e and targetsenten
e, and that we only get the \right" anaphori
 bindings. This leads to the three
orre
t readings sket
hed in Fig. 2.18: Either both Mary and Sue read the same book,or ea
h reads a book that she herself likes, or they read di�erent books that Mary likes.A more extensive dis
ussion of senten
e (2.14) and the derivation of the three readings
an be found in the re
ent overview paper on CLLS by Egg, Koller and Niehren [41℄.



CLLS 41� ��ana � Z lam �� before �� X0� �� �read � var �mary � X1� Y0sue � Y1X0=X1�Y0=Y1Figure 2.17: Constraint for senten
e (2.14)(2.14) Mary read a book she liked before Sue did.
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Figure 2.18: A sket
h of the three readings of senten
e (2.14)2.3.7 A Note on Models and ReadingsWhat does it mean for a CLLS 
onstraint to represent the semanti
s of a senten
e? Forea
h senten
e that we have dis
ussed in this se
tion and the 
onstraint that we put upfor it, we have been able to point out models that represent the 
orre
t readings of thesenten
e. But on the other hand we have said that ea
h CLLS 
onstraint has in�nitelymany models. How are the \intended" models distinguished from all the others?(a) � � X0�ev plan lam �� X1� � Y0�a 
at
h lam �� Y1� � Z0� �have � var �var �
(b) � � Y0�a 
at
h lam �� Y1� � X0�ev plan lam �� X1� � Z0� �have � var �var �Figure 2.19: Sket
h of the two saturated 
onstraints 
omputed for Fig. 2.8In the following 
hapters, we present a semi-de
ision pro
edure for CLLS. This pro
e-dures 
omputes result 
onstraints for a given input 
onstraint, 
alled saturations, whi
h



42 CLLSlook almost like lambda stru
tures. For example, for the 
onstraint in Fig. 2.8 (p. 34),whi
h represents the meaning of \Every plan has a 
at
h", the pro
edure 
omputes twosaturations sket
hed in Fig. 2.19. For the sake of readability, we have abbreviated the se-manti
s of \every plan" and \a 
at
h" by empty triangles. Compare the two 
onstraintswith the two \intended models" in Fig. 2.9 (p. 35): If we take the 
onstraint in Fig. 2.19(a), remove the dominan
e edge between X1 and Y0 and identify the two variables, andif we do the same with Y1 and Z0, then we get a graph that looks exa
tly like the lambdastru
ture in Fig. 2.9 (a). In the same way, we 
an transform the 
onstraint graph in Fig.2.19 (b) by \
ontra
ting dominan
e edges", and the result looks exa
tly like the lambdastru
ture in Fig. 2.9 (b). This idea of \
ontra
ting dominan
e edges" is illustrated againin Fig. 2.20. (a) f ��a � �g ��b � (b) f �a � g �b �Figure 2.20: \Contra
ting dominan
e edges" on (a) yields (b).For 
ases like those that we have dis
ussed in this se
tion, the CLLS pro
edure allowsus to 
ompute readings. Given the CLLS 
onstraint representing the meaning of su
h asenten
e, its saturations that we 
ompute will exa
tly mat
h the 
orre
t readings, in thesense that we have sket
hed above: If we 
ontra
t dominan
e edges in the graphs of thesaturations, the result looks like the lambda stru
tures that are the 
orre
t readings.f ��a � b �In
identally, it is not the 
ase that all saturations that the pro
edure
ould ever 
ompute have this property that we 
an just 
ontra
t somedominan
e edges and rea
h 
onstraint graphs that look like lambdastru
tures. In the 
onstraint graph shown to the right, there is a nodewith two distin
t \dominan
e 
hildren" that 
annot be identi�ed. Butas far as I know, su
h 
onstraints never o

ur as saturations of linguisti
ally relevant
onstraints.2.3.8 A Note on CapturingUsually variable binding in lambda terms is a

omplished by variable names: A binder�x binds all o

urren
es of the variable x in its s
ope. But if by some operation, another�x gets inbetween the �rst �x and an o

urren
e of x, it 
aptures the variable.The usual way of ex
luding 
apturing is via freeness 
onditions. However, this is prob-lemati
 in the 
ase of underspe
i�ed des
riptions of lambda stru
tures. Suppose we usevariable names to indi
ate binding, as follows: We en
ode the variable names into thelabels by using new labels lamx and varx for ea
h obje
t-level variable x.



CLLS 43lamx �� lamx ��varx �Figure 2.21:Lambda binding?
Now 
onsider the 
onstraint graph in Fig. 2.21. It 
ontains twobinders lamx with a s
ope ambiguity between them, and it is un-
lear whi
h of the two is supposed to bind the varx. In ea
h model,the lowest binder labeled lamx wins. So when the stru
ture of thelambda term is not fully known, variable names are not suÆ
ientto make it unequivo
ally 
lear whi
h binder binds whi
h variableo

urren
es. The problem is 
ompounded in the presen
e of paral-lelism literals.The solution that lambda stru
tures o�er, indi
ating variable binding not by variablenames but by a binding fun
tion, provides a general solution to the problem, a solutionwhi
h does not involve any overhead in pro
essing.The expli
it binding fun
tions of lambda stru
tures are somewhat similar to de Bruijnindi
es [31℄. In this notation, a bound variable is represented by a number. A number nmeans that to rea
h the binder of this variable, n other �-abstra
tions have to be passedon the path up from the variable to the root. For example, the term �x:x(�y:xy) iswritten as �0(�10). However, every time a lambda term 
hanges, e.g. by beta redu
tion,de Bruijn indi
es have to be readjusted.2.4 Related FormalismsIn this and the following se
tion, we dis
uss work related to CLLS. This se
tion is devotedto related formalisms, i.e. tree des
ription languages, and the following se
tion namessome related approa
hes to modeling s
ope, parallelism, and anaphori
 binding.Three 
riteria for distinguishing between tree des
ription languages will be espe
iallyrelevant for our purposes:Feature trees vs. 
onstru
tor trees. In a feature tree, ea
h 
hild of a node 
an beaddressed individually by the feature, i.e. the edge label, of the edge leading to it.A 
onstru
tor tree is a node-labeled tree 
orresponding to a ground term. The
hildren of a node 
an be a

essed all at the same time, but not individually.Feature trees are more general than 
onstru
tor trees: A 
onstru
tor tree 
an beseen as a feature tree in whi
h the edge labels are natural numbers.CLLS des
ribes 
onstru
tor trees, as does 
ontext uni�
ation. All other formalismsthat we mention in this se
tion des
ribe feature trees.Talking about nodes vs. talking about trees. This point 
on
erns the perspe
tiveon trees that a language takes: it 
an either take an internal perspe
tive, talkingabout the nodes of a single tree, or take an external perspe
tive, des
ribing relationsbetween trees. In the 
omputer s
ien
e tradition, languages that talk about trees aremore 
ommon. In the 
omputational linguisti
s �eld, the node-
entered paradigmis prevalent.



44 CLLSIn CLLS, the variables stand for nodes, so we fo
us on \node des
ription" languagesin this se
tion, dis
ussing only one language that takes the external perspe
tive ofrelations between trees, namely 
ontext uni�
ation.O

urren
es vs. Stru
ture. Does identity mean identity of stru
ture, or identi
al o
-
urren
e?More 
on
retely, suppose we have a language in whi
h the variables denote trees,and equality is equality of stru
ture. Then the equation x = f(y; y) is satis�able:x is a tree with root label f and two identi
al subtrees as its 
hildren. However,CLLS is a language that talks about o

urren
es of nodes. Here the 
onstraintX:f(Y; Y ) is unsatis�able { the node interpreting Y would have to be in a disjointposition from itself.2.4.1 Se
ond-order Monadi
 Logi
Most tree des
ription languages 
oming from the 
omputer s
ien
e tradition adopt theexternal perspe
tive { the most notable ex
eption being (W)SkS [113, 114℄. SkS is these
ond-order monadi
 logi
 with k su

essors, and WSkS is its weak variant. The de
id-ability of (W)SkS is due to famous results by Doner, That
her and Wright and Rabin[113, 32, 98℄. Doner, That
her and Wright linked de�nability in WSkS to re
ognizabilityby �nite tree automata. Rabin showed that de�nability in SkS 
oin
ides with re
og-nizability by Rabin tree automata over in�nite trees. The languages SkS and WSkSare among the most expressive de
idable logi
s. The time 
omplexity of SkS is non-elementary.The language (W)SkS possesses �rst-order variables x; y; z : : : and se
ond-order monadi
variables X;Y;Z : : :. Terms are formed from the 
onstant ", �rst-order variables, andright 
on
atenation with the unary fun
tion symbols 1 : : : k. For example, x1523, "4112are terms. Atomi
 formulas Atomi
 formulas are equations and inequations t1 � t2 be-tween terms, and expressions \t 2 X" for terms t and se
ond-order variablesX. Formulasare built from atomi
 formulas using the usual logi
al 
onne
tives and existential and uni-versal quanti�
ation over both �rst-order and se
ond-order variables. While se
ond-ordervariables range over arbitrary sets in SkS, they are restri
ted to ranging over �nite setsin WSkS.The interpretation that is interesting for our purposes interprets terms as strings inf1; : : : ; kg�, " as the empty word, = as string equality, and � as the pre�x ordering.Se
ond-order variables are interpreted as sets of strings. The atomi
 formula x 2 X istrue i� the denotation of x is 
ontained in the denotation of X.How 
an this language be used to en
ode trees? In the tree de�nition that we have usedthroughout, a path is a word in f1; : : : ; kg�. In this en
oding, " is the root node, wi isthe i-th 
hild of the node denoted by the term w, and the pre�x ordering � on terms of(W)SkS is the same as dominan
e between tree nodes. To en
ode a tree domain, we needto be able to state pre�x-
losedness and 
losedness under left brother. Both properties
an be expressed in WSkS.
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oding node-labeled trees is the en
oding of the node labels.Di�erent en
odings are possible. Koller, Niehren and Treinen [78℄ en
ode a tree as asingle set, its tree domain. The labels of the nodes are represented by spe
ial words:Koller, Niehren and Treinen use unary fun
tion symbols 0; : : : ; k instead of 1; : : : ; k andrepresent the fa
t that a node � is labelled f by a word �0n if f is the n-th fun
tionsymbol with this parti
ular arity. Comon et al.[23℄ also en
ode a tree as its tree domain,but they en
ode labeling by one set Sf for ea
h fun
tion symbol f in the signature �(whi
h requires � to be �nite). The set Sf 
ontains all tree nodes labeled by the fun
tionsymbol f .SkS adopts the internal, node-
entered perspe
tive on trees; although it 
an talk aboutsets of nodes, there are some simple relations between trees that it 
annot express. Forexample, suppose x and y are tree-valued variables, then the equation x = f(y; y) 
annotbe expressed in SkS be
ause this property of having two identi
al subtrees is one that
an only be tested by stronger tree automata. There is even a simpler example: Supposex; y; z are tree-valued variables, then the equation x = f(y; z) 
annot be expressed inSkS: If we extend the language su
h that it allows for 
on
atenation wi of terms w withletters i to the right as well as 
on
atenation iw of terms with letters to the left, then itbe
omes unde
idable. This fa
t is dis
ussed e.g. in an overview arti
le by Thomas [114℄and in an arti
le by M�uller and Niehren [90℄.2.4.2 Feature Des
ription LanguagesFeature des
riptions 
an be regarded as a logi
al des
ription of re
ords. A feature systemis an algebrai
 stru
ture de�ned in terms of a set A of sorts and a set L of features.Intuitively, it may be seen as a graph in whi
h nodes are labeled with sorts (where onenode may be of more than one sort), ea
h edge is labeled by a feature, and di�erentoutgoing edges of a node are always labeled by di�erent features. A node is addressedfrom another node by the feature word on a path between them.Feature des
riptions originated in phonology [20℄ and be
ame a widespread formalism forlinguisti
 theories in the 70s with Lexi
al-Fun
tional Grammar [68, 65℄. An in
uentialfeature des
ription language is the one by Kasper and Rounds [66, 67℄. The des
riptionlanguage by Kasper and Rounds 
ontains, among others, the following atomi
 formulas:
onstants a 2 A, path equations p := q for p; q 2 L�, and feature pre�xes ` : ' for afeature ` 2 L and a formula '. A Kasper-Rounds formula is evaluated at a �xed node� of a feature system. A 
onstant a states that this node is of sort a, a path equationp := q says that the two paths p; q 2 L� originating in � are equal, and the formula ` : 'states that the formula ' holds at the node rea
hed from � via the feature ` 2 L.Bla
kburn [8℄ investigates the modal nature of the Kasper-Rounds language. In hisformalism a sort a be
omes a propositional formula 'a, and a pre�xed formula ` : 'be
omes a modal hli'. In this 
ontext, the work of Bla
kburn and Meyer-Viol [9℄ andKra
ht [79℄ is espe
ially interesting for our purposes: They investigate modal logi
s for�nite k-ary trees, a restri
tion of feature systems to �nite feature trees, and their tree
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ription languages in
lude a modal for dominan
e. The basi
 idea is to use the treeas the rea
hability relation and to provide modal operators for traveling in the tree. Inthe notation of Bla
kburn and Meyer-Viol, a formula #k � means that � is true at thetree node that is the k-th 
hild of the 
urrent node. Also there are operators " (true atthe parent), #� (true at some node dominated by the 
urrent node) and "� (true at somenode dominating the 
urrent node). For a propositional logi
 enri
hed with these modaloperators, validity is de
idable. Bla
kburn and Meyer-Viol also dis
uss a 
ombination ofthis logi
 with another modal logi
 des
ribing feature stru
tures atta
hed to ea
h treenode, whi
h is viewed as an internal stru
ture of the propositions in the modal treedes
ription language.Smolka [110℄ studies a feature des
ription language as a 
onstraint language interpretedover a feature algebra, whi
h 
an be seen as a spe
ial 
ase of feature systems: a restri
tion,among other things, to �nite, rooted, 
onne
ted graphs. The 
onstraint language is sim-ilar to Kasper-Rounds, but allows for quanti�
ation over node variables. For a fragmentof the language, Smolka proposes a 
onstraint solver. Building on this work, Ba
kofen,Smolka, A��t-Ka
i, and Podelski [7, 1℄ de�ne a 
onstraint system FT of feature trees. Thisapproa
h takes an external perspe
tive on trees. A sort 
onstraint Ax says that the treex has a root of sort A, a feature 
onstraint xfy states that x has a subtree y at featuref , and an equality 
onstraint x := y says that x and y have the same shape. Satis�abilityof this language is de
idable; a 
onstraint solver (in the shape of simpli�
ation rules) isgiven.2.4.3 Context Uni�
ationContext uni�
ation [84, 85℄, a variant of se
ond-order linear uni�
ation, is the 
losestrelative of the language Cp. However, while Cp adopts the internal perspe
tive on trees,CU takes the external perspe
tive, spe
ifying relations between trees.Formally, CU 
an be de�ned as equation solving in the two-sorted algebra of trees and
ontexts. A 
ontext 
 over the signature � is a tree over the extended signature �℄ f�gthat 
ontains exa
tly one o

urren
e of the 
onstant �.3 The hole of a 
ontext 
 is theunique path � 2 D
 su
h that L
(�) = �. Alternatively, a 
ontext 
 
an be regarded asa fun
tion mapping trees to trees: In mapping a tree � to the tree 
[�℄, the o

urren
eof � in 
 is repla
ed by �, i.e. 
[�℄ = 
[�=�℄.The algebra of trees and 
ontexts over � is a two-sorted algebra, the domains of whi
h arethe set of trees and the set of 
ontexts over �. The operations provided by this algebraare tree 
onstru
tion and fun
tional appli
ation of 
ontexts to trees. For ea
h sort of thealgebra, we assume an in�nite set of variables: a set V1 of tree variables x; y; z, and a setV2 of 
ontext variables C. A tree-valued term t is built from tree variables, appli
ations3However there exists another variant of CU, studied by L�evy [84℄, that allows an arbitrary numberof leaves labelled � in a tree. This variant is equal to CU in expressivity.



CLLS 47g �f �a � b � = =)C = g �f � b ��C aFigure 2.22: g(f(a; b)) = C(a)of fun
tion symbols in �, and appli
ation of 
ontext variables.t ::= x j C(t) j f(t1; : : : ; tn) f 2 �; ar(f) = nA CU equation system is a �nite 
onjun
tion t1 = t01 ^ : : :^ tn = t0n of equations betweentree-valued terms, whi
h is interpreted over the algebra of trees and 
ontexts; Tree vari-ables are mapped to trees, and 
ontext variables to 
ontexts. A mapping � is a solutionof a CU equation system if �(ti) = �(t0i) for all equations ti = t0i in the system.For instan
e, the CU equation g(f(a; b)) = C(a)has exa
tly one solution: C must be mapped to the 
ontext fun
tion �X:g(f(X; b))(Fig. 2.22). This 
ontext fun
tion 
orresponds to the 
ontext g(f(�; b)).One interesting point about CU is that with respe
t to its expressiveness it is situatedbetween string uni�
ation [86℄, whi
h is de
idable, and se
ond-order uni�
ation, whi
his unde
idable (see Fig. 2.23). For CU itself, de
idability is still an open problem [104℄.se
ond order uni�
ation unde
idable see [54℄
ontext uni�
ation (unknown) see [104℄string uni�
ation de
idable see [86℄Figure 2.23: Context uni�
ation in 
ontextString uni�
ation is the problem of solving word equations. A string uni�
ation equationsystem is a 
onjun
tion of equations w1 = v1 ^ : : : ^ wn = vn, where wi; vi, 1 � i � n,are words over some alphabet � [ V. � is a set of terminals and V a set of variables. Asolution is a valuation � : V ! �� su
h that �(wi) and �(vi) is the same word over � forall i. For example, gx = xg is a string uni�
ation equation. All solutions of this equationmap x to a word in g�. String uni�
ation has been dis
overed and studied under severalnames and in several resear
h 
ontexts [6℄. There exists a (very 
ompli
ated) algorithmfor it due to Makanin [86℄. Context uni�
ation 
an be regarded as a generalization ofstring uni�
ation from words to trees.How exa
tly is CU related to CLLS? CU is equally expressive as a fragment of CLLS that
onsisting of labeling literals, and parallelism literals with exa
tly one hole. We writeClp for this language. On the one hand, every CU equation system 
an be en
oded inequality up-to 
onstraints [93℄, whi
h 
an be translated into Clp 
onstraints [92℄. On theother hand, any 
onjun
tion of labeling, dominan
e, and parallelism 
onstraints 
an be



48 CLLSg � X0f �� X1a � X2 b � � Y0g � Y1f �a � b � X0=Y0X1=X2�Y0=Y1Figure 2.24: Constraint for the equation g�f(C(a); b)� = C�g(f(a; b))�written as a CU equation system [92℄. Note that dominan
e literals 
an be expressed inClp: A dominan
e literal X/�Y 
an be written as the parallelism literal X=Y�X=Y .The similarity between 
ontexts and segments is immediately obvious. However, there isan important di�eren
e. A 
ontext is a fun
tion from trees to trees, and as su
h 
an beregarded independently of any tree it might be embedded in. A segment is embedded inits surrounding tree by the binding 
onditions. There are only segments of a tree, notsegments on their own.To illustrate how CU equation systems 
an be translated into CLLS 
onstraints and vi
eversa, we sket
h simpler en
odings than the ones given in the literature [93, 92℄. Considerthe CU equation(2.15) g(f(C(a); b)) = C(g(f(a; b))).We translate this equation into the Clp 
onstraint in Fig. 2.24, as follows:� The left-hand side term of the equation (2.15) 
an be divided into three parts:the 
ontext g(f(�; b)), the 
ontext variable C, and the tree a. Likewise, the right-hand side term 
an be divided into two parts: the 
ontext variable C, and the treeg(f(a; b)).The parts that do not 
onsist of a 
ontext variable 
an be translated to labelingliterals in a straightforward fashion: The 
ontext g(f(�; b)) is translated to thesegment X0=X1 of the 
onstraint in Fig. 2.24, the tree a is translated to the segmentX2= of the 
onstraint, and the tree g(f(a; b)) is translated to the segment Y1= ofthe 
onstraint.� The two o

urren
es of the same 
ontext variable C are translated into a parallelismliteral: X1=X2�Y0=Y1.� Finally, the left-hand side term and the right-hand side term of the equation (2.15)des
ribe the same tree. We translate this by equating the roots of the two 
onstraintgraphs that we have drawn: X0=Y0.Conversely, how 
an we en
ode a Clp 
onstraint in a CU equation system? The mainproblem is that the two languages adopt di�erent perspe
tives on trees: How 
an ween
ode information about a spe
i�
 node when we 
an only talk about trees? The tri
k
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oming this obsta
le is to employ 
ontexts to talk about nodes: We use, for ea
hvariable X in our Clp 
onstraint, a 
ontext variable CX standing for the "tree from theroot down to X". Additionally, we use a tree variable r to denote the entire tree.To make the en
oding simpler, we allow, besides equations between tree-valued terms,equations s = s0 between 
ontext-valued terms. This adds nothing to the expressivepower of the language [92℄. Then we 
an translate 
onstraints into equations as follows:X/�Y as 9C:�CY = CX Æ C�X:f(X1; : : : ;Xn) as V1�i�n 9x1; : : : ; xn: if n � 1�CXi = CX Æ f(x1; : : : ; xi�1; �; xi+1; : : : ; xn)�X:a as r = CX(a)X1=X2�Y1=Y2 as 9C:(CX2 = CX1C ^ CY2 = CY1C)Furthermore, to make sure that a 
ontext variables CX 
orre
tly en
odes the position ofX, we use the following 
onjun
tion of equations:Root(') =def ^X2Var(') 9x:r = CX(x)That is, there exists a single tree r su
h that all CX en
ode positions in it.For example, the unsatis�able 
onstraint ' = Y :f(X1;X2)^X1/�X^X2/�X is translatedto the CU equation systemRoot(') ^CX1 = CX Æ f(�; x2) ^CX2 = CX Æ f(x1; �) ^CY = CX1 ÆC ^CY = CX2 ÆC 0:This system is unsatis�able: from CY = CX1 Æ C and CY = CX2 Æ C 0, we get CX1 Æ C =CX2 ÆC 0. We 
an substitute CX1 by CX Æ f(�; x2) and CX2 by CX Æ f(x1; �), whi
h givesus f(�; x2) Æ C = f(x1; �) Æ C 0. This is 
learly unsatis�able as the holes are in di�erentpositions on the two sides.Note that in the translation that we have just sket
hed, both dominan
e literals and par-allelism literals were en
oded into the same CU 
onstru
t, 
ontext variables. Dominan
e
onstraints 
an be en
oded into strati�ed CU, a de
idable fragment of CU [108, 109℄,but they do not seem to 
orrespond to any 
lear-
ut fragment of strati�ed CU. So inCLLS we have two di�erent language 
onstru
ts, dominan
e 
onstraints and parallelism
onstraints, that di�er in their expressive power and thus also the algorithmi
 
omplex-ity of pro
edures for solving them; in CU these two 
orrespond to just one 
onstru
t,whi
h mat
hes the expressive power of parallelism 
onstraints. This point will be
omeimportant below, when we talk about approa
hes to modeling s
ope and ellipsis withCU.2.5 Related Modeling Approa
hesIn this se
tion we dis
uss related approa
hes to modeling s
ope, parallelism, andanaphori
 binding.



50 CLLS2.5.1 Linguisti
 Appli
ations of Dominan
eIn 
omputational linguisti
s, the dominan
e relation has been widely used in analysesof both the syntax and the semanti
s of natural language. Its use in 
omputationallinguisti
s was �rst proposed in the 80's by Mar
us, Hindle and Fle
k [87℄: The aimof D-Theory parsing was a 
ognitively adequate handling of lo
al ambiguities, i.e. 
aseswhere after the �rst few words of a senten
e there is more than one possible analysis,but the ambiguity is resolved by the end of the senten
e. The parsing algorithm shouldnot ba
ktra
k in 
ases where humans showed no hesitation in reading the senten
e. Tothat end, instead of working on a set of parse trees, D-theory uses a single underspe
i�edtree representation allowing for labeling and dominan
e statements. In this framework,ea
h underspe
i�ed des
ription has to have a unique standard referent (model). Laterpapers add further 
onstraints for a 
loser modeling of human senten
e understanding,for example pre
eden
e, the left-of relation between nodes of a tree [55, 112, 16℄.Dominan
e is also used for a variant of Tree Adjoining Grammars [64℄, a grammar for-malism that 
onstru
ts a parse tree by adjoining further trees to it. While the originalformulation of this operation uses destru
tive 
hanges to a tree, Vijay-Shanker des
ribesit as a monotonous adding of information to quasi-trees [115, 102℄, tree des
riptions 
on-sisting of labeling and dominan
e information. A quasi-tree must have a unique minimaltree that satis�es it. In 
ontrast, this 
ondition is not imposed on D-Trees, introdu
edby Rambow, Vijay-Shanker and Weir [99℄.To model s
ope ambiguities, dominan
e was �rst used by Reyle in the early 90's [100℄:UDRT is the underspe
i�ed variant of Dis
ourse Representation Theory (DRT), a formal-ism for natural language semanti
s that fo
uses on anaphori
 referen
e and a

essibility
onditions for it, modeling a

essibility by sta
ked boxes 
ontaining formulas and referents(elements that 
an be referred to anaphori
ally). UDRT adds two 
onstru
ts to DRT:There may be labels atta
hed to boxes, and between these labels, dominan
e statements
an be expressed.Muskens [91℄ applies the same te
hnique { labeled formulas, and dominan
e betweenlabels { to both the (synta
ti
) parse trees and the lambda terms of a senten
e's semanti
s.With Predi
ate Logi
 Unplugged, Bos [15℄ generalizes the approa
h to a meta-formalism tobe 
ombined with any obje
t-level language. Again, formulas of the obje
t-level languageare labeled, and label variables (holes) 
an repla
e a formula. Dominan
e 
onstraintsstate that some hole must dominate some label. A solution of su
h an expression is aplugging, a mapping from holes to labels that respe
ts the dominan
e 
onstraints.In Minimal Re
ursion Semanti
s, Copestake, Fli
kinger and Sag [26℄ use similar te
h-niques as in Predi
ate Logi
 Unplugged: A handle is either a label pre
eding a formulaor a label variable, and dominan
e between handles is expressed by the qeq relation =q,\equality modulo quanti�ers": Either the label variable is dire
tly identi�ed with theformula label that it dominates, or or one or more quanti�ers 
oat in between the labelvariable and the formula label.



CLLS 51Pinkal [95℄ distinguishes three levels of semanti
 underspe
i�
ation. On the �rst levelare lexi
al ambiguities, referential ambiguities and similar lo
al phenomena. S
ope ambi-guities 
onstitute the se
ond level, the level of underspe
i�
ation in the global semanti
stru
ture. The third level of underspe
i�
ation arises when the synta
ti
 informationfrom whi
h the semanti
 representation is built is in
oherent, ambiguous or in
omplete.Pinkal proposes a higher-order uni�
ation formalism 
alled Underspe
i�ed Semanti
 De-s
ription Language (USDL) to deal with phenomena at all three levels. The languageUSDL is a variant of CU. Subsequently Niehren, Pinkal and Ruhrberg proposed a CUtreatment of both s
ope ambiguities and parallelism phenomena [94℄, whi
h Egg andKohlhase extended by a dynami
 treatment of referents [40℄. However this analysis runsinto problems of 
ombinatori
 explosion when many s
ope-bearing elements are present[74℄. The problem is that this approa
h has to use 
ontext variables in their full expressiv-ity for expressing s
ope ambiguity. As we have pointed out above when we sket
hed thetranslation of CLLS 
onstraints to CU equation systems, there is no obvious translationof dominan
e 
onstraints that would be 
omputationally 
heaper than CU in general. In
ontrast, the CLLS analysis, whi
h repla
ed the CU analysis, has the distin
tion betweendominan
e 
onstraints and parallelism 
onstraints, so it 
an use the less \expensive" for-malism for modeling s
ope ambiguity.Du
hier and Gardent propose using dominan
e 
onstraints for an underspe
i�ed rep-resentation of dis
ourse stru
ture [33℄. Ambiguities pertaining to the relation betweendi�erent dis
ourse elements 
an be represented in the same way as s
ope ambiguities. Asimilar approa
h is taken by S
hilder [107℄.2.5.2 Related Analyses of ParallelismIn this se
tion we list only the analyses of parallelism phenomena that are most 
loselyrelated to the CLLS approa
h; a general dis
ussion of ellipsis and of di�erent types ofapproa
hes follows in Chapter 8.A \
lassi
al" analysis of ellipsis is the one by Dalrymple, Shieber and Pereira [30℄, hen
e-forth DSP. They relate the sour
e and target VP semanti
s using higher-order uni�
ation.We sket
h the analysis with a simple example, the senten
e (2.16). The meaning of thissenten
e is modeled by the formula (2.17) together with the equation (2.18): the 
om-mon part of sour
e and target senten
e must be some property that holds of both thesour
e and target ex
eption(s). Solving the equation yields the solution (2.19). When weapply this property to the target ex
eption \Mary" we obtain the meaning of the targetsenten
e, (2.20).(2.16) John sleeps, and Mary does too.(2.17) sleep(john) ^ P (mary)(2.18) P (john) = sleep(john).(2.19) P = �x:sleep(x).(2.20) sleep(mary).
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h [28℄ follows the same idea as DSP, but uses substitution instead of full higher-order uni�
ation. In this approa
h, the semanti
 representations are phrased in Quasi-Logi
al Form (QLF) [2℄, a formalism based on lambda 
al
ulus in whi
h quanti�er s
opeis represented by spe
ial s
ope nodes; they are uninstantiated until quanti�er s
ope isresolved. Apart from the better 
omputational 
omplexity of this approa
h in 
omparisonto DSP, Crou
h stresses the need for a semanti
 formalism that is de
larative, giving a(partial) des
ription of the intended semanti
 
omposition, rather than pro
edural anddependent on the order in whi
h ambiguities are resolved.As we have mentioned above, Niehren, Pinkal and Ruhrberg [94℄ propose an analysis ofellipsis that uses 
ontext uni�
ation rather than higher-order uni�
ation in the general
ase. Their approa
h integrates the treatment of ellipsis with an underspe
i�ed des
rip-tion of s
ope ambiguities.Higher-order uni�
ation has also been employed to model other parallelism phenomena:For the interpretation of fo
us, Gardent and Kohlhase use higher-order uni�
ation toextra
t the fo
us semanti
 value [50℄. For example, for the senten
e \John only likesMARY" { where fo
us is indi
ated using upper-
ase {, the fo
us semanti
 value is theset of properties of the form liking y, where y is an individual. This value is then used todes
ribe what the semanti
s of the \only" is in this senten
e. In 
orre
tions in dis
ourse,stri
t/sloppy ambiguities are possible, as e.g. in \John1 loves his1 wife." { \No, PETERloves his wife." Gardent, Kohlhase and van Leusen use higher-order uni�
ation to modelthese phenomena in a similar fashion as DSP [51℄.Reyle [101℄ dis
usses parallelism phenomena within the formalism of UDRT. As we havesaid above, UDRT atta
hes labels to the boxes of formulas and referents that are typi
alfor DRT, and between these labels, dominan
e 
an be stated. To model pararallelism,these labels are now de
orated with indi
es. Given two pairs of boxes with 
orrespondingindi
es, then dominan
e must order both pairs in the same way. Reyle uses this me
ha-nism for two purposes, on the one hand inferen
e in an underspe
i�ed framework { froman underspe
i�ed premise an underspe
i�ed 
on
lusion is drawn, with parallelism linkingthem {, and on the other hand for handling ambiguities related to plural: o

urren
es ofthe same ambiguous plural expression 
an be indexed to ensure they are disambiguatedthe same way. S
hiehlen [106℄ takes up this 
oindexing te
hnique to handle the inter-a
tion of s
ope and ellipsis in the UDRT setting. However, in this approa
h everythingthat is in
luded in the parallelism has to be spe
i�ed expli
itly, while in DSP and theCLLS analysis all the material in the parallel regions is in
luded by de�nition.The approa
h by Hardt [59℄ fo
uses on the similarities of anaphora and ellipsis. Using aDRT setting, this analysis gives the sour
e senten
e a referent in the universe that thetarget senten
e 
an then refer to. In this approa
h, examples where the sour
e senten
e
an only be found by inferen
e play an important role, espe
ially when this inferen
eparallels steps that need to be performed for anaphora resolution.
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tion of Ellipsis and AnaphoraWilliams [117℄ models stri
t/sloppy ambiguities as ambiguities in the sour
e rather thanin the target senten
e. For example, for senten
e (2.10), the sour
e senten
e of theellipti
al (2.11), there would be two representations:1. Mary1 (�x:x saw her1 mother) and2. Mary1 (�x:x saw x's mother).The �rst representation results in a stri
t reading of the target senten
e, the se
ond ina sloppy reading. Note that there is no separate 
onstru
t for representing anaphori
binding, rather it is modeled as lambda binding.DSP also models anaphori
 binding by lambda binding. To handle stri
t/sloppy ambi-guities, they distinguish primary and se
ondary o

urren
es of the subtree that has theshape of the ex
eption. Consider senten
e (2.21). In solving the equation (2.23) for thisellipsis, primary o

urren
es { underlined in the example { have to be abstra
ted, whilese
ondary o

urren
es may or may not be. The underlined o

urren
e of \dan" is primarybe
ause it 
onstitutes the 
ontrasting element; the other o

urren
e is se
ondary be
auseit arises from the representation of the pronoun \his". There are four solutions to thehigher-order uni�
ation problem in (2.23). Two of them, �x:likes(dan;wife�of(dan))and �x:likes(dan;wife�of(x)), do not obey the restri
tion that a primary o

urren
emust be abstra
ted, so they are eliminated. In the other two solutions to the uni�
ationproblem, �x:likes(x;wife�of(dan)) and �x:likes(x;wife�of(x)), the primary o

ur-ren
e of \dan" is abstra
ted, and indeed these two solutions 
orrespond to the stri
t andthe sloppy reading of senten
e (2.21).(2.21) Dan likes his wife, and George does, too.(2.22) likes(dan;wife�of(dan)) ^ P (george)(2.23) P (dan) = likes(dan;wife�of(dan))Kehler [70℄ 
onne
ts the semanti
 representations of a pronoun and its ante
edent by thelinking relation, whi
h 
orresponds to Chomsky's anaphori
 binding relation in synta
ti
representations [19℄. Linking relations in the sour
e 
lause determine linking relation inthe target 
lause, by the operations of referring and 
opying. The operation of referringis similar to 
onne
ting the target anaphor to its own 
orrespondent, while the operationof 
opying is similar to 
onne
ting the target anaphor to the 
orrespondent of the sour
ebinder. One linking relationship in the sour
e 
lause gives rise to two possible linkingrelationships in the target 
lause. This analysis is basi
ally the same as the 
onditionson anaphori
 binding in CLLS (Def. 2.7), whi
h were proposed by Xu [118℄.



54 CLLS2.6 SummaryIn this 
hapter we have introdu
ed the Constraint Language for Lambda Stru
tures,CLLS. Lambda stru
tures are �nite 
onstru
tor trees augmented with two node mappingsfor modeling lambda and anaphori
 binding. CLLS is a language of partial des
riptionsof lambda stru
tures, o�ering 
onstraints that des
ribe relations between nodes.CLLS 
an be seen as a hierar
hy of three sublanguages:� Cd 
onstraints, with labeling and dominan
e as their most important types of liter-als. Labeling X0:f(X1; : : : ;Xn)expresses that the node thatX0 denotes bears the label f and has the nodes denotedby X1; : : : ;Xn (in this order) as 
hildren, and dominan
eX0/�X1states that the node for whi
h X0 stands is an an
estor of the node for X1. Modelsfor Cd 
onstraints are tree stru
tures, i.e. node-labelled trees without the additionalmappings.� Cp 
onstraints, whi
h extend Cd by parallelism literals. A parallelism literalX0=X1; : : : ;Xn�Y0=Y1; : : : ; Ynstates that the segment denoted by X0=X1; : : : ;Xn has the same stru
ture as thesegment for Y0=Y1; : : : ; Yn. A segment is a tree from whi
h some subtrees have been
ut out, leaving behind holes.Models for Cp 
onstraints are tree stru
tures extended by a parallelism relationbetween pairs of segments. Parallelism between two segments 
an be 
hara
terizedby a 
orresponden
e fun
tion whi
h links ea
h node in one segment to the node atthe same position in the other segment. Corresponding nodes must bear the samelabels and have 
orresponding 
hildren.� CLLS extends Cp by lambda and anaphori
 binding literals. A lambda bindingliteral �(X)=Ystates that the node denoted by X is var-labeled and has its lambda binder at thenode denoted by Y , and an anaphori
 binding literalante(X)=Ysays that the node denoted by X is anaphori
ally bound at Y . Models for CLLS arelambda stru
tures. Their parallelism relation must obey a number of restri
tions intheir intera
tion with lambda and anaphori
 binding: binding within two parallelsegments is parallel; if a node is bound outside its segment, its 
orrespondent hasthe same binder; and hanging binders, i.e. a variable outside being bound inside asegment involved in parallelism, are prohibited.
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orrespond to three main phenomena that it 
an model withinthe appli
ation to underspe
i�ed semanti
s: dominan
e 
an be used to model s
opeambiguities, parallelism 
an be used to model ellipsis, and anaphori
 binding literals 
anmodel anaphori
 binding.A sublanguage of CLLS (
onsisting only of labeling and parallelism literals) is equallyexpressive as 
ontext uni�
ation [93, 92℄, the de
idability of whi
h is still an open problem.This is espe
ially interesting as this 
lass of uni�
ation problems lies right at the borderbetween string uni�
ation, whi
h is de
idable, and se
ond-order uni�
ation, whi
h is not.Contexts of CU and segments of CLLS are 
losely related; however, 
ontexts have \a lifeof their own" as mappings from trees to trees, while segments are always embeddedwithin their surrounding tree, to whi
h they are linked by binding relations.The language CLLS was introdu
ed in 1998 by Egg, Niehren, Ruhrberg and Xu [42℄. Amore extensive des
ription is given in a re
ent overview paper [41℄. The language CLLSas we have de�ned it in this 
hapter is the one used in the 2000 paper on parallelism [46℄,ex
ept for the possibility of having more than one hole in a segment term; this extensionis �rst present in the �rst paper on underspe
i�ed beta redu
tion in CLLS [12℄.
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Chapter 3Solving Dominan
e Constraints
In this and the following two 
hapters we develop a pro
edure for solving CLLS 
on-straints. The pro
edure divides naturally into three parts, like the language CLLS: Inthe previous 
hapter we have seen that CLLS 
an be regarded as a hierar
hy of threelanguages, dominan
e 
onstraints, parallelism 
onstraints, and all of CLLS. The threeparts of the pro
edure mat
h this hierar
hy. The basis of the pro
edure is an algorithmfor Cd, the 
lass of dominan
e 
onstraints.This algorithm for Cd is the topi
 of the present 
hapter. We dis
uss a 
onstraint solver fordominan
e 
onstraints, a terminating pro
edure that tests satis�ability. We formulate itas a saturation-based algorithm. It a

umulates information, never eliminating anythingit has found, until a state of saturation is rea
hed. When su
h a saturated 
onstrainthas been found, a model 
an be read o� it dire
tly. For any dominan
e 
onstraint, only�nitely many saturated 
onstraints are 
omputed. Satis�ability of Cd is an NP-
ompleteproblem.There are algorithms for Cd that are more sophisti
ated and more geared towards animplementation [34℄. But as we will formulate the parallelism 
onstraint pro
edure inthis simple and abstra
t paradigm, we already use it for the Cd solver.This 
hapter, like the previous 
hapter on the language CLLS, does not report new results.Rather, it forms the ba
kground for the new pro
edures for parallelism 
onstraints andfor CLLS as a whole, whi
h we dis
uss in the following 
hapters. We use the samete
hniques for the proofs in this 
hapter as in the two following ones. However here weuse them on a simpler problem, su
h that this 
hapter 
an serve as a gentle introdu
tionto the problems that we will be 
onsidering later.3.1 A Solver for Dominan
e Constraints: PdIn this se
tion we present a 
onstraint solver for the language Cd of dominan
e 
onstraints,i.e. an algorithm that de
ides the satis�ability of Cd 
onstraints. Dominan
e 
onstraintsare interpreted over the 
lass of lambda stru
tures, so testing satis�ability means that thealgorithm has to de
ide on the existen
e of a model, a lambda stru
ture plus a valuation.The algorithm does not just give a yes/no answer, it 
omputes result 
onstraints. Fromea
h of those a model 
an be read o�. 57



58 Solving Dominan
e ConstraintsLet `; `1; : : : ; `5; `04; `05 be literals.(a) a deterministi
 rule `1 ^ `2 ! `:f: : : ; f`1; `2; `3g; : : :g ! f: : : ; f`1; `2; `3; `g; : : :g(b) a distribution rule `1 ^ `2 ! (`4 ^ `5) _ (`04 ^ `05):f: : : ; f`1; `2; `3g; : : :g !! f : : : ;f`1; `2; `3; `4; `5g;f`1; `2; `3; `04; `05g;: : :gFigure 3.1: Applying saturation rules to a set of 
lausesWe formulate the algorithm Pd as a saturation algorithm, whi
h 
onsists of a set ofsaturation rules. It operates on a set of 
lauses: A 
lause is a set of literals. Abusingnotation a little, we view a 
lause also as a 
onstraint and vi
e versa: We regard a 
lause,and also a 
onstraint, as both the set and the 
onjun
tion of the literals o

urring in it.Hen
e we 
an say that a literal ` is in a 
onstraint ' i� ` 2 ', and a 
onstraint '0 is in' i� '0 � '.A saturation algorithm adds more literals to the 
lauses and more 
lauses to the seta

ording to the saturation rules, until the set is saturated, i.e. nothing new 
an beadded anymore. The saturation rules that we use have the form'0 ! n_i=1'ifor 
lauses '0; : : : ; 'n and n � 1. A rule is deterministi
 if n = 1. Appli
ation of adeterministi
 rule is illustrated in Fig. 3.1 (a): We 
hoose a 
lause that 
ontains therule's left-hand side, and we add the right-hand side to the 
lause. A rule with n > 1is indeterministi
, also 
alled a distribution rule. Consider Fig. 3.1 (b): Again, a 
lause
ontaining the left-hand side is 
hosen. This 
lause is repla
ed by two new 
lauses, ea
h
onsisting of the old 
lause plus either `4 ^ `5 or `04 ^ `05.We next de�ne a saturation step, a single rule appli
ation. The appli
ability of a rule �is dependent on an appli
ation 
ondition app
�.De�nition 3.1 (Saturation step, appli
ation 
ondition). Let S be a set of satu-ration rules. A saturation step !S 
onsists of one appli
ation of a rule � 2 S. Let� = '0 ! Wni=1 'i for 
lauses '0; : : : ; 'n. Then'0 � ''!S ' ^ 'i for i 2 f1; : : : ; ng if app
�(')where the appli
ation 
ondition isapp
�(') =def for all 1 � i � n : 'i 6� '
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e Constraints 59What the appli
ation 
ondition app
� says is that a saturation rule � = '0 ! Wni=1 'i isappli
able to a 
lause ' i� ' 
ontains the left-hand side '0 but none of the right-handside 
hoi
es '1; : : : ; 'n. If 'i is present in the 
lause for some 1 � i � n, then the
hoi
e has already been made and the rule need not be applied anymore. (Note that theappli
ation 
ondition governs the appli
ability of a rule to ea
h individual 
lause in a
lause set; a rule that is not appli
able to one 
lause in the set may still be appli
able toanother.)A saturation algorithm terminates when no rule is appli
able to any 
lause in the setanymore. So the appli
ation 
ondition that we have just introdu
ed will ensure thetermination of our dominan
e 
onstraint algorithm: We will formulate the algorithmsu
h that it never adds fresh variables to the 
lause set it operates on, and it 
an onlyadd �nitely many di�erent literals for ea
h variable in its 
lause set.In a saturation algorithm, the 
hoi
e of the next rule to apply is don't 
are indeterministi
:It does not matter whi
h rule is 
hosen �rst. On the other hand, distribution rules aredon't know indeterministi
 { ea
h 
hoi
e in the right-hand side of the rule has to beexplored.De�nition 3.2 (Clash-free, saturated, failed). Let S be a set of saturation rules. A
lause is 
lash-free i� it does not 
ontain false, and S-saturated i� it is irredu
ible withrespe
t to !S and 
lash-free. If a 
lause 
ontains false, it is also 
alled failed.We also 
all a saturated 
onstraint a saturation for short. These saturations are theresult 
onstraints that our dominan
e 
onstraint solver 
omputes.3.1.1 The Rules in DetailRemember that the 
lass Cd of dominan
e 
onstraints has the following abstra
t syntax:'; & ::= X/�Y j X:f(X1; : : : ;Xn) j X?Y j X 6=Y (ar(f) = n)j false j ' ^ &Additionally, we use the abbreviationsX=Y for X/�Y ^ Y /�X and X/+Y for X/�Y ^X 6=Y:Inequality and disjointness literals are viewed as symmetri
.Figure 3.2 shows the solver Pd for dominan
e 
onstraints. The �rst two rules,(D.
lash.ineq) and (D.
lash.disj), dete
t unsatis�able 
onstraints and extend themby false. We 
all su
h rules 
lash rules. (D.
lash.ineq), whi
h has the formX=Y ^ X 6=Y ! false, states that two variables 
annot denote the same tree node anddi�erent tree nodes at the same time. The rule (D.
lash.ineq), whi
h is X?X ! false,says that no tree node 
an be in a disjoint position from itself. The remaining rules willextend all unsatis�able 
onstraints to a point where one of these 
lash rules applies.
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e Constraints(D.
lash.ineq) X=Y ^ X 6=Y ! false(D.
lash.disj) X?X ! false(D.dom.re
) ' ! X/�X where X 2 Var(')(D.dom.trans) X/�Y ^ Y /�Z ! X/�Z(D.lab.de
om) X:f(X1; : : : ;Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y ! Vni=1Xi=Yi(D.lab.ineq) X:f(: : :) ^ Y :g(: : :) ! X 6=Y where f 6= g(D.lab.dom) X:f(: : : ; Y; : : :) ! X/+Y(D.lab.disj) X:f(: : : Xi; : : : ;Xj ; : : :) ! Xi?Xj where 1 � i < j � n(D.disj) X?Y ^ X/�X 0 ^ Y /�Y 0 ! Y 0?X 0(D.distr.notDisj) X/�Z ^ Y /�Z ! X/�Y _ Y /�X(D.distr.
hild) X/�Y ^ X:f(X1; : : : ;Xn) ! Y=X _ Wni=1Xi/�YFigure 3.2: Solving Cd 
onstraints: algorithm PdThe rules in the se
ond blo
k are deterministi
 saturation rules. (D.dom.re
) and(D.dom.trans), whi
h are ' ! X/�X for X 2 Var(') and X/�Y ^ Y /�Z ! X/�Z,state that dominan
e is a re
exive and transitive relation. The rules (D.lab...) are 
on-
erned with the labeling relation. (D.lab.de
om) is a de
omposition rule whi
h statesX:f(X1; : : : ;Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y ! Vni=1Xi=Yi, propagating equality fromtwo equal variables to their 
hildren. (D.lab.ineq), by stating X:f(: : :) ^ Y :g(: : :) !X 6=Y for f 6= g, expresses the fa
t that two di�erently labelled variables 
an neverdenote the same node. The rule (D.lab.dom), of the form X:f(: : : ; Y; : : :) ! X/+Y ,de
lares that a parent dominates its 
hildren. The rule (D.lab.disj), whi
h statesX:f(: : : Xi; : : : ;Xj ; : : :) ! Xi?Xj for 1 � i < j � n, says that two di�erent 
hil-dren of the same node must lie in disjoint positions. The rule (D.disj), of the formX?Y ^ X/�X 0 ^ Y /�Y 0 ! Y 0?X 0, propagates disjointness from two variables to theirdes
endants. (a) � X � Z � Y (b) � Y f � X� X1 : : : � XnFigure 3.3: Situations in whi
h (a) (D.distr.notDisj) and (b) (D.distr.
hild) apply(D.distr.notDisj) and (D.distr.
hild) des
ribe the only two situations in whi
h Pd needsto distribute. They are illustrated in Fig. 3.3. The rule (D.distr.notDisj) has the formX/�Z ^ Y /�Z ! X/�Y _ Y /�X. It states that if X and Y have a 
ommon des
endantZ, their denotations 
annot be in disjoint positions be
ause trees do not bran
h upwards.So one of the two variables must dominate the other. The rule (D.distr.
hild) has the
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e Constraints 61form X/�Y ^ X:f(X1; : : : ;Xn) ! Y=X _ Wni=1Xi/�Y . It applies to a variable Xthat both dominates another variable Y and is labeled. Then Y must be either equal toX, or it lies below one of X's 
hildren.3.1.2 Examples
X f

X

Y

X1 2

As a �rst example of how the saturation rules work, let us re
on-sider the unsatis�able 
onstraint X:f(X1;X2)^X1/�Y ^X2/�Y ofFig. 2.7, repeated to the right. By (D.lab.disj), we infer X1?X2,to whi
h (D.disj) adds Y?Y . But then the 
lash-rule (D.
lash.disj)applies, signifying that the 
onstraint is unsatis�able.Next, 
onsider the 
onstraint X:f(X), whi
h is also unsatis�able. By (D.dom.re
) we getX/�X, whi
h is the same asX=X, an abbreviation forX/�X^X/�X. Then (D.lab.dom)gets us X/+X, whi
h is the same as X/�X ^X 6=X. But now (D.
lash.ineq) applies andadds false, sin
e we have both X=X and X 6=X.(a) � � X0� �ev � plan � lam �� � � Y0� �a � 
at
h � lam ��� � Z0� �have � var �var �
(b) f � X0� X1 g � Y0� Y1a � Z0

Figure 3.4: (a) Constraint for \Every plan has a 
at
h", and (b) a smaller, abstra
tversionThe distribution rule (D.distr.notDisj) is 
entral to solving 
onstraints that model s
opeambiguities, like the one in Fig. 3.4 (a) (this is Fig. 1.6 without the binding edges). To
on
entrate on the important aspe
ts, we demonstrate our algorithm Pd on a smaller,abstra
t version of Fig. 3.4 (a), whi
h is shown in Fig. 3.4 (b).By (D.lab.dom), X0/+X1 and Y0/+Y1. Hen
e by (D.dom.trans) we get X0/�Z0 as wellas Y0/�Z0. So we must have either X0/�Y0 or Y0/�X0 by (D.distr.notDisj). We pursuethe �rst alternative. Now we are in the situation sket
hed in Fig. 3.3 (b): We haveX0/�Y0, and X0 is labeled. So the rule (D.distr.
hild) o�ers two possibilities: eitherX0=Y0 or X1/�Y0. Again we pursue the �rst alternative (intuitively, we are now try-ing to \overlap" the f -fragment with the g-fragment). However, (D.lab.ineq) gives usX0 6=Y0, so now we have X0=Y0 as well as X0 6=Y0, whi
h fails by (D.
lash.ineq). So letus 
onsider the se
ond alternative of (D.distr.
hild) above, whi
h was X1/�Y0. We nowhave X0:f(X1);X1/�Y0; Y0:g(Y1), and Y1/�Z0. This 
onstraint 
an be saturated withoutany further distribution. This saturation is the one shown in Fig. 3.5 (a).Now suppose that, instead of pursuing the 
hoi
e X0/�Y0 of (D.distr.notDisj) above, we
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e Constraints(a) f � X0� X1g � Y0� Y1a � Z0
(b) g � Y0� Y1f � X0� X1a � Z0Figure 3.5: The two saturations 
omputed for Fig. 3.4 (b)follow the other alternative Y0/�X0. Then the saturation pro
eeds just as in the 
ase ofX0/�Y0. Again we get a single saturation, whi
h is shown in Fig. 3.5 (b).The bigger 
onstraint in Fig. 3.4 (a) is saturated in the same way as the small one wehave just 
onsidered. Again, we get two saturations, sket
hed in Fig. 3.6.3.2 Some Properties of the Algorithm: Soundness, Termination,Shape of SaturationsIn this and the following se
tions we examine properties of the algorithm Pd. All resultsare 
olle
ted in a theorem in Se
. 3.5.3.2.1 SoundnessThe 
onstraint solver Pd is sound in the sense that all its rules are equivalen
e transfor-mations.De�nition 3.3 (Soundness). We 
all a saturation rule ' ! � sound for lambdastru
tures i� ' j=j �.But we are working in a saturation paradigm: We never eliminate any literals. So asaturation rule '! � is already sound if ' j= �.It is easy to see that in ea
h rule of Pd, the left-hand side entails the right-hand side.Lemma 3.4 (Soundness). The Cd-solver Pd is sound for lambda stru
tures.3.2.2 TerminationLemma 3.5 (Termination). Pd is terminating.Proof. The algorithm Pd never adds fresh variables to the 
lause set that it is workingon. For ea
h variable, there are only �nitely many di�erent literals that 
an be addedto ea
h 
lause. Finally, the appli
ation 
ondition prohibits rules from adding the same
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onstraints to the same 
lause over and over again: For ea
h rule � = ' ! Wni=1 'i ofPd, the appli
ation 
ondition app
� states that � 
an be applied to a 
lause only if ' isin it, but none of the 'i is already 
ontained.Satis�ability of dominan
e 
onstraints is an NP-
omplete problem, as Koller, Niehrenand Treinen [78℄ have shown. They en
ode SAT by for
ing fragments of a 
onstraintgraph to overlap, but giving them two possible ways of overlapping, in this way en
odingtrue and false.3.2.3 Saturated ConstraintsFor ea
h input dominan
e 
onstraint, the algorithm 
omputes a set of saturations, 
on-straints to whi
h no rule of Pd is appli
able anymore.Lemma 3.6. For any dominan
e 
onstraint, Pd 
omputes a �nite set of saturations(whi
h may be empty).Proof. This is proven by the same arguments as Lemma 3.5 above: The algorithm Pdnever adds fresh variables, and there are only �nitely many di�erent literals that 
an beadded to ea
h 
lause and hen
e only �nitely many rule appli
ations are possible.If we look at other 
onstraint solvers that work by transforming or augmenting a 
on-straint, the results of their 
omputation are often 
alled solved forms. Typi
ally, solvedforms are an independently de�ned sub
lass of 
onstraints that are simpler than the orig-inal ones. The saturations that the solver Pd 
omputes are basi
ally solved forms too,ex
ept that saturations are de�ned not independently but in relation to Pd, and thatte
hni
ally they are not simpler than the input 
onstraint sin
e they subsume it.Saturated 
onstraints are like solved forms in that they are 
onstraints from whi
h amodel 
an be dire
tly read o� { we will show this in the following se
tion. So in away they are more simple than dominan
e 
onstraints in general; more pre
isely, their
onstraint graphs have a very simple stru
ture, whi
h we are now going to 
hara
terizeinformally.(a) � � X0�ev plan lam �� X1� � Y0�a 
at
h lam �� Y1� Z0have
(b) � � Y0�a 
at
h lam �� Y1� � X0�ev plan lam �� X1� Z0haveFigure 3.6: Sket
h of the two saturated 
onstraints 
omputed for Fig. 3.4 (a)
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e ConstraintsRemember that in the previous 
hapter, we have said that 
onstraint graphs do notrepresent disjointness and inequality literals, and that they shows dominan
e literalsonly when they 
onne
t two di�erent fragments (tree-shaped pie
es 
onne
ted by solidlines) of the graph.As an example of what 
onstraint graphs of saturated 
onstraints look like, 
onsiderthe 
onstraint in Fig. 3.4. For this 
onstraint the algorithm Pd 
omputes two di�erentsaturations, the 
onstraint graphs of whi
h are sket
hed in Fig. 3.6. These 
onstraintgraphs are tree-shaped, ex
ept that some edges are dominan
e edges.More generally, the 
onstraint graph of a saturated 
onstraint is a forest with two dif-ferent kinds of tree nodes, labeled and unlabeled ones, and two di�erent kinds of edges,dominan
e and labeling edges. For ea
h node we 
an say that� either it is labeled, all its outgoing edges are labeling edges, and its 
hildren areordered;� or it is unlabeled, all its outgoing edges are dominan
e edges, and its 
hildren areunordered.So a Pd-saturated 
onstraint is similar to a forest of quasi-trees [115, 102℄ or D-trees [99℄:Du
hier and Gardent [33℄ use a formulation of D-trees that allows for nodes with morethan one outgoing dominan
e edge. With this de�nition, ea
h Pd-saturated Cd-
onstraint
an be regarded as a forest of D-trees.3.3 Satis�ability of Saturated ConstraintsIn this se
tion we show that Pd-saturations are satis�able, more pre
isely: that fromea
h saturation a model 
an be read o�. The proof that we use has the same shape asthose in the papers by Koller, Niehren and Treinen [78℄ and by Du
hier and Niehren [34℄.We pro
eed in two steps. First we 
onsider only a sub
lass of 
onstraints, whi
h we 
allsimple 
onstraints. Then we lift the result to arbitrary Pd-saturated 
onstraints.3.3.1 Simple ConstraintsWe �rst 
onsider simple 
onstraints, the 
onstraint graphs of whi
h are already tree-shaped. We show that from ea
h simple Pd-saturated 
onstraint, a model 
an be reado�.De�nition 3.7 (Labeled, simple). Let ' be a Cd 
onstraint. A variable X 2 Var(')is 
alled labeled in ' i� 9X 0 2 Var(') su
h that X=X 0 and X 0:f(X1; : : : ;Xn) are in 'for some term f(X1; : : : ;Xn). We 
all ' simple if all its variables are labeled and thereexists some variable Z 2 Var(') su
h that Z/�X is in ' for all X 2 Var(').So in a simple 
onstraint every variable is labeled, and there is a root variable Z domi-nating all others.
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e Constraints 65Lemma 3.8 (Satis�ability of simple saturations). A simple Pd-saturated Cd-
onstraint is satis�able.Proof. Let ' be a simple Pd-saturated Cd-
onstraint. We 
onstru
t a tree stru
ture �that is a model for '. We pro
eed by indu
tion on the number of literals in '. Let Zbe a root variable in '. Sin
e all variables in ' are labeled, there is a variable Z 0 and aterm f(Z1; : : : ; Zn) su
h that Z=Z 0 and Z 0:f(Z1; : : : ; Zn) are in '. LetV =def fX 2 Var(') j Z=X in 'g andVi =def fX 2 Var(') j Zi/�X in 'g:for all 1 � i � n. We show that V; V1; : : : ; Vn form a partition of Var('):� First, Var(') = V [ V1 [ : : : [ Vn: Let X 2 Var(') su
h that Zi/�X 62 ' for all1 � i � n. As Z is a root variable, Z/�X 2 ', so by saturation with (D.distr.
hild),' must 
ontain Z=X.� Se
ond, V; V1; : : : ; Vn are disjoint sets: Suppose there is some variable X 2 Var(')with X 2 V as well as X 2 Vi for some i. Then ' 
ontains Zi/�X as wellas X/�Z, hen
e it 
ontains Zi/�Z by 
losure under (D.dom.trans) as well asZ/�Zi; Z 6=Zi by (D.lab.dom) { a 
ontradi
tion sin
e then ' would also 
ontainfalse by (D.
lash.ineq). Now suppose there are 1 � i < j � n and a variableX 2 Var(') su
h that X 2 Vi as well as X 2 Vj. By (D.lab.disj) ' 
ontainsZi?Zj , whi
h with Zi/�X and Zj/�X gives us X?X by (D.disj) { again a 
ontra-di
tion sin
e then ' would 
ontain false by (D.
lash.disj).For a set W � Var(') we de�ne 'jW as the 
onjun
tion of all literals & 2 ' withVar(&) �W . We show that' j=j '0 holds where '0 =def 'jV ^ Z:f(Z1; : : : ; Zn) ^ n̂i=1'jVi :It obviously holds that ' j= '0: The only literal that may be in '0�' is Z:f(Z1; : : : ; Zn),and that is entailed by ' be
ause Z 0:f(Z1; : : : ; Zn); Z=Z 0 are in '. Next we show that'0 j= ' holds be
ause ' is a Pd-saturated 
onstraint:� Suppose X:g(X1; : : : ;Xm) is in ' for some variable X and term g(X1; : : : ; Xm).If Zi/�X is in ' for some 1 � i � n, then X:g(X1; : : : ;Xm) is in 'jVi sin
e ' issaturated under (D.lab.dom) and (D.dom.trans). Otherwise, Z=X is in ', andthus Z=X is in 'jV . In this 
ase, f = g and n = m by saturation with (D.lab.ineq)and (D.
lash.ineq) 
oupled with the 
lash-freeness of '. As ' is saturated under(D.lab.de
om), it must 
ontain Zi=Xi for 1 � i � n, hen
e Zi=Xi must be in 'jVi .So, '0 
ontains Z=X ^ Z:f(Z1; : : : ; Zn) ^Vni=1 Zi=Xi, whi
h entails X:g(X1; : : : ;Xm) as required.
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e Constraints� Now suppose XRY 2 ' for some variables X;Y and R 2 f/�; 6=;?g. There arefour possible 
ases:{ If X 2 Vi, Y 2 Vj with 1 � i 6= j � n, then R 
annot be /�: In this 
ase 'would 
ontain X/�Y , Y /�Y by (D.dom.re
) and X?Y by (D.disj) (be
ause' 
ontains Zi?Zj), whi
h yields Y?Y by (D.disj), making (D.
lash.disj) ap-pli
able, but ' is 
lash-free. Con
erning the other two possible values for R,'0 entails Zi?Zj and thus X?Y as well as X 6=Y .{ The 
ases where X and Y both belong to V or to the same Vi are obvious.{ If X 2 V and Y 2 Vi for some i, then R 
annot be ? by the same argumentthat we used in the �rst 
ase above. Con
erning the other two possible valuesof R, '0 entails Z/+Zi and thus X/�Y and X 6=Y .{ The 
ase of X 2 Vi and Y 2 V is symmetri
 to the previous one, ex-
ept that now R 
annot be /�: ' 
ontains Zi/�X by de�nition, whi
hwith X/�Y and Y=Z would mean that ' 
ontains Zi/�Z. But ' 
ontainsZ/�Zi; Z 6=Zi by (D.lab.dom), a 
ontradi
tion sin
e ' is 
lash-free and 
losedunder (D.
lash.ineq).Next note that all 'jVi are simple Pd-saturated 
onstraints. By the indu
tive hypothesisthere exist models (�i; �i) j= 'jVi for all 1 � i � n. Now, sin
e V; V1; : : : ; Vn is a partitionof Var('), we 
an 
ombine the models for the smaller 
onstraints into a model of ':(f(�1; : : : ; �n); �) is a model of ' if �jVi = �i for 1 � i � n, and �(X) = �(Z) is the rootnode of f(�1; : : : ; �n) for all X 2 V .3.3.2 Non-simple ConstrainsNow we show that we 
an extend ea
h non-simple Pd-saturated 
onstraint ' to a 
on-straint ' ^ '0 that is simple and still Pd-saturated. We pro
eed by su

essively labelingunlabeled variables. Suppose, for instan
e, we want to label the unlabeled variable X inFig. 3.7 (a). Then we would like to make all variables minimally dominated by X intoX's 
hildren. We formalize this as follows:(a) � X� Y � Z = U (b) f � X� Y � Z;UFigure 3.7: Extension by labelingDe�nition 3.9 (Conne
tedness set). Given a Cd 
onstraint ', we de�ne a partialorder �' on its variables by: X �' Y holds i� X/�Y 2 ' but not Y /�X 2 '.Let X 2 Var(') an unlabeled variable. Then we de�ne the set 
on'(X) of variables
onne
ted to X in ' as
on'(X) = fY 2 Var(') j Y minimal with X �' Y g
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e Constraints 67In the 
onstraint in Fig. 3.7 (a), 
on'(X) = fY;Z; Ug. However, when pi
king variablesto serve as 
hildren of X, we 
hoose only one of Z;U as we have Z=U :De�nition 3.10 (Disjointness set). Let ' be a Cd 
onstraint and V � Var('). We
all V a '-disjointness set if for any two distin
t variables Y1; Y2 2 V , Y1/�Y2 62 '.The idea is that all variables in a '-disjointness set 
an safely be pla
ed at disjointpositions in at least one of the trees that satisfy '. So 
on
erning our example in Fig. 3.7(a), we labelX by some fun
tion symbol of arity 2, extending the 
onstraint, for instan
e,by X:f(Y;Z). The result is shown in Fig. 3.7 (b). However, we have to make sure thatwe preserve saturatedness during extension. For example, when adding X:f(Y;Z) to the
onstraint in Fig. 3.7 (a), we also add Y?Z su
h as not to make (D.lab.disj) appli
able.The following te
hni
al lemma by Du
hier and Niehren [34℄ will be useful: In a Pd-saturated 
onstraint ', ea
h variable in a 
onne
tedness set 
on'(X) is equal to one ofthe variables in a maximal disjointness set within 
on'(X).Lemma 3.11. Let ' be Pd-saturated and X 2 Var('). If V is a maximal '-disjointnessset within 
on'(X), then for all Y 2 
on'(X) there exists some Z 2 V su
h that Y=Zis in '.Now we pro
eed to the main lemma of this subse
tion: An unlabeled variable in a Pd-saturation 
an be labeled while keeping up saturatedness.Lemma 3.12 (Extension by labeling). Every Pd-saturated Cd-
onstraint with anunlabeled variable U0 
an be extended to a Pd-saturated 
onstraint in whi
h U0 is labeled.Proof. Let ' be a Pd-saturated Cd-
onstraint. Let U0 2 Var(') be unlabeled, and letfU1; : : : ; Umg be a maximal '-disjointness set in 
on'(U0). Let us assume for the momentthat � 
ontains a fun
tion symbol f of arity m. Then we de�ne the following extensionextU0;:::;Um(') of ' ^ U0:f(U1; : : : ; Um):extU0;:::;Um(') =def ' ^ U0:f(U1; : : : ; Um) ^ Vmi=1 U0 6=Ui ^V Ui/�Z;Uj/�W2';1�i<j�n Z?W ^V Z:g(:::)2';g 6=f Z 6=U0For better readability, we abbreviate extU0;:::;Um(') by ext('). We 
onsider ea
h rule ofPd in turn and show that it is not appli
able to ext(').(D.
lash.ineq): This rule has the formX=Y ^ X 6=Y ! false. ext(') 
ontains no newdominan
e literals. Suppose a new inequality literal U0 6=Ui makes (D.Clash.Ineq)appli
able. Then ' must 
ontain U0=Ui, whi
h is impossible sin
e Ui 2 
on'(U0).If a new inequality literal Z 6=U0 makes the 
lash rule appli
able, then Z:g(: : :) andU0=Z must be in ', whi
h is impossible sin
e U0 is unlabeled in '.
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e Constraints(D.
lash.disj): This rule has the form X?X ! false. The only new disjointnessliterals in ext(') have the form Z?W for Ui/�Z;Uj/�W in ' with i 6= j. AssumeZ=W is in '. Then by (D.dom.trans) and (D.distr.notDisj), either Ui/�Uj orUj/�Ui must be in ', whi
h is impossible sin
e fUi; Ujg is a disjointness set.(D.dom.re
), (D.dom.trans), (D.distr.notDisj): No new variables or dominan
eliterals have been added.(D.lab.de
om): This rule has the form X:f(X1; : : : ;Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y !Vni=1Xi=Yi. For this rule to be appli
able to U0 and some literal Z:g(Z1; : : : ; Zn) 2', Z=U0 must be in ' already. But U0 is unlabeled in '.(D.lab.ineq): This rule has the form X:f(: : :) ^ Y :g(: : :) ! X 6=Y for f 6= g. Theonly new labeling literal is U0:f(U1; : : : ; Um). Z 6=U0 is in ext(') for all Z labeledanything but f .(D.lab.dom): This rule has the form X:f(: : : ; Y; : : :)! X/+Y . U0:f(U1; : : : ; Um) is theonly labeling literal in ext(') � '. We have U0/�Ui 2 ' for all 1 � i � m be
ausefU1; : : : ; Umg � 
on'(U0). U0 6=Ui is in ext(') by de�nition for all 1 � i � m.(D.lab.disj): This rule has the form X:f(: : : Xi; : : : ;Xj ; : : :) ! Xi?Xj for 1 � i <j � n. The only new labeling literal is U0:f(U1; : : : ; Um). By saturation under(D.dom.re
), Ui/�Ui 2 ' for all 1 � i � m, so Ui?Uj is in ext(') for all 1 � i <j � m.(D.disj): This rule has the form X?Y ^ X/�X 0 ^ Y /�Y 0 ! Y 0?X 0. The only disjoint-ness 
onstraints new in ext(') have the form Z?W , where Ui/�Z;Uj/�W 2 ' forsome j 6= i. If Z/�Z 0 andW/�W 0 are in ', then by saturation under (D.dom.trans)Ui/�Z 0; Uj/�W 0 2 ', so Z 0?W 0 is in ext(').(D.distr.
hild): This rule has the form X/�Y ^ X:f(X1; : : : ;Xn) ! Y=X _Wni=1Xi/�Y . Suppose U0/�Z 2 ', but neither Z/�U0 nor Ui/�Z is in ' for anyi 2 f1; : : : ;mg. Then U0 �' Z. If Z 2 
on'(U0), we have the following situation:The disjointness set fU1; : : : ; Umg is maximal within 
on'(U0), so Z=Ui for somei 2 f1; : : : ;mg by lemma 3.11, a 
ontradi
tion. So suppose Z is not minimal, i.e.there exists some Y 2 
on'(U0) su
h that Y /�Z 2 '. But then again, Ui=Y forsome i 2 f1; : : : ;mg, so Ui/�Z.We now turn to the 
ase that the signature does not 
ontain a fun
tion symbol for thearity we need. We 
an get around this problem by en
oding a fun
tion symbol of aritym with a nullary symbol and one symbol of arity � 2, the existen
e of whi
h we haveassumed. This en
oding may introdu
e new variables, but only �nitely many. For adetailed des
ription of this 
onstru
tion see Koller [75℄, lemma 4.11.By adding a �nite number of literals, we 
an label one unlabeled variable in the 
onstraintwhile keeping the 
onstraint Pd-saturated. If we repeat this pro
ess a �nite number of
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e Constraints 69times, we have extended the non-simple Pd-saturated 
onstraint to a simple one, fromwhi
h we 
an then read o� a model right away.Proposition 3.13. Every Pd-saturated Cd-
onstraint 
an be extended to a simple Pd-saturated 
onstraint.Proof. Let ' be Pd-saturated. Without loss of generality we 
an assume that ' has aroot variable. (Otherwise we 
hoose a fresh variable X and 
onsider ' ^VfX/�Y j Y 2Var(')g instead of '.) By lemma 3.12, we 
an su

essively label all variables in '.Lemma 3.8 and Prop. 3.13 together yield the satis�ability of Pd-saturated 
onstraints.Lemma 3.14 (Satis�ability of saturations). A Pd-saturated Cd-
onstraint is satis�-able.3.4 CompletenessIn this se
tion we show that the algorithm Pd 
omputes a 
omplete set of saturated
onstraints, i.e. a set of saturated 
onstraints from whi
h all models 
an be read o� in asimple way. In prin
iple, there are at least two ways in whi
h we 
ould de�ne 
ompletenesshere: either as 
omputing a set of saturated 
onstraints des
ribing all minimal models, oras 
omputing all minimal saturated 
onstraints. However there exists no natural notionof a minimal model. For example, the 
onstraintX:a ^ Y :b
an have many \smallest" models, depending on the signature �. So we de�ne 
omplete-ness as 
omputing all minimal saturated 
onstraints for a given 
onstraint. We de�neboth minimality and the notion of a minimal saturation for a 
onstraint in terms of apartial order on 
onstraints.De�nition 3.15 (Minimal saturation for a 
onstraint). Let ', & be 
lauses oversome �rst-order language L, S a set of saturation rules and � a partial order on 
lausesover L. Then & is an S-saturated 
onstraint for ' with respe
t to � i� & is an S-saturated 
onstraint with ' � &, and & is a �-minimal S-saturated 
onstraint for ' i� &is �-minimal with the property of being an S-saturated 
onstraint for ' with respe
t to�.For Cd 
onstraints, the partial order that we use is simply subset in
lusion. So a Cd
onstraint & is a Pd-saturated 
onstraint for a 
onstraint ' i� ' � &, and it is a minimalPd-saturated 
onstraint for ' i� there exists no Pd-saturated 
onstraint & 0 for ' with& 0 � &.De�nition 3.16 (Completeness). We 
all a saturation pro
edure 
omplete with respe
tto a partial order � on 
lauses i� it 
omputes all �-minimal saturated 
onstraints forany given 
lause.
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e ConstraintsWe show that given a Cd 
onstraint ' and a minimal saturated 
onstraint & for it, Pd
an 
ompute & from ': If a saturation rule is appli
able to ', we 
an apply it in su
h away that we stay in a subset of &.Lemma 3.17 (Completeness). Let ' be a Cd 
onstraint and & a minimal Pd-saturated
onstraint for '. Then '!�Pd &.Proof. By well-founded indu
tion on the stri
t partial order � on the set f'0 j '0 � &g.If ' is Pd-saturated then ' !�Pd ' = & by minimality and we are done. Otherwise,there is a rule � = '0 ! _ni=1'i in Pd that applies to '. Sin
e '0 � ' � & and & isPd-saturated, there exists an i su
h that 'i � &. The 
onstraint ' ^ 'i is stri
tly biggerthan ', otherwise � would not apply to ' { see the appli
ation 
ondition app
� in Def.3.1 (p. 58). Furthermore by Lemma 3.5, Pd always terminates. Hen
e the indu
tivehypothesis already holds for ' ^ 'i: We have ' ^ 'i !�Pd & and thus '!�Pd &.So Pd 
an 
ompute all minimal saturated 
onstraints for a given 
onstraint. However,it does not 
ompute only minimal saturated 
onstraints. The only saturation rules that
an lead to nonminimal saturated 
onstraints are distribution rules where the right-hand side disjun
ts are not ex
lusive. The algorithm Pd possesses exa
tly one su
h rule,(D.distr.notDisj). Suppose we apply it to the 
onstraintX/�Z ^ Y /�Z ^X:a:This yields two 
lauses: One of them 
ontains X/�Y , and the other 
ontains Y /�X. Forthe 
lause 
ontaining X/�Y , we 
an now apply (D.distr.
hild) to X:a ^X/�Y , yieldingX=Y . We apply (D.distr.
hild) again to the same 
lause, this time to X:a^X/�Z, whi
hgives us X=Z. In the other 
lause, the one that 
ontains Y /�X, we also get X=Z by(D.distr.
hild),but not X=Y { this se
ond 
lause is a proper subset of the �rst 
lause.It is easy to show that ea
h model of a 
onstraint is also a model of one of its minimalsaturated 
onstraints.Proposition 3.18. Let ' be a Cd 
onstraint and (�; �) a model for '. Then ' possessesa minimal Pd-saturated 
onstraint that is also satis�ed by (�; �).Proof. Let & be ' extended by all literals entailed by (�; �). & is satis�able { it is satis�edby (�; �). It is also a saturated 
onstraint sin
e ea
h saturation rule only adds entailed
onstraints. There must be a minimal saturated 
onstraint & 0 for ' with & 0 � &: eitherit is & itself, or there exists some & 0 � & su
h that & 0 is a Pp-saturated 
onstraint but no& 00 � & 0 is.3.5 Re
apitulation: Properties of the Algorithm PdIn the previous se
tions we have shown a number of properties of the algorithm Pd, whi
hwe now sum up.



Solving Dominan
e Constraints 71Theorem 3.19. The dominan
e 
onstraint solver Pd has the following properties:1. It is sound for lambda stru
tures, i.e. all its rules are equivalen
e transformations.2. It is terminating.3. For ea
h Cd 
onstraint it 
omputes a �nite set of saturations.4. Ea
h Pd-saturated Cd-
onstraint is satis�able.5. Pd is 
omplete: Given a Cd 
onstraint ', Pd 
omputes all minimal Pd-saturationsfor '.Proof. 1. by Lemma 3.4, 2. by Lemma 3.5, 3. by Lemma 3.6, 4.by Lemma 3.14, and 5.by Lemma 3.17.3.6 Related Approa
hesRogers and Vijay-Shanker [102℄ study a feature logi
 that 
ontains literals expressingdominan
e, equality, parenthood, and pre
eden
e (\left-of"), and allows for arbitrarylogi
al 
onne
tives (in
luding negation). They dis
uss an algorithm for deriving a setof quasi-trees [115℄ equivalent to a given des
ription, and then an algorithm for readingo� satisfying trees from the quasi-trees. As we have remarked before, quasi-trees aregraphs that are very similar to graphs for Pd-saturated 
onstraints, ex
ept that in aquasi-tree no node has more than one dominan
e 
hild. The algorithm that transformsa tree des
ription into a set of quasi-trees is formulated as a resolution proof system anduses treeness axioms as inferen
e rules. Note that this algorithm 
omputes saturated
onstraints with a unique minimal model: Quasi-trees 
an be 
hara
terized by the fa
tthat ea
h of them has one unique minimal satisfying tree.Cornell [27℄ dis
usses a tree des
ription language that 
ontains relations expressing dom-inan
e, pre
eden
e and their inverses, furthermore equality, plus disjun
tions of all theserelations { however this language does not 
omprise labeling. For example a 
onstraintdep(x; y) states that x either dominates, equals, or pre
edes y. Satis�ability of these
onstraints 
an be tested in quadrati
 time, as Bodirsky and Kutz re
ently showed [14℄,using a greedy top-down tree 
onstru
tion algorithm.Du
hier and Gardent [33℄ 
onsider a sublanguage of Cd: 
onstraints that are 
onjun
tionsof dominan
e and labeling literals. They use a 
onstraint programming approa
h to solvethese 
onstraints. The 
entral idea is to represent the relative position of variables viafour sets for ea
h variable X. These sets 
ontain the variables that may be above X,below it, equal to it, and in a disjoint position. Propagators then redu
e the number ofpossible relations between ea
h pair of variables.Du
hier and Niehren [34℄ take the same 
onstraint programming approa
h as Du
hierand Gardent, using the four position sets. The language that they work with is Cd plus
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e Constraintsset operators. It allows for 
onstraints XRY , where R is a set of relations. This Cd solverhas been implemented in the language Oz [111℄. The implementation 
entrally uses �niteset 
onstraints and disjun
tive propagators. The implementation forms part of a systemthat demonstrates the use of CLLS in underspe
i�ed semanti
s [21℄. Du
hier and Niehrenshow that this 
onstraint programming algorithm is equivalent to a saturation-based one.The saturation algorithm uses rules similar to those we have dis
ussed in this 
hapter,but allows for stronger propagation. For example, in the se
ond example of Se
. 3.1.2,Fig. 3.4, Pd has to use distribution to see that the two fragments for \every plan" and\a 
at
h" 
annot overlap, while the saturation algorithm by Du
hier and Niehren 
andetermine this by propagation.Du
hier and Thater [35℄ transfer this approa
h to d-tree grammar by introdu
ing \ele
-trostati
 trees", dominan
e and labeling 
onstraints in whi
h the variables have positiveor negative polarities. Negative variables are similar to holes in Hole Semanti
s [15℄,they have to be \plugged" by positive variables. The main di�eren
e to the algorithmby Du
hier and Gardent is that Du
hier and Thater regard not one 
onstraint but adisjun
tion of 
onstraints: They use the algorithm for parsing, the parser has to 
hoosebetween di�erent lexi
al entries for ea
h word, and ea
h lexi
al entry 
ontributes a dif-ferent 
onstraint.Satis�ability of Cd is an NP-
omplete problem [78℄, but only be
ause di�erent fragmentsof the 
onstraint 
an overlap. Althaus, Du
hier, Koller, Mehlhorn, Niehren and Thiel[3℄ de�ne a sublanguage of Cd, the language of normal dominan
e 
onstraints, for whi
hsatis�ability is testable in polynomial time. A normal dominan
e 
onstraint 
onsists ofa set of fragments plus a set of dominan
e edges between the fragments. The fragments
an never overlap, and solving su
h 
onstraints means deriving a partial order of thefragments that respe
ts all dominan
e edges. For the satis�ability test, the problem isredu
ed to the weighted perfe
t mat
hing problem on graphs.3.7 SummaryIn this 
hapter we have dis
ussed the 
onstraint solver Pd for Cd. The solver pro
esses aset of 
lauses (= 
onstraints), saturating them until nothing new 
an be added anymore.Saturation is a simple paradigm, it retains all information it has ever gathered withouttrying for optimizations.The algorithm Pd extends a set of 
lauses, whi
h initially 
onsists of one input 
lause,using saturation rules that enfor
e treeness. In parti
ular, the algorithm applies distribu-tion in two situations: when two variables both dominate a third, and when a dominan
e\hangs o�" a labeled variable.A 
onstraint that is saturated under Pd is one to whi
h no saturation rule applies any-more. It 
an be 
hara
terized as a forest of trees with two kinds of edges, labeling anddominan
e edges, where ea
h node has at most one kind of outgoing edges, and outgoinglabeling edges are ordered, while outgoing dominan
e edges are not. We have shown that
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h Pd-saturated 
onstraint is satis�able: If its 
onstraint graph is already tree-shaped,then a model 
an be read o� right away. Otherwise we 
an transform it by su

essivelylabeling unlabeled nodes in su
h a way that the 
onstraint stays Pd-saturated.The 
onstraint solver is terminating, and it is sound in the sense that all rules areequivalen
e transformations. It is also 
omplete: It 
omputes all �-minimal saturated
onstraints for a given 
onstraint, i.e. all �-minimal supersets of the 
onstraint that aresaturations. We have shown 
ompleteness by proving that given a 
onstraint ', a minimalsaturated 
onstraint for it, and a saturation rule appli
able to ', we 
an apply the rule insu
h a way that the result of the rule appli
ation is still a subset of the minimal saturated
onstraint.
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Chapter 4Solving Parallelism Constraints
In this 
hapter we present a semi-de
ision pro
edure for parallelism 
onstraints. Thepro
edure in
orporates the dominan
e 
onstraint solver of the previous 
hapter. It isagain a saturation pro
edure, whi
h keeps adding material to a set of 
lauses until astate of saturation is rea
hed in whi
h nothing new 
an be added anymore. For satis�ableparallelism 
onstraints the pro
edure 
omputes saturated 
onstraints from whi
h models
an be read o� dire
tly.A parallelism literal states that two segments are stru
turally isomorphi
. In Chapter 2we have de�ned the parallelism relation in terms of 
orresponden
e fun
tions, whi
h link
orresponding nodes in the two parallel segments. It is the same idea that we now use forour semi-de
ision pro
edure, in the form of 
orresponden
e formulas. A 
orresponden
eformula links \
orresponding variables", i.e. variables that will denote 
orrespondingnodes. We express 
orresponden
e between variables in terms of a new type of literals,path parallelism literals. The path parallelism relation is very similar to the parallelismrelation, ex
ept that it talks about tree paths instead of segments.The proofs of 
ompleteness and satis�ability of saturated 
onstraints have the samebasi
 stru
ture as in the previous 
hapter. But espe
ially the 
ompleteness proof is moreinteresting in the 
urrent 
ase, as we now have saturation rules that introdu
e additionalexistentially quanti�ed variables. The proof that saturated 
onstraints are rea
hed aftera �nite number of steps, whi
h was trivial in the 
ase of Pd, be
omes mu
h more intri
atenow.4.1 A Semi-De
ision Pro
edure for Parallelism Constraints: PpIt is trivial to formulate a semi-de
ision pro
edure for the language Cp of parallelism
onstraints: Just enumerate lambda stru
tures and 
he
k for ea
h if it satis�es the given
onstraint. But su
h a pro
edure is of 
ourse not satisfa
tory { it is neither feasible, nordoes it provide insights into the nature of the problem. In 
ontrast, the pro
edure thatwe introdu
e in this se
tion� terminates for the linguisti
ally relevant 
onstraints and 
omputes saturations that
orrespond to the 
orre
t readings. 75



76 Solving Parallelism Constraints� introdu
es 
orresponden
e formulas as a data stru
ture for handling parallelismwithin partial tree des
riptions.� in
ludes an algorithm for solving dominan
e 
onstraints. Given a dominan
e 
on-straint as an input, the parallelism 
onstraint pro
edure behaves exa
tly like thedominan
e 
onstraint solver that it en
ompasses. This is advantageous be
ause, aswe have seen in Chapter 2, dominan
e 
onstraints play an important role in thelinguisti
 appli
ation.� is built in a modular fashion: a di�erent dominan
e 
onstraint solver 
an be sub-stituted for the one we use here. For example, the saturation algorithm of Du
hierand Niehren [34℄, whi
h needs less distribution, 
an be employed. A
tually, a re
entoverview paper on pro
essing CLLS [44℄ 
ombines this latter dominan
e 
onstraintsolver with the rules for parallelism that we present in this 
hapter.We extend the dominan
e 
onstraint solver of the previous 
hapter to a saturation-based semi-de
ision pro
edure for Cp. As before, the pro
edure works on a set of 
lauses(
onstraints). Whenever a 
lause 
ontains the left-hand side of a saturation rule but notthe right-hand side, the right-hand side 
an be added. By applying a deterministi
 rulewe just extend this one 
lause. By applying a distribution rule we repla
e the 
lause by aset of new ones, where ea
h new one 
onsists of the old 
lause extended by one right-handside disjun
t. This is exa
tly as in the previous 
hapter. However now the saturationrules have a slightly more general form: They may introdu
e additional existentiallyquanti�ed variables. The saturation rules that we use now have the form� : '0 ! n_i=19Vi'i if app
�for 
lauses '0; : : : ; 'n, n � 1, (possibly empty) sets V1; : : : ; Vn � Var of variables, andVar('i)�Var('0) � Vi for all 1 � i � n. app
� is the appli
ation 
ondition of the rule�. As in the previous 
hapter, it states that � 
an be applied only to a 
lause to whi
hit adds something new. But we have to adapt the appli
ation 
ondition to the 
hangedshape of the saturation rules. Given a set V of variables and a 
onstraint ', we 
all a
onstraint �' a V -variant of ' if � : V ! Var is a renaming of the variables in V . We
all this variant fresh if �(V ) is disjoint from Var(').De�nition 4.1 (Saturation step, appli
ation 
ondition). Let S be a set of satu-ration rules. A saturation step !S 
onsists of one appli
ation of a rule � 2 S. Let� = '0 ! Wni=1 9Vi'i for 
lauses '0; : : : ; 'n. Then'0 � ''!S ' ^ '0i for i 2 f1; : : : ; ng if app
� and '0i is a fresh Vi-variant of 'i:where the appli
ation 
ondition isapp
�(') =def for all 1 � i � n and all Vi-variants '00i of 'i : '00i 6� '



Solving Parallelism Constraints 77To make the saturation rules easier to read, we introdu
e formulas for some 
onstraintsthat we will use repeatedly. These formulas 
ontain disjun
tions. If a saturation rule
ontains su
h a formula on the right-hand side, it is a distribution rule. However if su
ha formula o

urs on the left-hand side of a rule, it abbreviates a set of saturation rules,as illustrated in Fig. 4.1. Note that this unfolding of rule abbreviations may have to beiterated. ('1 _ '2) ^ '3 ! & abbreviates '1 ^ '3 ! &'2 ^ '3 ! &Figure 4.1: Using a disjun
tive formula on the left-hand side of a rule4.1.1 Parallelism Literals and SymmetryIn Chapter 2 we have said that we regard inequality and disjointness literals as symmetri
;but we do not regard parallelism literals as symmetri
. This is be
ause by Def. 2.7 (p.29) the 
onditions on lambda binding are symmetri
, but the 
onditions on anaphori
binding are not: Anaphori
 binding in the \sour
e segment term" imposes restri
tionson anaphori
 binding in the \target segment term", but not vi
e versa.However, for all purposes ex
ept anaphori
 binding, we make no di�eren
e between theleft and the right segment term of a parallelism literal. Let A = X0=X1; : : : ;Xn, B =Y0=Y1; : : : ; Yn be segment terms. Then we introdu
e the following formula for \symmetri
parallelism": A �sym B =def A � B _ B � A:In the 
urrent 
hapter we will use this symmetri
 parallelism formula throughout. It isonly in the following 
hapter, when we extend the pro
edure to handle binding literals,that we will make use of the asymmetry of parallelism literals.4.1.2 Corresponden
e Formulas and Path ParallelismThe pro
edure for Cp that we present in this 
hapter solves parallelism literals by 
om-puting a synta
ti
 equivalent of the 
orresponden
e fun
tions of Def. 2.3 (p. 27): 
orre-sponden
e formulas, whi
h we also 
all synta
ti
 
orresponden
e fun
tions. Two variablesare linked by a 
orresponden
e formula if they denote 
orresponding nodes.We express synta
ti
 
orresponden
e in terms of a new type of literals, path parallelismliterals. The path parallelism relation states that two tree paths are the same, as well asthe labels en
ountered on the paths. Figure 4.2 illustrates this.
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Figure 4.2: Path parallelismDe�nition 4.2 (Path parallelism). Let � be a tree stru
ture. Path parallelism is thelargest relation on 4-tuples of paths from D� su
h that p(�1�2  1 2 ) holds in � i�� there exists a path � su
h that �2 = �1� and  2 =  1�, and� for ea
h proper pre�x �0 of �, L�(�1�0) = L�( 1�0).Path parallelism is the restri
tion of parallelism from segments to paths. In parti
ular,note that the labels of �2 and  2 need not be identi
al, only the labels of all nodesen
ountered on the paths before �2 and  2. Corresponden
e fun
tions 
an be expressedin terms of path parallelism:Proposition 4.3. Given a tree stru
ture � with segments �; � su
h that there exists a
orresponden
e fun
tion 
 between � and � in �. Then for all nodes �;  of �,
o(�; �)(�)= i� � 2 b(�) and p( r(�)� r(�) )Proof. We pro
eed by indu
tion on the length of the path from r(�) to �, abbreviating
o(�; �) by 
 for in
reased readability.\)" Con
erning a path � of length 0, we have � = r(�), and 
(r(�)) = r(�). Butr(�) 2 b(�) and p( r(�)r(�) r(�)r(�) ) hold trivially in �.Now let � 2 b�(�) with � j= �:f(�1; : : : ; �n), su
h that p( r(�)� r(�)
(�) ) holds in �.By Def. 2.3, we have � j= 
(�):f(
(�1); : : : ; 
(�n)). But that already means thatp( r(�)�i r(�)
(�i)) must hold in � for 1 � i � n.\(": For the 
ase of � = r(�), if p( r(�)� r(�) ) holds then  = r(�), and by Def. 2.3,
(r(�)) = r(�).For the indu
tive step, suppose p(�1�  1 ) holds in � for � 2 b(�) and � 6=r(�). Thenby the de�nition of path parallelism (Def. 4.2), there are nodes �0;  0 su
h thatp(�1�0  1 0 ) holds in �, �0 and  0 bear the same label, � is the i-th 
hild of �0 and  the
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hild of  0 for some i. The indu
tive hypothesis applies to �0 sin
e �0 is stri
tlyshorter than � and �0 2 b(�) (sin
e � 2 b(�)), so 
(�0) =  0, when
e 
(�) =  byDef. 2.3.
On the synta
ti
 side, we extend our 
onstraint languages by path parallelism literals ofthe form p(XX 0 YY 0 ):For short, we also 
all them path literals. Like inequality and disjointness literals, pathliterals are symmetri
.We write Cpp for the language Cp extended by path literals, and CLLSp for CLLS extendedby path literals.

f

g

h

f

Interestingly, it is not 
lear whether path literals 
an be expressed in terms ofparallelism literals. While it is true that path parallelism is the restri
tion ofparallelism to path-shaped segments, a path literal is not just a restri
ted formof a parallelism literal. A parallelism literal always spe
i�es the (maximum)number of ex
eptions in the two segments that it is about, while a path literaldoes not restri
t the number of ex
eptions in the two path-shaped segmentsthat it des
ribes. See the �gure to the right for an example of a path-shapedsegment and its ex
eptions, here drawn as shaded 
ir
les.We use path literals to express synta
ti
 
orresponden
e by some formulas that we in-trodu
e now. The fa
t that some segment term A = X0=X1; : : : ;Xn denotes a segmentis stated by the formulaseg(A) =def n̂i=1X0/�Xi ^ ^1�i<j�n �(Xi?Xj) _ (Xi=Xj)�:(As de�ned in in Chapter 2, p. 31, two hole variables of a segment term may denote thesame hole node, and the order of hole variables need not mat
h the order of the holenodes.) Given a segment term A and a variable X of a CLLS 
onstraint, we do notalways know whether the denotation of X lies inside the denotation of A. The 
aseswhere we do know 
an be des
ribed by the following formulas: Let A be as above, thenX 2 b(A) =def X0/�X ^ Vni=1(X/�Xi _X?Xi)X 2 b�(A) =def X 2 b(A) ^Vni=1(X 6=Xi _X?Xi)X 62b(A) =def X/+X0 _X?X0 _Wni=1Xi/+XX 62b�(A) =def X/+X0 _X?X0 _Wni=1Xi/�XSo X 2 b(A) is a disjun
tion of 
onstraints. Still, we write \X 2 b(A) is in '" to expressthat one of the disjun
ts inX 2 b(A) is 
ontained in the 
onstraint ', and analogously for



80 Solving Parallelism Constraintsthe other formulas that we have just de�ned. Also, we sometimes write \X is inside A"instead of \X 2 b(A) is in the 
onstraint we 
urrently 
onsider". Note that the negativeformula X 62b(A) expresses that we know for sure that the denotation of X 
annot beinside the denotation of A, and analogously for X 62b�(A).Now we 
an de�ne 
orresponden
e formulas. Let A = X0=X1; : : : ;Xn and B =Y0=Y1; : : : ; Yn. Then
o(A;B)(U)=V =def A�symB ^ p(X0U Y0V ) ^ U 2 b(A):
o(A,B) is the synta
ti
 
orresponden
e fun
tion for the two parallel segment terms Aand B.4.1.3 The Rules in DetailRemember that the 
lass Cp of parallelism 
onstraints has the following abstra
t syntax:'; & ::= X/�Y j X:f(X1; : : : ;Xn) j X?Y j X 6=Y (ar(f) = n)j X0=X1; : : : ;Xn�Y0=Y1; : : : ; Yn n � 0j false j ' ^ &The semi-de
ision pro
edure Pp for parallelism 
onstraints is shown in Fig. 4.3. The �rstblo
k of rules infers a synta
ti
 
orresponden
e fun
tion 
o(A,B) for ea
h parallelismliteral A � B and 
opies 
onstraints from variables to their 
orrespondents.1 The rule(P.init) has the form A�B ! seg(A)^ seg(B)^ 
o(A;B)(Xi)=Yi for segment terms A =X0=X1; : : : ;Xn and B = Y0=Y1; : : : ; Yn and 0 � i � n. It makes sure that two parallel seg-ment terms A and B denote segments, and it �xes some 
orresponden
es in the synta
ti

orresponden
e fun
tion 
o(A,B): the root variables of A and B must 
orrespond, and thei-th hole variable of A 
orresponds to the i-th hole of B for all i. For all other variables in-side A or B, (P.new) introdu
es a new existentially quanti�ed variable as a 
orrespondent:It has the form A�symB ^ U 2 b(A) ! 9U 0:
o(A;B)(U)=U 0. The rule (P.
opy.dom),whi
h is U1RU2 ^ V2i=1 
o(A;B)(Ui)=Vi ! V1RV2 for R 2 f/�;?; 6=g, 
opies dominan
e,disjointness, and inequality literals from variables U1; U2 to variables 
orresponding toU1; U2. Note that this rule only applies if V1; V2 are 
orrespondents of U1; U2 by thesame synta
ti
 
orresponden
e fun
tion 
o(A,B). Likewise, (P.
opy.lab), whi
h statesU0:f(U1; : : : ; Um) ^ Vmi=0 
o(A;B)(Ui)=Vi ^ U0 2 b�(A) ! V0:f(V1; : : : ; Vm), 
opieslabeling literals from variables U0; : : : ; Um to their 
orrespondents. This rule additionallymakes sure that U0 is not a hole of A: By Def. 2.3 and 2.4 (p. 27), two parallel segmentsare isomorphi
 only up to their holes, ex
luding the hole labels.The pro
edure Pp 
ontains two distribution rules in addition to the ones of Pd, listedin the se
ond blo
k in Fig. 4.3. (P.distr.seg) has the form A�symB ^ X0/�X ! X 21Note that a variable may have more than one 
orrespondent, even with respe
t to the same synta
ti

orresponden
e fun
tion 
o(A,B). But if a 
onstraint 
ontains 
o(A;B)(U) = V1 and 
o(A;B)(U) = V2,then its saturation will also 
ontain V1=V2 by (P.trans.h) and (P.path.eq.2).
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Let A = X0=X1; : : : ;Xn and B = Y0=Y1; : : : ; Yn.Core Rules(P.init) A�B ! seg(A) ^ seg(B) ^ 
o(A;B)(Xi)=Yi where 0 � i � n(P.new) A�symB ^ U 2 b(A) ! 9U 0:
o(A;B)(U)=U 0 where U 0 is a freshvariable(P.
opy.dom) U1RU2 ^V2i=1 
o(A;B)(Ui)=Vi ! V1RV2 where R 2 f/�;?; 6=g(P.
opy.lab) U0:f(U1; : : : ; Um) ^Vmi=0 
o(A;B)(Ui)=Vi ^ U0 2 b�(A) !V0:f(V1; : : : ; Vm)Additional Distribution Rules(P.distr.seg) A�symB ^X0/�X ! X 2 b(A) _ Wnj=1Xj/+X(P.distr.eq) ' ! X=Y _ X 6=Y where X;Y 2 Var(')Rules 
on
erning Path Parallelism(P.path.dom) p(XU YV ) ! X/�U ^ Y /�V(P.path.eq.1) p(X1X2 X3X4 ) ^V4i=1Xi=Yi ! p(Y1Y2 Y3Y4 )(P.path.eq.2) p(XU XV ) ! U=V(P.trans.h) p(XU YV ) ^ p(YV ZW ) ! p(XU ZW )(P.trans.v) p(X1X2 Y1Y2 ) ^ p(X2X3 Y2Y3 ) ! p(X1X3 Y1Y3 )(P.di�.1) p(X1X2 Y1Y2 ) ^ p(X1X3 Y1Y3 ) ^X2/�X3 ^ Y2/�Y3 ! p(X2X3 Y2Y3 )(P.di�.2) p(X1X3 Y1Y3 ) ^ p(X2X3 Y2Y3 ) ^X1/�X2 ^ Y1/�Y2 ! p(X1X2 Y1Y2 )plus the rules of the dominan
e 
onstraint solver Pd in Fig. 3.2, p. 60.Figure 4.3: Solving Cp 
onstraints: pro
edure Pp.



82 Solving Parallelism Constraintsb(A) _ Wnj=1Xj/+X. It deals with situations like the one in Fig. 4.4 (where the twosegment terms of the parallelism literal are visualized by bra
kets from root to holevariables): Here we have to de
ide whether U is in b(X0=X1) or not, su
h that weknow whether or not to apply (P.new) to U . (P.distr.eq) is a proje
tion rule: Stating' ! X=Y _ X 6=Y for X;Y 2 Var('), it guesses whether two variables should beidenti�ed or not. � X0� U � X1 � Y0� Y1X0=X1�Y0=Y1Figure 4.4: Constraint graph illustrating (P.distr.seg)The saturation rules of the last blo
k state properties of path parallelism. They ensurethat 
orresponden
e formulas 
orre
tly mirror 
orresponden
e fun
tions. (P.path.dom),whi
h is p(XU YV ) ! X/�U ^ Y /�V , states that the existen
e of a path from X to Uimplies dominan
e. By (P.path.eq.1), given a path literal we 
an add another in whi
hequal variables have been substituted: p(X1X2 X3X4 ) ^ V4i=1Xi=Yi ! p(Y1Y2 Y3Y4 ). At thesame time, this rule ensures that synta
ti
 
orresponden
e 
orre
tly models the fa
t that(semanti
) 
orresponden
e is a fun
tion: If two variables are equal, they will be mappedto the same 
orresponding variable. (P.path.eq.2), whi
h has the form p(XU XV )! U=V ,states that two parallel paths starting at the same point must end at the same point. Therule (P.trans.h), whi
h is p(XU YV ) ^ p(YV ZW )! p(XU ZW ), expresses horizontal transitivity:if a path is parallel to a se
ond one, whi
h again is parallel to a third one, then the �rstand third paths are also parallel. � X1� X2� X3 � Y1� Y2� Y3
The rules (P.trans.v), (P.di�.1) and (P.di�.2) are all 
on
erned with ver-ti
al transitivity. These rules are illustrated in the �gure to the right:There are variables X1;X2;X3 with X1 dominating X2 and X2 domi-nating X3, and Y1; Y2; Y3 with Y1 dominating Y2 and Y2 dominating Y3.(P.trans.v) states p(X1X2 Y1Y2 ) ^ p(X2X3 Y2Y3 ) ! p(X1X3 Y1Y3 ): If the \short" pathfrom X1 to X2, or X1�X2 for short, is parallel to Y1�Y2, and the shortpaths X2 �X3 and Y2 � Y3 are parallel as well, then the two long pathsX1 � X3 and Y1 � Y3 are also parallel. The other two rules make similar statements:if two of the path pairs are parallel, then so is the third. The rule (P.di�.1), whi
h isp(X1X2 Y1Y2 ) ^ p(X1X3 Y1Y3 ) ^ X2/�X3 ^ Y2/�Y3 ! p(X2X3 Y2Y3 ), says that if X1�X2, Y1� Y2 areparallel and X1�X3, Y1�Y3 are parallel too, then so are X2�X3 and Y2�Y3. And therule (P.di�.2), whi
h has the form p(X1X3 Y1Y3 ) ^ p(X2X3 Y2Y3 ) ^ X1/�X2 ^ Y1/�Y2 ! p(X1X2 Y1Y2 ),
on
ludes that X1 �X2, Y1 � Y2 must be parallel if �rst X1 �X3, Y1 � Y3 and se
ondX2 �X3, Y2 � Y3 are.



Solving Parallelism Constraints 83(a) f �� X0g � U0� U1� X1 � Y0� V� Y1
(b) f �� X0g � U0� U1 � X1 � V 0 � Y0� V � Y1 g � U 00� U 01X0=X1�Y0=Y1 X0=X1�Y0=Y1(
) f �� X0� V 0g � U0� U1� X1

� Y0� Vg � U 00� U 01� Y1
(d) f �� X0g � U0� U1� V 0� X1

� Y0g � U 00� U 01� V� Y1X0=X1�Y0=Y1 X0=X1�Y0=Y1Figure 4.5: (a) A simple 
onstraint with a parallelism literal, (b) a partial saturationwith 
orresponden
es drawn in, and (
), (d) two further advan
ed partial saturations4.1.4 ExamplesExample 4.4 (Illustrating the 
ore rules). We �rst demonstrate the 
ore rules ofPp (the �rst rule blo
k in Fig. 4.3) and their intera
tion with the Pd rules. We startout with the 
onstraint in Fig. 4.5 (a). Then Pp 
an perform the 
omputation shown inFig. 4.6. When a distribution rule in
reases the number of 
lauses, we indi
ate this bydividing the box in Fig. 4.6 verti
ally, with one 
olumn for ea
h 
lause.Rule (P.init) is applied in line (1) of Fig. 4.6: The roots X0; Y0 
orrespond, as do the holesX1; Y1. How do we go on from there? The variable U0 is inside A, and V is inside B.But they are just dominated by X0 and Y0 respe
tively, their position is not �xed. Rule(P.new) gives both these variables, as well as U1, 
orrespondents (in lines (2) { (4) of Fig.4.6), then leaves it to other rules to determine the positions of these 
orrespondents. Inlines (5) { (7), (P.
opy.dom) positions the images U 00; U 01 within b(B), and the image V 0inside b(A). Line (10) 
opies the label of U0 to U 00 by (P.
opy.lab). The two pre
edinglines (8) and (9) make sure that (P.
opy.lab) is appli
able, i.e. U0 is not the hole of A.The resulting 
onstraint is the one in Fig. 4.5 (b). In this graph, 
orresponden
e is indi-
ated by dashed ar
s. At this stage, all variables inside A or B possess a 
orrespondent,but the 
onstraint is not saturated yet. Lines (11) and (12) show what happens whenwe apply (D.distr.notDisj) now. If we 
hoose the alternative V 0/�U1 (line (11a)), then(P.
opy.dom) 
an immediately infer V /�U 01. This gives us the 
onstraint shown in Fig.



84 Solving Parallelism Constraints(1) X0/�X1 ^ Y0/�Y1 ^
o(A;B)(X0)=Y0 ^ 
o(A;B)(X1)=Y1 (P.init)(2) 9U 00:
o(A;B)(U0)=U 00 (P.new)(3) 9U 01:
o(A;B)(U1)=U 01 (P.new)(4) 9V 0:
o(A;B)(V 0)=V (P.new)(5) X0/�V 0, V 0/�X1 (P.
opy.dom)(6) Y0/�U 00,U 00/�Y1 (P.
opy.dom)(7) Y0/�U 01,U 01/�Y1 (P.
opy.dom)(8) U0/+U1 (D.lab.ineq)(9) U0/+X1 (D.dom.ineq)(10) U 00:g(U 01) (P.
opy.lab)(11) V 0/�U1 _ U1/�V 0 (D.distr.notDisj)(11a) V 0/�U1:(12) V /�U 01 (P.
opy.dom) (11b) U1/�V 0:(13) U 01/�V (P.
opy.dom)Figure 4.6: Computation of Pp on Fig. 4.5 (a)4.5 (
). The alternative in (11b) is analogous, yielding the 
onstraint depi
ted in Fig. 4.5(d).At this point (after lines (12) and (13) of the 
omputation in Fig. 4.6 respe
tively) wehave rea
hed 
onstraints that are almost saturated. It remains to apply (P.distr.eq) toguess whi
h variables should be equal. We 
onsider the 
onstraint we have rea
hed afterline (12) of the 
omputation, the one depi
ted in Fig. 4.5 (
). If (P.distr.eq) now guesses,for example, X0 6=V 0; V 0 6=U0; U1 6=X1, then we get Y0 6=V; V 6=U 00; U 01 6=Y1 by (P.
opy.dom)and a saturation that again is visualized by the 
onstraint graph in Fig. 4.5 (
).Example 4.5 (Quanti�er Parallelism). In Se
tion 2.3 we have dis
ussed the phe-nomenon of quanti�er parallelism: If a s
ope ambiguity o

urs in the sour
e senten
e ofan ellipsis, then this ambiguity has to be resolved the same way in the sour
e and thetarget senten
e, as witnessed e.g. by senten
e (2.6) (p. 37), repeated here as (4.1).(4.1) Every linguist attended a workshop. Every 
omputer s
ientist did, too.The 
onstraint representing the meaning of this senten
e is shown in Fig. 2.12, p. 37.In the previous example we have dis
ussed the me
hanism that ensures that the \ambi-guity" between V 0 and U1 in Fig. 4.5 (b) is resolved the same way as the \ambiguity"between V and U 01. The same me
hanism sees to it that quanti�er parallelism is handled
orre
tly: When the ambiguity between the two s
ope-bearing expressions in the sour
esenten
e is resolved, the ambiguity between their 
opies in the target senten
e has tobe resolved in the same way be
ause 
orresponding nodes must have the same positionswithin their respe
tive segments.



Solving Parallelism Constraints 85(a) � X0� Y0� X1� Y1 (b) � X0� Y0 � Y 00� X1� Y1X0=X1�Y0=Y1 X0=X1�Y0=Y1Figure 4.7: (a) Overlapping parallelism literal and (b) a partial saturationExample 4.6 (Overlap and in�nitely many saturations). Figure 4.7 (a) shows avery simple 
onstraint in whi
h the parallelism literal \overlaps itself". For this 
on-straint the pro
edure Pp 
omputes in�nitely many di�erent saturations. One saturation
ontains X0=X1=Y0=Y1. Another 
ontains X0/+X1=Y0/+Y1. If the 
onstraint 
ontainsX0/+Y0/+X1/+Y1, then the variable Y0 2 b(X0=X1) needs a 
orrespondent by (P.new),e.g. 
o(X0=X1; Y0=Y1)(Y0)=Y 00 , and (P.
opy.dom) gives us the 
onstraint depi
ted in Fig.4.7 (b). Now (D.distr.notDisj) is appli
able to Y 00 and X1. It 
an either pla
e Y 00 betweenX1 and Y1. Then Y 00 is inside Y0=Y1 but not insideX0=X1. Or (D.distr.notDisj) 
an pla
eY 00 between Y0 and X1, where it is in the \overlap region" belonging to both segmentterms. Then Y 00 is inside X0=X1 and needs a 
orrespondent in Y0=Y1, and so on.f � X0� Y0g � X1� Y1X0=X1�Y0=Y1Example 4.7 (Nontermination). The �gure to the right shows anunsatis�able 
onstraint. For this 
onstraint, Pp does not terminate.It 
opies the f -label from X0 to Y0. But as Y0 is inside X0=X1, it
opies the f -label from Y0 to Y0's 
hild. This 
hild of Y0 is againinside X0=X1, so the f -label gets 
opied from that variable to its
hild, and so on ad in�nitum.(a) � X0� Y0� X1� Y1 (b) � X0� Y0 � Y 00� X1� Y1X0=X1�Y0=Y1 ^X0=Y0�X1=Y1 X0=X1�Y0=Y1 ^X0=Y0�X1=Y1Figure 4.8: (a) Guessing equalities: For this 
onstraint, (P.distr.eq) is needed.(b) A partial saturation.Example 4.8 (Guessing equalities). If we introdu
e a 
orrespondent using (P.new),there are only two possibilities: Either the new variable will denote the same node assome variable that we already had in the 
onstraint, or it will denote a node that did notinterpret any variable of the 
onstraint up to then. We de�nitely make progress in our
omputation when we de
ide whi
h of the two 
ases applies. If we do not de
ide between



86 Solving Parallelism Constraintsthe two 
ases, we might end up inventing more and more new variables that in the endall denote the same node.The rule (P.distr.eq) de
ides between the two 
ases by guessing equalities and inequalitiesbetween nodes. However, it is surprisingly hard to 
onstru
t a 
onstraint where thisrule is a
tually needed { i.e. a 
onstraint that is satis�able but for whi
h Pp wouldnever terminate without guessing equalities. Figure 4.8 (a) shows what seems to bethe simplest su
h 
onstraint. Remember that in dis
ussing the \overlapping parallelismliteral" 
onstraint in Fig. 4.7 (a), we have 
alled the part of the 
onstraint between Y0 andX1 the \overlap region", whi
h belongs to both segment terms of the parallelism literal,and we have distinguished it from the segment terms above Y0 and below X1, whi
h bothbelong to only one of the two parallelism segment terms. Now in the 
onstraint in Fig.4.8 (a) , we have two parallelism literals and three \overlap regions".Now suppose that again we want to �nd a 
orrespondent for Y0 2 b(X0=X1). We intro-du
e a variable Y 00 with 
o(X0=X1; Y0=Y1)(Y0)=Y 00 , and (P.
opy.dom) adds Y0/�Y 00 ; Y 00/�Y1as shown in Fig. 4.8 (b). Again (D.distr.notDisj) is appli
able to Y 00 and X1. If Y 00 ispla
ed between Y0 and X1, it is inside Y0=Y1 and will need a 
orrespondent insideX0=X1.And if Y 00 is pla
ed between X1 and Y1, it is inside X1=Y1 and will need a 
orrespondentinside X0=Y0. So wherever Y 00 is pla
ed, (P.new) is again appli
able to it.The 
onstraint in Fig. 4.8 (a) is satis�able, and Pp should be able to 
ompute saturationsfor it. And indeed Pp 
an 
ompute saturations (in�nitely many di�erent ones, as for the
onstraint in Fig. 4.7 (a)), but only be
ause (P.distr.eq) guarantees that progress is madein the 
omputation.� X0 � U2� U1� X1 � Y0 � U 02� U 01� Y1 � Z0 � U 002� U 001� Z1U1?X1 ^ U2?X1 ^ U1 6=U2 ^A � B ^ B � C ^ C � A ^
o(A;B)(U1)=U 01 ^ 
o(A;B)(U2)=U 02 ^
o(B;C)(U 01)=U 001 ^ 
o(B;C)(U 02)=U 002where A = X0=X1 and B = Y0=Y1 and C = Z0=Z1.Figure 4.9: A 
onstraint illustrating the path parallelism transitivity rulesExample 4.9 (Path parallelism transitivity). The path parallelism rules see to itthat 
orresponding variables are assigned in a 
onsistent way over the di�erent synta
ti

orresponden
e fun
tions. We now dis
uss an example whi
h without the horizontal tran-sitivity rule (P.trans.h) 
ould re
eive spurious saturations. Consider Fig. 4.9. There arethree parallelism literals. In any model, their three synta
ti
 
orresponden
e fun
tionsmust mat
h the a
tual (semanti
) 
orresponden
e fun
tions (be
ause their path literals
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ause of the 
orrelation between path parallelism and 
orrespon-den
e fun
tions stated in Prop. 4.3, p. 78). If for example U1 denotes the �rst 
hild ofthe node interpreting X0, then U 01 must denote the �rst 
hild of the node interpretingY0, and analogously U2 and U 02, a

ording to the de�nition of 
orresponden
e fun
tions(Def. 2.3).The 
onstraint in Fig. 4.9 has already been partially saturated, as the 
orresponden
eformulas show. Figure 4.10 shows a possible further 
omputation. Line (3) and (4) atta
hthe 
orrespondents (with respe
t to A � C) of U1; U2 in C \the wrong way round": Atthat point the 
onstraint states that U1; U 01 denote 
orresponding nodes, and U 01; U 001denote 
orresponding nodes, and U1; U 002 denote 
orresponding nodes. That 
onstraint isunsatis�able. This 
an be dete
ted, as the rest of the 
omputation in Fig. 4.10 shows,but only using (P.trans.h).(1) 9U1:
o(A;C)(U1)=U1 (P.new)(2) 9U2:
o(A;C)(U2)=U2 (P.new)(3) U1=U 002 (P.distr.eq)(4) U2=U 001 (P.distr.eq)(5) p(X0U1 Z0U 001 ); p(X0U2 Z0U 002 ) (P.trans.h)(6) p( Z0U 001 Z0U1 ); p( Z0U 002 Z0U2 ) (P.trans.h)(7) U 001=U1, U 002=U2 (P.path.eq.2)(8) U1=U2 (D.dom.trans)(9) U1 6=U2 (P.
opy.dom)(10) false (D.
lash.ineq)Figure 4.10: A further 
omputation on Fig. 4.94.1.5 A Note on Saturations and ReadingsAt the beginning of the 
urrent 
hapter we have argued that one of the good propertiesof the pro
edure Pp is that, for the linguisti
ally relevant 
onstraints, it 
an 
ompute
onstraints that dire
tly mat
h the 
orre
t readings. Now it is time to take a 
loser lookat this statement.How many saturations does the 
onstraint for our standard quanti�er parallelism senten
e(4.1) have? We repeat the 
onstraint here (without the lambda binding literals, whi
h we
over in the following 
hapter) as Fig. 4.11. The senten
e has three readings. And indeedthe 
onstraint in Fig. 4.11 has three di�erent partial saturations sket
hed in Fig. 4.12.But the 
onstraint has more saturations than three, be
ause of (P.distr.eq): For ea
h ofthe dominan
e edges shown in the sket
hes in Fig. 4.12, (P.distr.eq) guesses whether toidentify the upper and the lower variable that the dominan
e edge 
onne
ts.



88 Solving Parallelism Constraintsand �� X0� �� �a � ws � lam �� � �� � X1ev � ling � lam �� � Y0� � Y1ev � 
s �X0=X1�Y0=Y1� �� �attend � var �var �Figure 4.11: Constraint for \Every linguist attended a workshop. Every 
omputer s
ien-tist did, too." (minus lambda binding)
attend attend attend attend

ev. csev. ling

attend attend

a ws.

a wsa ws

ev. ling ev. cs

a ws

ev. csev. ling

a ws.

b)a) c)

Figure 4.12: Sket
h of three partial saturations of the 
onstraint in Fig. 4.11But as we have said above, it is diÆ
ult to �nd a 
onstraint for whi
h (P.distr.eq) isa
tually needed. The one 
onstraint that we have dis
ussed above involves multipleself-overlap of parallelism literals. However, in linguisti
ally relevant 
onstraints theparallelism literals are mu
h simpler { it seems that \self-overlap" does not o

ur at all.In a �rst implementation of the pro
edure Pp [21℄ the rule (P.distr.eq) is disabled, whi
hmeans that the saturations 
omputed e.g. for the 
onstraint in Fig. 4.11 are a
tually thethree 
onstraints sket
hed in Fig. 4.12.In Chapter 9, where we give an outlook over further work, we dis
uss a restri
tion of thelanguage of parallelism 
onstraints that ex
ludes \self-overlap": This language fragmentis de
idable and 
ould have interesting pro
essing properties (and it should suÆ
e forhandling parallelism phenomena).4.2 Some Properties of the Pro
edure: Soundness, Nontermination,Control, SaturationsIn this and the following se
tions we examine properties of the semi-de
ision pro
edurePp. All results are 
olle
ted in a theorem in Se
. 4.6.



Solving Parallelism Constraints 894.2.1 SoundnessIn Def. 3.3 (p. 62), we have stated the notion of soundness that we use: We 
all asaturation pro
edure sound if all its rules are equivalen
e transformations. We havenoted that be
ause we are working in a saturation framework it suÆ
es to show that inall rules the premise entails the 
on
lusion.It is easy to show that in all rules of the pro
edure Pp, the left-hand side entails the right-hand side: The two additional distribution rules are obviously sound, and the rules aboutpath literals des
ribe valid properties of path parallelism. Con
erning the 
ore rules,Prop. 4.3 (p. 78) implies that satisfa
tion for 
orresponden
e formulas works the sameway as satisfa
tion of a literal: A 
orresponden
e formula 
o(A;B)(U)=V is satis�ed bya lambda stru
ture i� the 
orresponden
e fun
tion for the segments interpreting A;Bmaps the denotation of U to the denotation of V . And that means that the 
ore rules ofPp are obviously sound by the de�nition of parallelism (Def. 2.4, p. 28).Lemma 4.10 (Soundness). The semi-de
ision pro
edure Pp for Cp is sound for lambdastru
tures.4.2.2 NonterminationAs we have seen in Ex. 4.7, there are unsatis�able 
onstraints for whi
h Pp does notterminate. But if a Cp 
onstraint is satis�able, then the pro
edure Pp will 
ompute allits minimal saturations, as we show below in Se
. 4.5.4.2.3 FairnessBasi
ally, we will 
all a sequen
e of saturation steps fair if whenever a rule is appli
able,one of the disjun
ts in its 
on
lusion will ultimately be added. That is, our notion offairness is one of exhaustiveness.De�nition 4.11 (Fairness). Let S be a set of saturation rules and let '0; '1; : : : be
lauses. We 
all a sequen
e '0 !S '1 !S : : : fair i� either there exists some i � 0 su
hthat 'i is failed, or the following holds:For all i � 0 su
h that some rule � = &0 ! Wnk=1 9Vk&k in S is appli
able to 'i, thereexists some j > i, and some k su
h that & 0k is in 'j for some Vk-variant & 0k of &k.For the Cd-solver Pd of the previous 
hapter, fairness is not a problem. Ea
h sequen
eof Pd-saturation steps is �nite be
ause there are only �nitely many di�erent literals thatthat algorithm 
an add for ea
h variable. And if we rea
h a saturated 
onstraint, theabove fairness 
ondition must hold or the 
onstraint would not be saturated: By Def. 4.1(p. 76) a saturation rule is appli
able only if it 
an add something new to the 
onstraint(by the appli
ation 
ondition app
� of a rule �). So it 
an happen that two di�erentrules �1, �2 are appli
able to a 
onstraint ', and the rule �1 is 
hosen to produ
e the
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onstraint '0 by a saturation step ' !f�1g '0, but �2 is not appli
able to '0 anymore.Suppose that is the 
ase, and suppose �2 = ' ! Wni=1 9Vi'i is the rule that did not get
hosen. Then a Vi-variant of some 'i must already be in '0, this is the way that theappli
ation 
ondition app
�2 is de�ned. That is, one of the disjun
ts in �2's 
on
lusionhas been added, and if not by �2, then by some other rule (in the 
ase we have justsket
hed it must have been �1).For the pro
edure Pp, however, things are di�erent. Be
ause of (P.new), there are in�nitesequen
es of Pp-saturation steps. So we introdu
e the following 
ondition to ensurefairness:Fairness 
ondition. (P.new) is applied only to 
onstraints saturated underPp� f(P.new)g. (P.new) is applied to variables in the order of their introdu
-tion into the 
onstraint.It is easy to verify that this 
ondition guarantees fairness as de�ned above. But whythis parti
ular 
ondition? With this 
ondition, we make progress after ea
h appli
ationof (P.new), in the sense that we have dis
ussed in Ex. 4.8: After ea
h appli
ation of(P.new) we determine whether the newly introdu
ed 
orresponding variable denotes thesame node as some variable we already had, or if it denotes a node that up to then didnot interpret any variable of the 
onstraint. And it is this fairness 
ondition (or ratherits �rst half) that we will use in our argument for the 
ompleteness of the pro
edure Pp.4.2.4 Saturated ConstraintsFor a satis�able parallelism 
onstraint, the pro
edure 
omputes a set of saturations,
onstraints to whi
h no rule of Pp is appli
able anymore.Lemma 4.12. There are satis�able parallelism 
onstraints for whi
h Pp 
omputes in-�nitely many saturations.Proof. This is the 
ase e.g. for the 
onstraints dis
ussed in Ex. 4.6 and 4.8.In Se
. 4.4, where we dis
uss minimal saturated 
onstraints, we introdu
e a partial orderon CLLSp 
onstraints. There we will show that whenever Pp 
omputes more than onesaturation for a 
onstraint, the saturations will be in
omparable by that order.Pp-saturated 
onstraints basi
ally look like the Pd-saturated 
onstraints of the previous
hapter, with a few additional restri
tions. Remember that we have informally des
ribedPd-saturations as follows: The 
onstraint graph of a saturated 
onstraint is a forest withtwo di�erent kinds of tree nodes, labeled and unlabeled ones, and two di�erent kinds ofedges, dominan
e and labeling edges. A node is either labeled, all its outgoing edges arelabeling edges, and its 
hildren are ordered; or it is unlabeled, all its outgoing edges aredominan
e edges, and its 
hildren are unordered.



Solving Parallelism Constraints 91What is di�erent in a Pp-saturated 
onstraint? It may 
ontain parallelism literals. Inthat 
ase, if we draw the 
orresponden
e formulas into the 
onstraint graph in the shapeof 
orresponden
e ar
s, then given a parallelism literal, every 
onstraint graph node \in-side" one of its two segment terms will be linked, via a 
orresponden
e ar
, to exa
tlyone node \inside" the other segment term. Ar
s always link labeled with labeled nodes,and unlabeled with unlabeled nodes, ex
ept for the holes of a segment term. Ar
s linkinglabeled nodes respe
t the label and the order of the 
hildren. And we 
an order the \dom-inan
e 
hildren" of all unlabeled nodes in the graph in su
h a way that a 
orresponden
ear
 always links an i-th \dominan
e 
hild" to an i-th \dominan
e 
hild".This last point, that 
orresponden
e ar
s must in some way also respe
t the \order"of \dominan
e 
hildren", 
on
erns 
ases su
h as the one in Fig. 4.9 (p. 86). In that
onstraint we have 3 parallelism literals. The 
onstraint is partially saturated, already
ontaining some 
orresponden
e formulas. The variables X0 and Y0 
orrespond via the�rst parallelism literal, Y0 and Z0 via the se
ond, Z0 and X0 via the third. Ea
h of X0, Y0and Z0 have 3 \dominan
e 
hildren". In the further saturation of the 
onstraint in Fig.4.10 we have used (P.trans.h) to ensure that there exists an order on the \dominan
e
hildren" of X0, Y0 and Z0 that is respe
ted by all 
orresponden
e formulas. As thesaturation in Fig. 4.10 
ontains 
orresponden
e formulas that violate any possible orderon the \dominan
e 
hildren", the result is a 
lash.4.3 Satis�ability of Saturated ConstraintsIn this se
tion we show that from any saturated 
onstraint that Pp 
omputes we 
an reado� a model. We pro
eed as in the previous 
hapter: We �rst 
onsider simple 
onstraints,for whi
h the 
onstraint graph already looks like a tree. Then we lift the result toarbitrary Pp-saturated 
onstraints.4.3.1 Valuations and Segment TermsHowever, there are two te
hni
al issues that we have to address �rst. The �rst is anadditional pie
e of notation: we lift valuation fun
tions 
anoni
ally from variables tosegment terms.Let A = X0=X1; : : : ;Xn. We write �(A) = � i� the following holds: � = �0=�1; : : : ; �msu
h that �(X0) = �0, and �(fX1; : : : ;Xng) = f�1; : : : ; �mg.4.3.2 GeneratednessThe se
ond issue that we have to 
onsider is this: Pp-saturated 
onstraints are not Cp
onstraints but Cpp 
onstraints { they may 
ontain path literals. The pro
edure Pp doesnot a

ept path literals in the input, and it does not 
he
k whether path literals in arbi-trary pla
es in a 
onstraint are satis�able; but it 
he
ks the satis�ability of path literals



92 Solving Parallelism Constraintsthat it has introdu
ed for re
ording 
orresponden
e. To formalize this, we introdu
e gen-erated 
onstraints, where ea
h path literal either establishes a 
orresponden
e for someparallelism literal or is the result of 
ombining several su
h 
orresponden
e statementsby a path parallelism rule.De�nition 4.13 (Corresponden
e-generated). Let ' be a Cpp-
onstraint. A pathliteral p(U1U2 V1V2 ) 2 ' is 
orresponden
e-generated in ' i� there exists some literal A �B 2 ' with A = U1=: : : and B = V1=: : : su
h that either U2 2 b(A) or V2 2 b(B) is in '.Intuitively, a path literal is 
orresponden
e-generated if it has been introdu
ed as partof a 
orresponden
e formula and thus expresses a 
orresponden
e. Now we de�ne whatit means for a path literal to be generated: It must be entailed by the non-path literalstogether with the 
orresponden
e-generated path literals.De�nition 4.14 (Generated). Let ' be a Cpp-
onstraint, let '0 be ' without all itspath literals, and let '1 be the set of 
orresponden
e-generated path literals in '.Then a path literal p(U1U2 V1V2 ) 2 ' is generated in ' i�'0 ^ '1 j= p(U1U2 V1V2 ) :Whenever Pp 
omputes a saturation of a 
onstraint, that saturation is generated.Lemma 4.15 (Generatedness). Let ' be a Cp 
onstraint with ' !�Pp '0. Then '0 isgenerated.Proof. Any path literal in '0 must have been introdu
ed by either (P.init), (P.new),(P.path.eq.1), (P.trans.h), (P.trans.v), (P.di�.1) or (P.di�.2). We pro
eed by indu
tionon the length of the saturation from ' to '0. The 
onstraint ' does not 
ontain any pathliterals, so it is generated by de�nition. Now suppose ' !�Pp '00 !f�g '0, where � is aninstan
e of either (P.init), (P.new), (P.path.eq.1), (P.trans.h), (P.trans.v), (P.di�.1), or(P.di�.2), and the indu
tive hypothesis holds for '00.If � is an instan
e of (P.init), then any path literal in '0 � '00 must be 
orresponden
e-generated be
ause (P.init) also infers U1 2 b(A) as well as U2 2 b(B). If � is an instan
e of(P.new), then any additional path literal in '0 is again 
orresponden
e-generated be
ause(P.new) has U 2 b(A) in its premise.The rules (P.path.eq.1), (P.trans.h), (P.trans.v), (P.di�.1) and (P.di�.2) only infer newpath literals from existing ones. They are equivalen
e transformations by Lemma 4.10.This means that if '00 is generated, then so is '0.The aim of this se
tion is to show that whenever Pp 
omputes a saturation, we 
an
onstru
t a model from it. And sin
e we have just shown that anything that Pp 
omputesfrom a Cp 
onstraint is generated, we 
an safely restri
t ourselves to generated 
onstraintsfor the rest of this se
tion.



Solving Parallelism Constraints 934.3.3 Simple ConstraintsIn Def. 3.7 (p. 64) we have introdu
ed simple 
onstraints: they possess a root variabledominating all others, and every variable is labeled. This de�nition 
an be lifted 
anoni-
ally from dominan
e 
onstraints to Cpp 
onstraints: A Cpp 
onstraint ' is 
alled simplei� the maximal subset of ' that is a Cd 
onstraint is simple.Lemma 4.16 (Satis�ability of simple generated saturations). A simple generatedPp-saturated Cpp-
onstraint is satis�able.Proof. Let ' be a simple generated Pp-saturated Cpp-
onstraint. In Chapter 3 we haveshown that any simple Pd-saturated Cd-
onstraint is satis�able (Lemma 3.8, p. 65). Nowwe pro
eed as follows: We 
onstru
t a model for the maximal subset of ' that is adominan
e 
onstraint, in the same way as in Lemma 3.8, and we show that this modelalso satis�es the path literals and parallelism literals of '. So let 'dom be the maximalsubset of ' that is a Cd 
onstraint, and let (�; �) be a model for 'dom 
onstru
ted as inthe proof of Lemma 3.8. Note that the model has been 
onstru
ted in su
h a way thatfor any node � 2 D� there exists some X 2 Var(') with �(X) = �. It remains to showthat all path literals and parallelism literals of ' are satis�ed in that model.Path literals. A simple 
onstraint already has a tree-shaped 
onstraint graph. Forpath literals, we make use of this as follows: Whenever X0/�U is in ' { as for examplewhen we have p(X0U Y0V ) in '{, there exists a path from �(X0) to �(U) with the followingproperty: For any node � su
h that �(X0)/��/��(U) holds in �, there exists a variableU 0 2 Var(') su
h that �rst �(U 0) = �, and se
ond, if � j= �:f(: : :), then U 0:f(: : :) is in'.We only need to show that all 
orresponden
e-generated path literals of ' are satis�edby �, all others are entailed anyway by the de�nition of generatedness (Def. 4.14). Solet p(X0U Y0V ) be a 
orresponden
e-generated path literal in ', whi
h by Def. 4.13 meansthat there exists some parallelism literal A � B 2 ' with A = X0=X1; : : : ;Xn, B =Y0=Y1; : : : ; Yn, and either U 2 b(A) or V 2 b(B) is in '; but if U 2 b(A) is in ', thenV 2 b(B) is in ' as well by 
losure under (P.
opy.dom).We pro
eed by indu
tion on the length of the path from �(X0) to �(U). If X0=U is in ',then we must also have Y0=V in ' by saturation under (P.
opy.dom). As (�; �) satis�es'dom, � must map X0 and U to the same node, and likewise Y0 and V . So (�; �) alsosatis�es the path literal p(X0U Y0V ).Now suppose that the path from �(X0) to �(U) has length m + 1. Let � 2 D� be su
hthat �(X0)/��/��(U) holds in � and the path from �(X0) to � has length m. Figure4.13 shows this situation. Then we must have � j= �:f(�1; : : : ; �`) for some f of arity `,with �i = �(U) for some i � `.As noted above there exists some U 0 2 Var(') with �(U 0) = � su
h that U 0:f(U1; : : : ; U`)
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(X0)

π=σ

σ

σ

(U’)

(U)Figure 4.13: Indu
tion step in the model 
onstru
tion for path literals
is in ' for some U1; : : : ; U` 2 Var('). As � is a model of 'dom, we must have Ui=U in 'for the same i for whi
h �i = �(U).Next we show that U 0; U1; : : : ; U` must all be inside A. Sin
e X0/�U 0 is in ', (P.distr.seg)must have been applied to yield either U 0 2 b(A) or Xj/+U 0 for some j, 1 � j �n. Suppose the latter is the 
ase. Then, sin
e ' 
ontains U 0/�U by (D.lab.dom) and(D.dom.trans), it also 
ontains Xj/�U by (D.dom.trans). By (P.distr.eq) we must haveeither Xj 6=U or Xj=U . We regard the �rst 
ase �rst. Above we have assumed that '
ontains U 2 b(A), so it must 
ontain either U/�Xj and thus Xj=U , whi
h is impossibleby (D.
lash.ineq) and the fa
t that ' is 
lash-free, or U?Xj and thus U?U by (D.disj),whi
h is impossible by (D.
lash.disj). So only the se
ond 
ase, Xj=U , remains. In this
ase ' must 
ontain U/�U 0 and hen
e also U=U 0=Ui by (D.dom.trans), but also U 0 6=Uiby (D.lab.ineq), whi
h is impossible by (D.
lash.ineq) and the fa
t that ' is 
lash-free. Soboth 
ases are impossible, whi
h means that ' must 
ontain U 0 2 b(A). Furthermore by
losure under (P.distr.eq) ' 
ontains either U 0 2 b�(A) or U 0=Xj for some j; 1 � j � n.But the latter 
an be ex
luded in a similar fashion as we just ex
ludedXj/+U 0, by 
losureof ' under (D.lab.dom), (D.dom.trans), (P.distr.eq), and (D.
lash.ineq).Now we turn to U1; : : : ; U`. By 
losure under (D.lab.dom) and (D.dom.trans) we haveX0/�Uk in ' for 1 � k � `, so (P.distr.seg) has been applied to Uk and b(A). If it hasnot 
hosen Uk 2 b(A), there must be some Xj ; 1 � j � n, with Xj/+Uk and thus Xj/�U 0by (D.distr.notDisj), (D.distr.
hild), (D.dom.re
), (D.dom.trans), (D.disj) and the fa
tthat ' is 
lash-free. But that is impossible sin
e ' 
ontains U 0 2 b�(A). Thus, to sumup, U 0 2 b�(A) must be in ', as well as Uk 2 b(A) for 1 � k � `.This means that by 
losure under (P.new), there must be some V 0 2 Var(') su
h that '
ontains p(X0U 0 Y0V 0 ). As the path from �(X0) to �(U 0) has only length m, we 
an use theindu
tive hypothesis and 
on
lude that p(X0U 0 Y0V 0 ) is satis�ed by (�; �). Again by (P.new)there must be V1; : : : ; V` 2 Var(') su
h that 
o(A;B)(Ui)=Vi is in ' for 1 � i � `. Andas U 0 2 b�(A) is in ', ' 
ontains V 0:f(V1; : : : ; V`) by (P.
opy.lab).Above we have said that U=Ui is in '. We also have p(X0U Y0V ), so V=Vi is in ' too by(P.
opy.dom) and (P.path.eq.1). So (�; �) must satisfy the literal p(X0U Y0V ): It satis�esp(X0U 0 Y0V 0 ), �(U 0) and �(V 0) bear the same label, and �(U) is the i-th 
hild of �(U 0) justas �(V ) is the i-th 
hild of �(V 0).



Solving Parallelism Constraints 95Parallelism literals. Let A � B 2 ' with A = X0=X1; : : : ;Xn, B = Y0=Y1; : : : ; Yn.Let �(A) = � and �(B) = � (as de�ned in Se
. 4.3.1 above), with � = �0=�1; : : : ; �mand � =  0= 1; : : : ;  m. We have to show that there exists a 
orresponden
e fun
tionbetween b(�) and b(�). So we de�ne a fun
tion 
 : b(�)! b(�) by
(�) =  i� � = �(X);  = �(Y ) su
h that X 2 b(A) in ' and p(X0X Y0Y ) in ':It remains to show that 
 is the 
orresponden
e fun
tion for � � �.
 is well-de�ned: Assume p(X0X Y0Y );p(X0X0 Y0Y 0 ) 2 ' with �(X)=�(X 0). Then X=X 0 is in' by the 
onstru
tion of � in the proof of Lemma 3.8, so by (P.trans.h) and (P.path.eq.1)we have Y=Y 0 in '.The domain of 
 is b(�): We �rst show that the domain of 
 is a subset of b(�).Let X 2 b(A) be in '. As � is a model of 'dom, �0/��(X) holds in �, along witheither �(X)/��i or �(X)?�i for ea
h 1 � i � m. So �(X) 2 b(�). We now showthat b(�) is a subset of the domain of 
. Let � 2 b(�), then, as noted above, thereexists an X with �(X) = �. We need to show that X 2 b(A) is in '. ' possessesa root variable, 
all it Z, and we have Z/�X0; Z/�X in '. Let Z 0 be a /+-maximalvariable su
h that Z 0/�X0; Z 0/�X 2 '. If Z 0=X is in ', then X/�X0 is also 
ontainedby saturation under (D.dom.trans), and ' must 
ontain X=X0 by (P.distr.eq) be
ause�0/��. If Z 0=Z 00; Z 00:f(Z1; : : : ; Zm) are in ', then we 
annot have Zi/�X0; Zj/�X 2 ' for1 � i 6= j � m, sin
e then X?X0 2 ' by (D.dom.trans) and (D.distr). We 
annot haveZi/�X0; Zi/�X 2 ' for any i 2 f1; : : : ;mg sin
e we have 
hosen Z 0 to be maximal. Theonly remaining possibility is Z 0=X0 in ' and Zi/�X in ' for some i 2 f1; : : : ;mg. Inany 
ase, X0/�X is in '. By (P.distr.seg), we must have 
hosen either X/�Xi or X?Xifor all 1 � i � n. By an analogous argument, one 
an see that the range of 
 is b(�).
 is one-to-one (inje
tive) be
ause if p(X0X Y0Z );p(X0Y Y0Z ) 2 ' for X;Y 2 b(A), thenX=Y is in ' by (P.
opy.dom). It is onto (surje
tive) by (P.new).
(�i) =  i for 0 � i � n by (P.init).
 is stru
ture-preserving: Suppose �00 2 b�(�), and � j= �00:f(�01; : : : ; � 0̀ ). Thenthere exists a U0 2 Var(') with �(U0) = �00 and, as shown above, U0 2 b(A) is in '.As ' is simple, U0 must be labeled: ' must 
ontain U0=U 00; U 00:f(U1; : : : ; U`) for someU 00; U1; : : : ; U`. (P.distr.seg) and (P.distr.eq) must have 
hosen U0 2 b�(A) sin
e �00 2b�(�). Thus Ui 2 b(A) is in ' for 1 � i � `. By (P.new), ' 
ontains p(X0Ui Y0Vi ), 0 � i � `,for some V0; : : : ; V`, and by (P.path.eq.1) and (P.
opy.lab), it 
ontains V0:f(V1; : : : ; V`).By the 
onstru
tion of 
, we have 
(�0i) = 
(�(Ui)) = �(Vi) for 0 � i � `, so we musthave � j= �(V0):f(�(V1); : : : ; �(V`)) = 
(�00):f(
(�01); : : : ; 
(� 0̀ )). The opposite dire
tion,starting from � j= 
(�00):f(
(�01); : : : ; 
(� 0̀ )), is proved by an analogous argument.4.3.4 Non-simple ConstrainsNow suppose we have a Pp-saturated 
onstraint that is not simple. As we have donein the 
ase of dominan
e 
onstraints (in the previous 
hapter), we extend a non-simple



96 Solving Parallelism Constraintssaturation by labeling previously unlabeled variables while keeping the 
onstraint satu-rated, until we �nally rea
h a simple saturated 
onstraint. We reuse the de�nitions ofthe partial order �' (Def. 3.9, p. 66), 
on'(X) for a node's minimal dominan
e 
hildren(Def. 3.9, p. 66), and '-disjointness sets, whi
h we use to determine minimal dominan
e
hildren that may denote di�erent nodes (Def. 3.10, p. 67).� X0� X� X1 � Y0� Y� Y1X0=X1�Y0=Y1 ^
o(X0=X1; Y0=Y1)(X)=YFigure 4.14: Extension by labelingHowever, to keep the 
onstraint saturated during extension, we now have to take par-allelism literals into a

ount. Consider Fig. 4.14, where we have X0=X1�Y0=Y1 and
o(X0=X1; Y0=Y1)(X)=Y . We have to be 
areful when labeling X0: X0 is in b(X0=X1),and when we add X0:g(X) for some unary g, we also have to add Y0:g(Y ), otherwise(P.
opy.lab) would be appli
able. In general, we have to label all 
orresponding variablesin the same way at the same time. We formalize this in the notion of the 
opy set.De�nition 4.17 (Copy set). Let ' be a Cpp 
onstraint. Then the relation ,!' on tuplesof variables from Var(') is de�ned by(U0; U1; : : : ; Um) ,!' (V0; V1; : : : ; Vm)i� there exists segment terms A;B of ' su
h that A �sym B is in ' and 
o(A;B)(Ui)=Viis in ' for all 0 � i � m, and Ui 2 b(A) is in ' for 1 � i � m, and U0 2 b�(A) is in '.Furthermore, we de�ne 
opy sets of variable tuples by
opy'�U0; U1; : : : ; Um) =def f(V0; V1; : : : ; Vm) j(U0; U1; : : : ; Um) ,!�' (V0; V1; : : : ; Vm)gwhere as usual ,!�' is the re
exive and transitive 
losure of ,!'.Note that the relation ,!' is symmetri
 be
ause A �sym B is symmetri
. Members ofthe same 
opy set share some properties:Lemma 4.18. Let ' be a Pp-saturated Cpp-
onstraint with U0; : : : ; Um 2 Var('), and let(V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um).� If U0 is unlabeled in ', then so is V0.� If fU1; : : : ; Umg � 
on'(U0), then fV1; : : : ; Vmg � 
on'(V0).



Solving Parallelism Constraints 97� If fU1; : : : ; Umg is a maximal '-disjointness set in 
on'(U0), then fV1; : : : ; Vmg isa maximal '-disjointness set in 
on'(V0).Proof. By well-founded indu
tion on the stri
t partial order � on fS jfU0:f(U1; : : : ; Um)g � S � 
opy'�U0; U1; : : : ; Um)g.The 
ase of S = f(U0; U1; : : : ; Um)g is trivial. Otherwise, S has the form S 0 [f(V0; V1; : : : ; Vm)g and there exists some (W0;W1; : : : ;Wm) 2 S 0 with (W0;W1; : : : ;Wm),!' (V0; V1; : : : ; Vm): we have (U0; U1; : : : ; Um) 2 S, so if there were no su
h(W0;W1; : : : ;Wm) 2 S 0, then S 6� 
opy'�U0; U1; : : : ; Um). Let A �sym B be in ' withA = X0=X1; : : : ;Xn, B = Y0=Y1; : : : ; Yn, Wi 2 b(A) in ', W0 2 b�(A) in ', and
o(A;B)(Wi)=Vi 2 ' for 0 � i � m. Then Vi 2 b(B) is in ' for 1 � i � m andV0 2 b�(B) is in ' by 
losure of ' under (P.
opy.dom).� Suppose W0 is unlabeled. Then V0 must be unlabeled too, as any labeling literalwould have been 
opied by (P.
opy.lab).� Suppose fW1; : : : ;Wmg � 
on'(W0). Then by 
losure under (P.
opy.dom),V0/�Vi 2 ' but Vi/�V0 62 ' for 1 � i � m. Assume that Vi is not minimalwith V0 �' Vi, i.e. there exists some Z with V0 �' Z �' Vi. Then Z 2 b(B) isin ' by 
losure under (D.dom.trans), (D.prop.disj), (P.distr.seg). So by (P.new)there exists some Z 0 with Z 0 2 b(A) in ' as well as 
o(A;B)(Z 0)=Z. But thenW0/�Z 0; Z 0/�Wi 2 ' by (P.
opy.dom), but neither Z 0/�W0 nor Wi/�Z 0 is in ', soWi is not minimal either, a 
ontradi
tion.� Suppose fW1; : : : ;Wmg is a maximal '-disjointness set in 
on'(W0). Assume thatfVi; Vjg is not a disjointness set for some 1 � i < j � n. So either Vi/�Vj or Vj/�Viis in '. But then by (P.
opy.dom), Wi andWj do not form a disjointness set either,a 
ontradi
tion.Assume fV1; : : : ; Vmg is not maximal, i.e. there exists some V 0 62 fV1; : : : ; Vmgsu
h that fV1; : : : ; Vm; V 0g � 
on'(V0) is a disjointness set. We must have Y0/�V 0by (D.dom.trans), and by (P.distr.seg) either V 0/�Yi or V 0?Yi or Yi/+V 0 for ea
h1 � i � n. But if Yi/+V 0 for some i, then V 0 62 
on'(V0) be
ause V0 2 b�(B)is in '. So V 0 2 b(B) is 
ontained as well. By 
losure under (P.new) and(P.
opy.dom), there exists a W 0 with W 0 2 b(A) in ' as well as 
o(A;B)(W 0)=V 0,and W 0 2 
on'(W0). W 0 
annot be in fW1; : : : ;Wmg: If W 0=Wi is in ' for somei 2 f1; : : : ;mg, then p(X0Wi Y0V 0 );p(X0Wi Y0Vi ) is in ' by (P.path.eq.1), so V 0=Vi is in ' by(P.path.eq.2). Hen
e, fW1; : : : ;Wm;W 0g is a '-disjointness set in 
on'(W0) thatis bigger than fW1; : : : ;Wmg, a 
ontradi
tion.
Now we pro
eed like in Lemma 3.12 (p. 67) of the previous 
hapter: we extend a saturatednon-simple 
onstraint by labeling at least one previously unlabeled variable.



98 Solving Parallelism ConstraintsLemma 4.19 (Extension by labeling). Every Pp-saturated Cpp-
onstraint with anunlabeled variable U0 
an be extended to a Pp-saturated 
onstraint in whi
h U0 is labeled.Proof. Let fU1; : : : ; Umg be a maximal '-disjointness set in 
on'(U0). Assume that �
ontains a fun
tion symbol f of arity m. (If it does not, then we 
an en
ode it usinga nullary fun
tion symbol and a symbol of arity 2, as in Lemma 3.12.) We de�ne thefollowing extension extU0;:::;Um(') of ' ^ U0:f(U1; : : : ; Um):extU0;:::;Um(') =def ' ^ ^(V0;V1;:::;Vm)2
opy'�U0;U1;:::;Um) �V0:f(V1; : : : ; Vm) ^ Vmi=1 V0 6=Vi ^V Vi/�Z;Vj/�W2';1�i<j�n Z?W ^V Z:g(:::)2';g 6=f Z 6=V0�This de�nition of extensions is the same as in Lemma 3.12, ex
ept that all members ofa 
opy set are labeled at the same time. We now show that no Pp-rule is appli
able toextU0;:::;Um('). For better readability, we abbreviate extU0;:::;Um(') by ext(').We �rst 
onsider the most interesting rules:(D.lab.de
om): This rule has the form X:f(X1; : : : ;Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y !Vni=1Xi=Yi. If this rule has be
ome appli
able in ext('), then it must 
on
ern anewly labeled variable V0 (sin
e we have not added any dominan
e literals): Sosuppose (V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um), and V0 = W0 is in '. ThenV0 must be unlabeled in ' by Lemma 4.18, so W0 must be unlabeled in ' too.Hen
e, for (D.lab.de
om) to be appli
able, both V0:f(V1; : : : ; Vm) and W0: f(W1;: : : ; Wm) must be in ext(') � ', whi
h means that (W0;W1; : : : ;Wm) must be in
opy'�U0; U1; : : : ; Um) too.If 
opy'�U0; U1; : : : ; Um) is a singleton, then we must have Ui=Vi=Wi for 1 � i �m. So suppose otherwise. We show the following auxiliary lemma:Lemma 4.20. Let (Z0; Z1; : : : ; Zm) 2 
opy'�U0; U1; : : : ; Um). Then p(U0Ui Z0Zi ) 2 'for 1 � i � m.Proof. We use indu
tion on the length of a ,!' sequen
e starting in(U0; U1; : : : ; Um) and ending in (Z0; Z1; : : : ; Zm). We start with a sequen
e of lengthzero, i.e. we show that p(U0Ui U0Ui ) is in ' for 1 � i � m.
opy'�U0; U1; : : : ; Um) is not a singleton=) there exists some A �sym B in ', A = X0=X1; : : : ;Xn, B =Y0=Y1; : : : ; Yn, with Ui 2 b(A) in ' for 0 � i � m=) by (P.new), there exist U 00; : : : ; U 0m su
h that 
o(A;B)(Ui)=U 0i in ' for0 � i � m=) by (P.trans.h), p(X0Ui X0Ui ) in ' for 0 � i � m=) by (P.di�.1) and the fa
t that U0/�Ui 2 ', p(U0Ui U0Ui ) 2 ' for 1 � i � m



Solving Parallelism Constraints 99Now suppose (Z 00; Z 01; : : : ; Z 0m) 2 
opy'�U0; U1; : : : ; Um) with p(U0Ui Z00Z0i ) 2 ' for 1 �i � m, and (Z 00; Z 01; : : : ; Z 0m) ,!' (Z0; Z1; : : : ; Zm). Then ' 
ontains some A �sym Bde�ned as above with Z 0i 2 b(A) p(X0Z0i Y0Zi ) in ' for 0 � i � m. Then by 
losure under(P.di�.1), p(Z00Z0i Z0Zi ) is in ' for 1 � i � m, and so, by (P.trans.h), is p(U0Ui Z0Zi ).This 
on
ludes the proof of the auxiliary lemma. By that lemma, p(U0Ui V0Vi );p(U0Ui W0Wi ) 2 ' for 1 � i � m. By 
losure under (P.trans.h), ' 
ontains p(V0Vi W0Wi ),and as V0=W0 is in ', p(W0Vi W0Wi ) in ' by (P.path.eq.1), when
e by (P.path.eq.2),Vi=Wi in ' already (all for 1 � i � m).(P.
opy.dom): This rule has the form U1RU2 ^ V2i=1 
o(A;B)(Ui)=Vi ! V1RV2 forR 2 f/�;?; 6=g. We 
onsider all possible 
ases of R. Any dominan
e literal inext(') is in ' already, so the 
ase of R being /� does not apply.Now suppose R is ?. Let Z?W be in ext(') � ', where Vi1/�Z; Vi2/�W in ' forsome (V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um) and some 1 � i1 < i2 � m. (Thus,fV1; : : : ; Vmg 6= ;.) Suppose ' 
ontains A �sym B, with A;B de�ned as usual, withZ 2 b(A), W 2 b(A) in '.=) by (P.new), there exist Z 0;W 0 su
h that p(X0Z Y0Z0 );p(X0W Y0W 0 ) 2 '=) X0/�Z;X0/�W 2 ' and by (D.dom.trans), V0/�Z; V0/�W 2 '=) by (D.distr.notDisj), ' 
ontains either V0/�X0 or X0/�V0Suppose ' 
ontains V0/�X0 but not V0=X0, i.e. V0 �' X0.Suppose X0 2 
on'(V0).=) X0=Vk is in ' for some k 2 f1; : : : ;mg sin
e fV1; : : : ; Vmg isa maximal '-disjointness set in 
on'(V0) by Lemma 4.18.Suppose X0 62 
on'(V0).=) there exists some V 0 2 
on'(V0) su
h that V 0 �' X0=) by Lemma 3.11, ' 
ontains V 0=Vk for some k 2 f1; : : : ;mg=) by (D.dom.trans), Vk/�X0 2 'but at least one of Vi1?Vk and Vi2?Vk is in ', and ' is 
lash-free=) we 
annot have both X0/�U0 and X0/�V0 in '=) (D.distr.notDisj) must have made the 
hoi
e X0/�V0Now suppose X0/�V0 is in '.We have V0/+Z; V0/+W in ' by (D.dom.trans), (D.lab.dom),(P.distr.eq)=) either V0/+Xi in ' or V0?Xi in ' for ea
h 1 � i � n by (P.distr.seg)and (P.distr.eq) sin
e Z 2 b(A), W 2 b(A) in '=) Vi 2 b(A) in ' for 0 � i � m by (P.distr.eq), (D.disj) and the fa
tthat all Vi are minimal with V0 �' Vi=) by (P.new), there are V 00 ; : : : ; V 0m su
h that p(X0Vi Y0V 0i ) 2 ' for 0 � i � m=) (V 00 ; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um) sin
e V0=Xi is not in ' forany 1 � i � n=) by (P.
opy.dom), V 0i1/�Z 0; V 0i2/�W 0 in '



100 Solving Parallelism Constraints=) Z 0?W 0 2 ext(') by de�nitionNow suppose R is 6=. Let (V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um). SupposeV0 6=Vk 2 ext(') � ' for some k 2 f1; : : : ;mg. (Again, fV1; : : : ; Vmg 6= ;.) Supposefurther that A �sym B is in ' with A;B de�ned as usual, and V0 2 b(A), Vk 2 b(A)in '.=) by (P.new), there exist V 00 ; V 0k su
h that p(X0V0 Y0V 00 );p(X0Vk Y0V 0k ) 2 'by (P.distr.seg), (P.distr.eq) and the fa
t that Vk 2 b(A) is in ', wemust have V0/+Xi in ' or V0?Xi in ' for 1 � i � n=) by (P.distr.seg), Vi 2 b(A) in ' for 1 � i � mXi/+Vj 
annot have been 
hosen for any 1 � i � n, 1 � j � mbe
ause V0 2 b�(A) in ' and ea
h Vj is minimal with V0 �' Vj=) there are V 01 ; : : : ; V 0m su
h that p(X0Vj Y0V 0j ) 2 ' for 1 � j � m=) (V 00 ; V 01 ; : : : ; V 0m) 2 
opy'�U0; U1; : : : ; Um) sin
e V0 2 b�(A) is in '=) V 00 6=V 0k is in ext(') by de�nitionNow suppose Z 6=V0 2 ext(') � ', where Z:g(: : :) is in ' for some g with eitherg 6= f or ar(g) 6= ar(f). Suppose further that A �sym B is in ', with A;B de�nedas usual, with V0 2 b(A), Z 2 b(A) in '. By 
losure under (P.distr.eq), we haveeither Z=V0 in ' or Z 6=V0 in '. Z=V0 in ' is impossible sin
e V0 is unlabeled byLemma 4.18. So Z 6=V0 must be in ' already.(P.
opy.lab): This rule has the form U0:f(U1; : : : ; Um) ^Vmi=0 
o(A;B)(Ui)=Vi ^ U0 2b�(A) ! V0:f(V1; : : : ; Vm). Let (V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um) withV0:f(V1; : : : ; Vm) 2 ext(') � '. Suppose A �sym B is in ', with A;B de�nedas usual, with Vi 2 b(A) in ' for 0 � i � m. Then there exist V 00 ; : : : ; V 0m su
h thatp(X0Vi Y0V 0i ) 2 ' for 0 � i � m.By 
losure under (P.distr.seg), either V0 6=Xi is in ' or V0=Xi is in ' for all 1 �i � n. If V0 6=Xi is in ' for all i, then (V 00 ; V 01 ; : : : ; V 0m) 2 
opy'�U0; U1; : : : ; Um), sothe labeling literal V 00 :f(V 01 ; : : : V 0m) has been added to ext('). If V0=Xi is in ' forsome i, then (P.
opy.lab) is not appli
able sin
e it does not 
opy the label of theex
eption.(P.new): This rule has the form A�symB^U 2 b(A)! 9U 0:
o(A;B)(U)=U 0, where U 0is a fresh variable. We have not added any parallelism or dominan
e literals to the
onstraint, so the only possibility is that a 
orresponden
e formula is new in ext(')by the new inequality and disjointness literals. So suppose A �sym B and X0/�Vare in ' and V 2 b(A) is in ext(') � '. But then by 
losure under (P.distr.seg),one of V /�Xi, V?Xi, Xi/+V must already be in ' for ea
h i.For the rules (D.
lash.ineq), (D.
lash.disj), (D.lab.dom), (D.distr.
hild), we just lift theproofs from Lemma 3.12 using Lemma 4.18, whi
h transfers all the ne
essary propertiesof (U0; U1; : : : ; Um) to any (V0; V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um):
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lash.ineq): ext(') 
ontains no new dominan
e literals. If a new inequality literalV0 6=Vi were to make (D.Clash.Ineq) appli
able, then ' must 
ontain V0=Yi, butV0:f(V1; : : : ; Vm) 2 
opy'�U0; U1; : : : ; Um), so Vi 2 
on'(V0) by Lemma 4.18.If a new inequality Z 6=V0 were to make the 
lash rule appli
able, then Z:g(: : :) andV0=Z must be in ', but by Lemma 4.18, V0 is unlabeled be
ause U0 is.(D.
lash.disj): The only new disjointness literals in ext(') have the form Z?W forVi/�Z; Vj/�W in ' with i 6= j. Assume Z and W are the same variable. Then by(D.distr.notDisj), either Vi/�Vj or Vj/�Vi must be in '. But fUi; Ujg is a disjoint-ness set, and so, by Lemma 4.18, is fVi; Vjg.(D.lab.dom): Suppose V0:f(V1; : : : ; Vm) 2 ext(') � '. We have V0/�Vi 2 ' by Lemma4.18. V0 6=Vi 2 ext(') by de�nition.(D.distr.
hild): Suppose V0:f(V1; : : : ; Vm) 2 ext(')� ' and V0/�Z 2 '.If Z/�V0 2 ', then (D.distr.
hild) is not appli
able in ext('). Otherwise V0 �' Z.If Z is minimal with V0 �' Z, then Z 2 
on'(V0), and as fV1; : : : ; Vmg is a maximal'-disjointness set in 
on'(V )0, we have Z=Vi in ' for some i 2 f1; : : : ;mg. If Z isnot minimal, there exists some V 0 2 
on'(V0) su
h that V 0/�Z is in '. But thenagain, Vi=V 0 for some i 2 f1; : : : ;mg, so Vi/�Z.The rules (P.init), (P.path.dom), (P.path.eq.1), (P.path.eq.1), (P.distr.eq),(P.distr.seg),(P.trans.h), (P.trans.v), (P.di�.1), (P.di�.2) 
annot be
ome appli
able be
ause no newvariables or new dominan
e, parallelism, or path literals have been added.For the proofs 
on
erning (D.dom.re
), (D.dom.trans), (D.lab.ineq), (D.lab.disj),(D.prop.disj), (D.distr.notDisj), the 
hange from labeling single variables to labeling 
opysets of variables does not make any di�eren
e.By extending a non-simple 
onstraint suÆ
iently often, we 
an �nally obtain a simplePp-saturated 
onstraint:Proposition 4.21. Every generated Pp-saturated Cpp-
onstraint 
an be extended to asimple generated Pp-saturated Cpp-
onstraint.Proof. The proof is the same as for Prop. 3.13 (p. 69). Generatedness is preserved be
auseno further path literals are added during the extension.Lemma 4.22 (Satis�ability of generated saturations). A generated Pp-saturatedCpp-
onstraint is satis�able.Proof. We get this result by 
ombining Lemma 4.16 and Prop. 4.21.



102 Solving Parallelism Constraints4.4 A Partial Order on Cp ConstraintsIn this and the following se
tion we show that Pp is 
omplete. In Chapter 3 we have de-�ned 
ompleteness as 
omputing all minimal saturated 
onstraints for a given 
onstraint,dependent on a partial order � on 
onstraints (Def. 3.15, p. 69). The partial order wehave used for Cd is subset in
lusion. But for Cpp 
onstraints we would like to have apartial order that generalizes over variables introdu
ed during saturation. Intuitively, wewant to 
onsider two 
onstraints equal if their 
onstraint graphs look the same and ifthey agree on the variables that were already present in the input 
onstraint.2(a) g � X0g � X� X1 g � Y0g � Y� Y1 (b) g � X0g � X� X1 g � Y0g � Y = X 0� Y1 (
) g � X0g � X = Y 0� X1 g � Y0g � Y� Y1X0=X1�Y0=Y1 X0=X1�Y0=Y1 X0=X1�Y0=Y1Figure 4.15: Illustrating the problem of existentially quanti�ed variables.Consider the 
onstraint in Fig. 4.15 (a). If (P.new) is applied to X �rst, this yieldsthe 
onstraint 9X 0:
o(X0=X1; Y0=Y1)(X)=X 0 for a fresh variable X 0, plus Y0:g(X 0) andX 0=Y by (P.
opy.lab) and (D.lab.de
om) { the result is shown in pi
ture (b). A

ord-ingly, if (P.new) is applied to Y �rst, we get 9Y 0:
o(X0=X1; Y0=Y1)(Y 0)=Y ^X0:g(Y 0) ^Y 0=X for a fresh variable Y 0 { this 
onstraint is shown in pi
ture (
). The indeterminismin applying (P.new) eventually leads to two Pp-saturated 
onstraints in
omparable by �whi
h, however, we do not want to distinguish.(1) Eliminating/introdu
ing a variableX=Z ^ ' =exG ' if X 62 G, X 62 Var('), Z 2 Var(')(2) Renaming a variable' =exG '[Y=X℄ if X 62 G, Y 62 Var(') [ G(3) Ex
hanging representatives of an equivalen
e 
lass in a 
onstraintX=Y ^ ' =exG X=Y ^ '[Y=X℄(4) Set equivalen
e (asso
iativity, 
ommutativity, idempoten
y)' =exG & if ' = &Figure 4.16: The equivalen
e relation =exG on 
onstraints.De�nition 4.23 (=exG ). Let G � Var, then =exG is the smallest equivalen
e relation onCpp 
onstraints satisfying the axioms in Fig. 4.16.2The de�nition of the partial order is more 
omplex here than in the paper by Erk and Niehren[46℄. For the previous de�nition, some proofs required well-foundedness, whi
h the partial order did notpossess. For the 
urrent de�nition of the partial order, the proofs do not require well-foundedness.



Solving Parallelism Constraints 103The idea in distinguishing a set G � Var of variables is as follows: We use an equivalen
erelation =exG to 
ompare minimal saturated 
onstraints for an input 
onstraint 
ontainingonly variables from G, while all variables introdu
ed during saturation are from Var - G.Consider again the 
onstraint in Fig. 4.15 and the two di�erent 
onstraints that we haveobtained depending on where we applied (P.new). Let G = fX0; X1; Y0; Y1;X; Y g.Then we get X0:g(X) ^ Y0:g(Y ) ^ Y0:g(X 0) ^X 0=Y =exG X0:g(X) ^ Y0:g(Y ) ^X 0=Y byaxioms (3) and (4). This, in turn, is =exG equivalent to X0:g(X) ^ Y0:g(Y ) by axiom(1). Again by axiom (1), this is =exG equivalent to X0:g(X) ^ Y0:g(Y ) ^ Y 0=X, whi
hequals X0:g(X) ^X0:g(Y 0)^ Y0:g(Y )^ Y 0=X by axioms (4) and (3). So the equivalen
erelation =exG identi�es the two 
onstraints that only di�er in a (super
uous) additionalexistentially quanti�ed variable not in G.In the rest of this se
tion we 
ombine the equivalen
e relation =exG with set in
lusion toobtain a partial order on Cpp 
onstraints, and we show properties of this partial order.We �rst de�ne a normal form for Cpp 
onstraints depending on the set G. A normal formhas exa
tly one variable 62 G in ea
h =exG equivalen
e 
lass, and the 
onstraint has theform '^'eq, where Var(')\G = ;, and 'eq is a set of equations that link the variablesof ea
h =exG equivalen
e 
lass to their representative.For a 
onstraint ' and X 2 Var('), let Eq'(X) be the re
exive and transitive 
losureof = in ', i.e. X 2 Eq'(X), and if Y 2 Eq'(X) and Y=Z in ', then Z 2 Eq'(X).De�nition 4.24 (G-normal form). Let ' be a Cpp 
onstraint, and let G � Var. Thenthe Cpp 
onstraint & is a G-normal form for ' i� the following 
ondition holds: Thereexists a fun
tion � : Var(') ! (Var � G) su
h that �(X) = �(X 0) i� X 0 2 Eq'(X),and with Var(') = fX1; : : : ;Xng, it holds that& = '[�(X1)=X1; : : : ; �(Xn)=Xn℄ ^ ^X2Var(')\GX=�(X):This normal form has the following properties:Lemma 4.25 (Properties of G-normal forms). Let ' be a Cpp 
onstraint, G � Var,and & a G-normal form for '. Then1. & =exG ';2. & is a G-normal form for all '0 =exG ';3. & is unique modulo �-renaming of the variables in Var(&)� G.Proof. 1. Let Var(') = fX1; : : : ;Xng with X1; : : : ;Xk 2 G and Xk+1; : : : ;Xn 62 G forsome k � n. Let � : Var(')! (Var � G) be as in Def. 4.24. Let Y1; : : : ; Yn 2 Varwith Y1; : : : ; Yn 62 G [ Var(') [ f�(Xi) j 1 � i � ng. Then



104 Solving Parallelism Constraints' =exG X1=Y1 ^ : : : ^Xn=Yn ^ ' by axiom (1)=exG X1=Y1 ^ : : : ^Xn=Yn ^ '[Y1=X1; : : : ; Yn=Xn℄ by axiom (3)=exG X1=Y1 ^ : : : ^Xk=Yk ^ '[Y1=X1; : : : ; Yn=Xn℄ by axiom (1)=exG Y1=�(X1) ^ : : : ^ Yn=�(Xn) ^X1=Y1 ^ : : : ^Xk=Yk^'[Y1=X1; : : : ; Yn=Xn℄ by axiom (1)=exG Y1=�(X1) ^ : : : ^ Yn=�(Xn) ^X1=�(X1) ^ : : : ^Xk=�(Xk)^'[�(X1)=X1; : : : ; �(Xn)=Xn℄ by axiom (3)=exG X1=�(X1) ^ : : : ^Xk=�(Xk) ^ '[�(X1)=X1; : : : ; �(Xn)=Xn℄ by axiom (1)= &The Y1; : : : ; Yn are ne
essary to �rst name variables apart in 
ase Var(') � G andthe range of � are not disjoint.2. It suÆ
es to show that if & is a G-normal form of '1, and '2 =exG '1 by a singleaxiom from Fig. 4.16, then & is a G-normal form of '2.Suppose the axiom used is (1), and '1 = X=Z ^ '2 for X 62 G [ Var('2), Z 2Var('2). Then & is a G-normal form of '2 with the fun
tion � 0 : Var('2) !(Var � G) de�ned as � 0 = �jVar('2).If the axiom used is (1), and '2 = X=Z ^ '1 for X 62 G [ Var('1), Z 2 Var('1),then we 
an use the fun
tion � 0 : Var('2)! (Var � G) de�ned by � 0(Y ) = �(Y )for all Y 2 Var('1) and � 0(X) = �(Z).The 
ases of axioms (2), (3), and (4) are obvious.3. We de�ne a redu
tion!G that is 
onvergent modulo �-renaming of variables not inG. This redu
tion redu
es ea
h 
onstraint to its G-normal form. Let Names � Varwith Names \ G = ;. Then we de�ne the relation !G on Cpp 
onstraints by tworules.(a) '!G name(Eq'(U);X) ^ 'if X 2 Names, U 2 Var('), name(Eq'(U); Y ) 62 ' for any Y 2 Names,name(S;X) 62 ' for any S � Var('), and there exists no Y 2 Names withY 2 Eq'(U), Eq'(U) = fU1; : : : ; Ung su
h that ' = VU 02G\Eq'(U) U 0=Y ^'[Y=U1; : : : ; Y=Un℄(b) name(S;X) ^ '!G VU2S\G U=X ^ '[X=U1; : : : ;X=Un℄for S = fU1; : : : ; UngThe redu
tion !G is terminating: Let '0 be the \input 
onstraint". The rule(a) is appli
able at most jEq'0 j times, on
e to ea
h Eq'0 -equivalen
e 
lass, unless italready has a representative in the sense of Def. 4.24. Likewise, rule (b) is appli
ableat most jEq'0 j times, its appli
ability is bounded by the number of name(S;U)-atoms in the 
onstraint. Note that the right-hand side of (b) exa
tly mat
hes thelast 
ondition on the appli
ability of rule (a), hen
e rule (a) is inappli
able to anequivalen
e 
lass to whi
h rule (b) has already been applied.
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tion !G is 
on
uent modulo �-renaming of variables in Names: Theredu
tion is terminating, so it suÆ
es to show lo
al 
on
uen
e. If ' !Gname(S1;X1) ^ ' and ' !G name(S2;X2) ^ ' by (a), then either the two re-sulting 
onstraints are equal modulo �-renaming of Names-variables, or both 
anbe redu
ed in one further appli
ation of (a) to name(S1;X1)^name(S2;X2)^' (inthis 
ase, S1; S2 are not the same Eq'-equivalen
e 
lass). If '!G '1 and '!G '2by rule (b), then these two rule appli
ations must 
on
ern di�erent Eq'-equivalen
e
lasses, hen
e there exists a 
onstraint '3 with '1 !G '3 and '2 !G '3. The sameis true if '!G '1 by (a) and '!G '2 by (b).If & is a !G-normal form for ', then & is a G-normal form for ': Rule (a) sees to itthat ea
h equivalen
e 
lass either already has the form demanded by Def. 4.24 orhas a \designated representative". Rule (b) then transforms an equivalen
e 
lassto the form that Def. 4.24 pres
ribes for G-normal forms.We 
ombine set in
lusion and the equivalen
e relation =exG into a partial order on Cpp
onstraints.De�nition 4.26 (�G). Let '1; '2 be Cpp 
onstraints and let G � Var. Then'1 �G '2i� there exist G-normal forms &i of 'i, i = 1; 2, su
h that &1 � &2.The relation �G is a
tually a partial order:Lemma 4.27 (Partial order). Let G � Var. Then �G is a partial order on Cpp
onstraints.Proof. Re
exivity is obvious. Now for transitivity: let '1 �G '2 �G '3, i.e. there areG-normal forms &i for 'i, i = 1; 2, with &1 � &2, and G-normal forms & 0i for 'i, i = 2; 3,with & 02 � & 03. Sin
e the normal forms are unique up to �-renaming of non-G-variables,there exists a renamed normal form & 01 of '1 with & 01 � & 03.We write =G for �G \ �G , and <G for �G � =G.We will 
ompare Cpp 
onstraints and also CLLSp 
onstraints using the family of partialorders �G. We spe
ify the partial order we use by spe
ifying the set G.De�nition 4.28 (Saturation for a 
onstraint with respe
t to G). Let ', & beCLLSp 
onstraints and let G � Var. Then & is a Pp-saturated 
onstraint for ' withrespe
t to G i� & is a Pp-saturation with ' �G &.



106 Solving Parallelism ConstraintsUnfortunately, this partial order is not well-founded on Cpp 
onstraints in general.While the empty 
onstraint is smaller than all other 
onstraints, there may be anin�nite 
hain '1 �G : : : �G '2 for two given 
onstraints '1; '2. For example, letG =def fX1;X2; Y1; Y2g. Let '1 =def p(X1X2 Y1Y2 ) and '2 =def p(X1X2 Y1Y2 ) ^ X1=X2=Y1=Y2:Then '1 <G '2 with p(X1X2 Y1Y2 )<G p(X1X2 Y1Y2 ) ^ p(X1X2 Y1Y 01 ) ^ p(X1X2 Y 01Y 001 )<G p(X1X2 Y1Y2 ) ^ p(X1X2 Y1Y 01 ) ^ p(X1X2 Y 01Y 001 ) ^ p(X1X2 Y 001Y 0001 )<G : : :<G p(X1X2 Y1Y2 ) ^X1=X2=Y1=Y2=Y 01=Y 001 = : : :=exG p(X1X2 Y1Y2 ) ^X1=X2=Y1=Y2The problem is that we 
an add equalities that may 
ollapse an arbitrary number of= equivalen
e 
lasses. If we eliminate that possibility, �G is indeed well-founded: we
onsider 
onstraints in whi
h for ea
h X;Y either X=Y or X 6=Y is 
ontained.De�nition 4.29 (Proje
ted). A Cpp 
onstraint ' is 
alled proje
ted i� for all X;Y;Z 2Var('),� either X=Y in ' or X 6=Y in ', and� X=Y;X=Z in '=)Y 6=Z not in '.Lemma 4.30 (Well-foundedness of >G for proje
ted 
onstraints). Let '0 bea proje
ted Cpp 
onstraint and let G � Var. Then there exists no in�nite sequen
e ofproje
ted 
onstraints '1; '2; : : : su
h that '0 >G '1 >G '2 >G : : :Proof. For Cpp 
onstraints '1; '2 we have '1 >G '2 i� 'i has a normal form &i, 1 = 1; 2,su
h that &1 � &2 and '1 6=exG '2. To show that there 
annot be an in�nite se-quen
e of proje
ted 
onstraints smaller than a given proje
ted 
onstraint '0, we embed(f'0; '1; : : :g; >G) into (N; >) by a monotone measure fun
tion �, i.e. for all proje
ted
onstraints '0 with ' >G '0 it holds that �(') > �('0).To embed (f'0; '1; : : :g; >G) into (N; >), we use the following measure fun
tion: For any
onstraint ', let & be a G-normal form for ', then�1(') = jVar(&)� Gj�2(') = j&jVar(&)�G j�3(') = jVar(&) \ Gj�(') = �1(') + �2(') + �3(')The value �1(') is the number of = equivalen
e 
lasses in ', �2(') is the number ofliterals in '[�(X1)=X1; : : : ; �(Xn)=Xn℄ (where � is the fun
tion that de�nes & as in Def.



Solving Parallelism Constraints 1074.24, and Var(') = fX1; : : : ;Xng), and �3(') is the number of G-variables in '. For all'0 =exG ', we have �('0) = �('), as only &, not ' itself, is used to 
ompute �(').It remains to show that � is monotone, i.e. it assigns a stri
tly bigger number to a stri
tlybigger proje
ted 
onstraint. W.l.o.g. we 
onsider the normal forms themselves, i.e. the
ase that ' � '0 and ' 6=exG '0. We must have �3(') � �3('0) and �2(') � �2('0)be
ause ' � '0 and the two 
onstraints are both in normal form. Can �1('0) be largerthan �1('), i.e. 
an '0 possess more variable equivalen
e 
lasses w.r.t. =? As ' � '0,' 
ould 
ontain equalities that '0 la
ks. But ' and '0 are both proje
ted, so if '0 wasla
king some equalities of ', it would have to 
ontain additional inequalities, whi
h isimpossible.As all Pp-saturated 
onstraints are proje
ted, we 
an use �G to 
ompare the saturated
onstraints that Pp 
omputes for a given input 
onstraint ', setting G = Var(').Note that there are 
onstraints for whi
h the pro
edure Pp 
omputes in�nitely manysaturated 
onstraints that are in
omparable by �G. A 
ase in point is the 
onstraint inFig. 4.7 (p. 85).Next we show a lemma that will be quite useful in later proofs: we 
an fa
tor the partialorder �G into the relational 
omposition of its 
omponents, i.e. �G is � Æ =exG .Lemma 4.31 (Fa
toring �G into � and =exG ). Let '1; '2 be Cpp 
onstraints andG � Var. If '1 �G '2, then there exists a Cpp 
onstraint '02 su
h that'1 � '02 =exG '2:Proof. By the de�nition of �G there exist G-normal forms '01 of '1 and '02 of '2 su
hthat '1 =exG '01 � '02 =exG '2. In the proof of Lemma 4.25, part 1, we have shown atransformation from a Cpp 
onstraint to a G-normal form. This transformation only usesa �nite number of single axiom appli
ations, as 
an easily be 
he
ked. So there existsa sequen
e &0; : : : ; &n of 
onstraints su
h that '1 = &0, &n = '01, and for 0 � i � n � 1,&i =exG &i+1 by a single axiom from Fig. 4.16.Now we transform this sequen
e &0; : : : ; &n step by step, moving the � \to the left beyondthe =exG ". We use indu
tion on the length n of the sequen
e.If n = 0, then '1 is in G-normal form and we are done. So suppose n � 1. We show thatthere exists a 
onstraint & su
h that &0 =exG : : : =exG &n�1 � & =exG '02 holds, i.e. we shiftthe � one =exG to the left.Suppose we 
urrently have &0 =exG : : : =exG &n�1 =exG &n � & 0 for some 
onstraint & 0. We
onsider all possible ways in whi
h we might have &n�1 =exG &n by a single axiom.� Suppose &n�1 =exG &n by axiom (1) of Fig. 4.16, and &n�1 has the form X=Z ^ &nwhere X 62 G [ Var(&n) and Z 2 Var(&n).
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onstraint & 0 has the form X=Z ^ &n ^ & 00, where X may o

ur in & 00. We set& = X=Z ^ & 0[X 0=X℄ where X 0 62 G does not o

ur in Sni=1 &i:&n�1 = X=Z ^ &n � & = X=Z ^ &n ^ & 00[X 0=X℄=exG & 0[X 0=X℄ =exG (& 0[X 0=X℄)[X=X 0℄ = & 0:� Suppose &n�1 =exG &n by axiom (1) of Fig. 4.16, and &n has the form X=Z ^ &n�1where X 62 G [ Var(&n�1) and Z 2 Var(&n�1). But then we already have &n�1 �&n � & 0.� Suppose &n�1 =exG &n by axiom (2) of Fig. 4.16. Then &n has the form &n�1[Y=X℄for X 62 G and Y 62 Var(&n�1) [ G. This time, we de�ne & in two steps, making itdepend on a 
onstraint & 00 that we de�ne �rst.{ & 0 has the form &n^& 000, where X may only o

ur in & 000. So let & 00 = & 0[X 0=X℄ =&n ^ & 000[X 0=X℄, where X 0 62 G does not o

ur in Sni=1 &i.{ If Y 2 Var(& 0), then it has to be repla
ed by X while & 0 is moved to the leftof &n. Let & = & 00[X=Y ℄.We have &n�1 � & =exG &[Y=X℄ =exG (&[Y=X℄)[X=X 0℄ = & 0:� Suppose &n�1 =exG &n by axiom (3) of Fig. 4.16, and suppose &n�1 has the formX=Y ^ & 0n�1, &n has the form X=Y ^ & 0n�1[Y=X℄, and & 0 has the form X=Y ^& 0n�1[Y=X℄ ^ & 00. We set & = X=Y ^ & 0n�1 ^ & 00. Then&n�1 � & =exG X=Y ^ (& 0n�1 ^ & 00)[Y=X℄ =exG & 0:� Suppose &n�1 =exG &n by axiom (3) of Fig. 4.16, and suppose &n has the form X=Y ^& 0n, while &n�1 has the form X=Y ^ & 0n[Y=X℄ and & 0 is X=Y ^ & 0n ^ & 00. We set& = X=Y ^ & 0n[Y=X℄ ^ & 00, then&n�1 � & =exG X=Y ^ (& 0n[Y=X℄ ^ & 00)[Y=X℄ =exG & 0:
We 
an make the result of the previous lemma even stronger: given a 
onstraint ' anda saturated 
onstraint for it, we 
an always �nd another equivalent saturated 
onstraintthat is a superset of '.Lemma 4.32. Let '1; '2 be Cpp 
onstraints and G � Var su
h that '1 �G '2 and '2 isPp-saturated. Then there exists a Pp-saturated 
onstraint '02 su
h that '1 � '02 =exG '2.



Solving Parallelism Constraints 109Proof. Suppose '1 �G '2 where '2 is Pp-saturated. By Lemma 4.31, there exists a
onstraint '02 with '1 � '02 =exG '2. '02 need not be Pp-saturated, but we show that a
onstraint Pad('02), the padded 
onstraint of '02, is. We pro
eed as follows: We de�ne the
on
ept of padded 
onstraints, then we show that for any Cpp 
onstraint ' and its paddedversion Pad('), it holds that Pad(') =exG '. Next, we show that Pad('02) is saturated.Finally we prove that '1 � Pad('02).Let ' be a Cpp 
onstraint, thenPad(') =def f'02[Z1=X1; : : : ; Z`=X`℄ j '02 literal in ';Var('02) = fX1; : : : ;X`g;Zi 2 Eq'(Xi) for 1 � i � `gThat is, the padded 
onstraint Pad(') of a Cpp 
onstraint ' 
ontains the same literal forall members of an Eq' equivalen
e 
lass.Now we show that Pad(') =exG '. Let jEq'j = n, i.e. there are n equivalen
e 
lasses ofthe equivalen
e relation Eq' on Var('). For 1 � i � n, let the i-th equivalen
e 
lass befZi1; : : : Zimig. Let Y1; : : : ; Yn 62 G [ Var('). Then' =exG Z11=Y1 ^ : : : ^ Z1m1=Y1 ^ : : : ^Zn1=Yn ^ : : : ^ Znmn=Yn ^'[Y1=Z11 ; : : : ; Y1=Z1m1 ; : : : Yn=Zn1 ; : : : Yn=Znmn ℄This holds by axiom (1) for the introdu
tion of the Yi, 1 � i � n, and axiom(3) for repla
ing Zij by Yi for 1 � j � mi, 1 � i � n. Now by dupli
ating'[Y1=Z11 ; : : : ; Y1=Z1m1 ; : : : Yn=Zn1 ; : : : Yn=Znmn ℄ a suitable number of times, using axiom (4),repla
ing Yi by ea
h Zij a

ording to axiom (3), and then dropping Y1; : : : ; Yn a

ordingto axiom (1), we arrive at Pad(').So we know Pad(') =exG ' for any Cpp 
onstraint '. Now we show that Pad('02) issaturated. Let '2 = &0 =exG &1 =exG : : : =exG &m = '02 where for all 1 � i � m� 1, we have&i =exG &i+1 by a single axiom from Fig. 4.16. As remarked in the previous lemma, this�nite sequen
e &0; : : : ; &m exists by the proof of Lemma 4.25, part 1. We use indu
tionon m to show that Pad(&i) is Pp-saturated for all i � m. For &0 = '2, this is trivial.Suppose &i =exG &i+1 by axiom (1) of Fig. 4.16, and &i has the form X=Z ^ &i+1, whereX 62 G [Var(&i+1) and Z 2 Var(&i+1). Then X is a super
uous non-G variable in &i, andEq&i(X) \ Var(&i+1) 6= ;. So the 
onstraint Pad(&i)jVar(&i)�fXg = Pad(&i+1) must besaturated, too.Suppose &i =exG &i+1 by axiom (1), and &i+1 has the form X=Z ^ &i for variables X 62G [Var(&i) and Z 2 Var(&i). Then Pad(&i+1) = Pad(X=Z ^ &i). Pad(&i+1) is a saturated
onstraint: For all saturation rules that would be
ome appli
able be
ause of the addeddominan
e literals X=Z, the 
onsequent has already been added by Pad.Suppose &i =exG &i+1 by axiom (2) of Fig. 4.16, and &i+1 has the form &i[Y=X℄ where X 62 Gand Y 62 Var(&i) [ G. So all o

urren
es of a variable X 62 G have been repla
ed by anew variable Y 62 G, and if Pad(&i) is saturated, then so is Pad(&i)[Y=X℄ = Pad('02).
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ases where &i =exG &i+1 by axiom (3), we obviously have Pad(&i) = Pad(&i+1).So we have '2 =exG '02 =exG Pad('02), and Pad('02) is Pp-saturated. It remains to showthat '1 � Pad('02). This last step is easy: We have '1 � '02 sin
e that is what we haveassumed in the beginning, and '02 � Pad('02) by the de�nition of padded 
onstraints.So, having set up the family �G of partial orders that we are going to use to 
ompareCLLSp 
onstraints, we now make use of these orders as follows:De�nition 4.33 (Computation with respe
t to G). Let '; & be Cpp 
onstraints,and let G � Var. Then Pp 
an 
ompute & from ' with respe
t to G i� there exists aPp-saturation & 0 for ' with respe
t to G su
h that '!�Pp & 0, and & =G & 0.4.5 Completeness of Pro
edure PpIn this se
tion we show that Pp is 
omplete, i.e. that it 
omputes all �Var(')-minimalsaturated 
onstraints for a given 
onstraint '. We pro
eed in two steps. The �rst stepis as in the previous 
hapter (Lemma 3.17, p. 70): Given a 
onstraint and a minimalsaturated 
onstraint for it, we show that we 
an apply ea
h appli
able rule in su
h a waythat we move 
loser to this saturated 
onstraint. However whereas this one step suÆ
edin the previous 
hapter, we now have to add a se
ond step: We have to show additionallythat after a �nite number of steps we a
tually rea
h the saturated 
onstraint towardswhi
h we are moving.Lemma 4.34 (Approa
hing a saturation). Let ' be a Cpp 
onstraint, G � Var, and& a Pp-saturated Cpp-
onstraint with ' �G &. If a rule � 2 Pp is appli
able to ', thenthere exists a 
onstraint '0 satisfying '!f�g '0 and '0 �G &.Proof. By Lemma 4.32 there exists a Pp-saturated 
onstraint & 0 with ' � & 0 =exG &.Suppose � is a rule ' ! Wni=1 'i that is not an instan
e of (P.new). Then by the sameargument as in the proof of Lemma 3.17 there exists an i su
h that 'i � & 0, hen
e' ^ 'i � & 0. Now suppose that � is an instan
e of (P.new). Let � be ' ! 9X 0:A �symB ^ p(X0X Y0X0 ) ^ X 2 b(A) with X 0 62 G [ Var('). We must have p(X0X Y0Y ) 2 & for somevariable Y . But then by axiom (2) of Fig. 4.16, we have & 0 =exG & 0[Z 0=X 0℄ for someZ 0 62 G [ Var(& 0) [ Var('), whi
h by axiom (1) is =exG equivalent to & 0[Z 0=X 0℄ ^ Y=X 0,whi
h in turn equals & 0[Z 0=X 0℄^Y=X 0 ^p(X1X Y1X0 ) by axiom (3). Call this last 
onstraint& 00, then ' ^ p(X1X Y1X0 ) � & 00 =exG &.For the algorithm Pd that we have dis
ussed in the previous 
hapter, we have arguedthat the saturation rules never introdu
e additional variables, so there are only �nitelymany literals that the algorithm 
an possibly add to a 
onstraint. Hen
e after a �nitenumber of steps we must rea
h the minimal saturated 
onstraint we are moving towards.However, things are di�erent with Pp, sin
e (P.new) introdu
es additional variables intothe 
onstraint. To prove 
ompleteness of Pp, we use a distan
e measure between a
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onstraint ' and a minimal saturated 
onstraint & for it. The two elements of the measureare: the number of nodes in the 
onstraint graph for & that are not present in the
onstraint graph for '; and the number of 
orresponden
es still to be 
omputed for thevariables that are present in '. Then, to show that Pp 
an a
tually rea
h any givenminimal saturated 
onstraint of a 
onstraint, we show that after applying one instan
eof (P.new) and then saturating the 
onstraint under all other rules, we have made thedistan
e from the minimal saturated 
onstraint stri
tly smaller.De�nition 4.35 (La
king 
orrespondents). Let ' be a Cpp 
onstraint and S �Var('). Then we de�ne the number l
(S; ') of la
king 
orrespondents in ' byl
(S; ') =X�l
A;B(X;') + l
B;A(X;') j X 2 S and A �sym B in '	where we �x the values of the auxiliary terms by setting for all segment terms A with rootvariable X0 and B with root variable Y0 and for all X 2 Var('):l
A;B(X;') = � 1 if X 2 b(A) in ' but p(X0X Y0X0 ) is not in ' for any X 00 otherwiseDe�nition 4.36 (Inequality set). For Cpp 
onstraints '1�'2, let di�('1; '2) be thesize of the set fX 2 Var('2) j X 6=Y 2 '2 for all Y 2 Var('1)g.We 
all a set S � Var(') of variables an inequality set for ' i� X 6=Y 2 ' for anydistin
t X;Y 2 S.For 
onstraints '2 that are saturated with respe
t to (P.distr.eq), di�('1; '2) is thenumber of variables X in '2 su
h that X=Y not in '2 for all Y 2 Var('1).De�nition 4.37 (G-measure). Let ', & be Cpp 
onstraints and G � Var with ' �G &.Then the G-measure �G('; &) for ' and & is the pair ��1G('; &); �2(')�, where:� �1G('; &) = minfdi�('; & 0) j ' � & 0 =exG & and & 0 is Pp-saturated g� �2(') = minfl
(S; ') j S is a maximal inequality set for 'g.We order G-measures by the lexi
ographi
 ordering < on sequen
es of natural numbers,whi
h is well-founded.Let Pnew be the set of all instan
es of (P.new), and let Po be Pp � Pnew. The mainidea of the following proof is that after ea
h !Pnew step and subsequent Po saturation,the G-measure between a 
onstraint and the minimal saturation that we are movingtowards has stri
tly de
reased: Either we have introdu
ed a new node in the 
onstraintgraph, whi
h de
reases �1, even though the new variable may need more 
orrespondents,thus in
reasing �2. Or we have made a 
orrespondent-la
king variable 
orrespond to avariable already present in the 
onstraint. This leaves �1 un
hanged but de
reases �2.In formulating the following lemma, we make use of Def. 4.33:
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onstraint and G � Var('). Then Pp
an 
ompute from ', in a �nite number of steps, any minimal Pp-saturation for ' withrespe
t to G.Proof. Let & be a minimal Pp-saturation for ' with respe
t to G. What we want to showis that there is a Pp-saturation & 0 =G & su
h that '!�Pp & 0 in a �nite number of steps.W.l.o.g. let ' be Po-saturated. If no rule from Pnew is appli
able to ' then ' =G & bythe minimality of &. If a rule � 2 Pnew is appli
able to ', then by Lemma 4.34 there exist'0; '00 su
h that '!f�g '00 !�Po '0 �G &, and '0 is Po-saturated.We show that for the Po-saturated ', the 
onstraint '0 that results from one appli
ationof (P.new) and subsequent Po-saturation, and the minimal Pp-saturation & for ', we have�G('0; &) < �G('; &). Note that be
ause ' is Po-
losed, a maximal inequality set within '
ontains exa
tly one variable from ea
h synta
ti
 variable equivalen
e 
lass representedin '; and l
(fXg; ') = l
(fY g; ') whenever X=Y is in ' be
ause of saturation under(P.path.eq.1). For any Pp-saturation & 0 with ' � & 0 =exG &, the value of di�('; & 0) isminimal (i.e. equal to �1G('; &)) if for any Y 2 Var(& 0) su
h that Y 6=X in & 0 for all X 2Var(') the following holds: Y is not in G (sin
e Var(& 0)\G = Var(&)\G = Var(') \G,otherwise & would not be a minimal saturation for ' with respe
t to G) and there is novariable Z 2 Var(& 0) distin
t from Y with Y=Z in & 0.Let the rule � be 9X 0:
o(A;B)(X 0)=X, i.e. X 0 62 G is the variable newly introdu
ed by �.In '0, (P.distr.eq) has been applied to X 0 and all variables in Var('). Let & 0 =exG & with' � & 0 and minimal di�('; & 0). The 
onstraint & 0 
ontains p(X1X Y1Z ) for some Z. W.l.o.g.we pi
k a & 0 that does not 
ontain X 0.� If X 0=Y is in '0 for some Y 2 Var('), then �2('0) < �2(') and �1G('0; &) =�1G('0; &): We �rst show that �2('0) < �2('). We have l
(fV g; '0) < l
(fXg; ')for all variables V 2 Var(') su
h that V=X is in '0, and either X or some othermember of its equivalen
e 
lass must be in ea
h maximal inequality set. At thesame time, a maximal inequality set within '0 
an 
ontain only one of X 0 and Y ,so X 0 
ontributes nothing additional to �2('0).Now we show that �1G('0; &) = �1G('0; &). Let & 00 be Pad(& 0 ^ X 0=Z). Then & 00 isPp-saturated by the proof of Lemma 4.32, and '0 � & 0 � Pad(& 0 ^X 0=Z). We havedi�('0; & 00) = di�('; & 0) be
ause Var('0) � Var(') = Var(& 00) � Var(& 0) = fX 0g,and X 0 belongs to the same equivalen
e 
lass as Y , whi
h o

urs in ' and & too.Furthermore di�('0; & 00) is minimal be
ause di�('; & 0) is, and the only variable inVar(& 00)�Var(& 0) is X 0, whi
h is not di�erent from all variables in '0 and thus doesnot 
ontribute to di�('0; & 00).� If X 0 6=Y is in '0 for all Y 2 Var('), then �1G('0; &) < �1G('; &): We must haveZ 6=Y 2 & 0 for all Y 2 Var('0) be
ause (P.distr.eq) has 
ontributed X 0 6=Y to '0for all Y 2 Var('), and we have assumed that all rules are applied in su
h a waythat the resulting 
lause is still �G &. And this means that by the minimality of
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onstrII 0), Z 62 G and that Z=Z 0 is not in & 0 for any variable Z 0 distin
tfrom Z, as pointed out above.Now let & 00 be & 0[X 0=Z℄. Then we have & 0 =exG & 00 by axiom (2) sin
e Z 62 G. For thesame reason & 00 is a Pp-saturated 
onstraint, and we have '0 � & 00. Furthermore,di�('0; & 00) = di�('; &)�1 be
ause we must have had Z 6=V in & 0 for all V 2 Var(').So in any 
ase, the �-distan
e between '0 and & is stri
tly smaller than the �-distan
ebetween ' and &. Sin
e we 
an always de
rease the distan
e from & in a �nite number ofPp-
omputation steps, the pro
edure Pp 
an 
ompute a saturation for ' that is =G-equalto & in a �nite number of steps.So Pp 
an 
ompute all minimal saturations for a given 
onstraint. We 
an say evenmore: Pp 
omputes exa
tly the minimal saturations. In Chapter 3, p. 70, we have arguedthat the only rules that 
an lead to the 
omputation of nonminimal saturations aredistribution rules, and only those where the right-hand side disjun
ts are not mutuallyex
lusive. In Pd, and also in Pp, there is exa
tly one su
h rule, (D.distr.notDisj). WithPd, (D.distr.notDisj) 
an indeed lead to the 
omputation of nonminimal saturations,where one saturated 
onstraints 
ontains an equality X=Y and another 
ontains neitherX=Y nor X 6=Y . But Pp 
ontains the rule (P.distr.eq), whi
h guesses either X=Y orX 6=Y for ea
h pair of variables. So Pp only 
omputes minimal saturations.Ea
h model of a 
onstraint is also a model of one of its minimal saturations.Proposition 4.39. Let ' be a Cpp-
onstraint for whi
h (�; �) is a model, and let G �Var('). Then ' possesses a �G-minimal Pp-saturated 
onstraint that is also satis�ed by(�; �).Proof. The proof of this proposition is the same as for Prop. 3.18 (p. 70).4.6 Re
apitulation: Properties of the Pro
edure PpIn the previous se
tions, we have shown a number of properties of the pro
edure Pp,whi
h we now sum up.Theorem 4.40. The semi-de
ision pro
edure Pp for parallelism 
onstraints has the fol-lowing properties:1. It is sound for lambda stru
tures.2. There are unsatis�able parallelism 
onstraints for whi
h it does not terminate.3. A generated Pp-saturated Cpp-
onstraint is satis�able.



114 Solving Parallelism Constraints4. Pp is 
omplete: Given a Cpp 
onstraint ' and a set G � Var('), Pp 
an 
omputefrom ', in a �nite number of steps, any minimal Pp-saturation for ' with respe
tto G.5. This set of minimal Pp-saturations for a parallelism 
onstraint may be in�nite.Proof. 1. by Lemma 4.10, 2. by Ex. 4.7, 3. by Lemma 4.22, 4. by Lemma 4.38, 5. byLemma 4.12.4.7 Related WorkThe 
losest relative of parallelism 
onstraints is 
ontext uni�
ation (CU), whi
h we havesket
hed in Chapter 2. In this se
tion we 
ompare the parallelism 
onstraint pro
edurethat we have just introdu
ed to a 
ontext uni�
ation pro
edure. There are di�erentrule-based pro
edures for CU [84, 93℄. We 
hoose the simpler version as a basis for our
omparison. This CU pro
edure is from a paper by Niehren, Pinkal and Ruhrberg [93℄.It is shown in Fig. 4.17.De
omposition: f(t1; : : : ; tn) = f(t01; : : : ; t0n) �! Vni=1 ti = t0i j IdSubstitution: x = t �! true if x 62 Var(t) j x 7! tOrient: t = X �! X = t j Id for X 2 V1 [ V2Proje
tion: f(t1; : : : ; tn) = C(t0) �! f(t1; : : : ; tn) = t0 j C 7! �x:xImitation f(t1; : : : ; tn) = C(t0) �! ti = C 0(t0)j C 7! �x:f(t1; : : : ; ti�1; C 0(x); ti+1; : : : ; tn)Simpli�
ation: C(t) = C(t0) �! t = t0 j IdFlex-Flex1: C(t) = C 0(t0) �! t = C 00(t0) j C 0 7! �x:C(C 00(x))Flex-Flex2: C(t) = C 0(t0) �! truej C 7! �y:C1(f($(x;C2(y); C3(t0)))),C 0 7! �z:C1(f($(x;C2(t); C3(z)))),where $ is a permutationFigure 4.17: A pro
edure for 
ontext uni�
ationThe pro
edure has the form of a state transformer. A state is a pair hE; �i of a set Eof equations and a substitution � (whi
h we lift 
anoni
ally from terms t to equationsystems E over terms). For a given equation system E the pro
edure starts in the statehE; Idi. The equation system is solved if a �nal state of the form h;; �i 
an be rea
hedby an (indeterministi
) appli
ation of transformation rules, where a transformation rulehas the form t = t0 �! E j �: When applied to the state hft = t0g [ E0; �0i it yields thenew state h�(E [ E0); � Æ �0i. As above, we view 
ontexts as 
ontext fun
tions, linearse
ond order lambda terms of the form �x:t, where t is a se
ond order term in whi
h the
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urs exa
tly on
e. We assume that in performing a substitution�(E) we also beta redu
e the terms.The state transformation rules of the pro
edure for 
ontext uni�
ation are given in Fig.4.17. The two most interesting 
ases are the Flex-Flex rules. Given a 
ontext 
, let us
all the path � with L
(�) = � its ex
eption path. Then we 
an des
ribe the two rules asfollows. Given an equation C(t) = C 0(t0), there are two possibilities: Either the hole ofC lies on the ex
eption path of C 0, or the ex
eption paths of C and C 0 bran
h at somepoint. Flex-Flex1 
overs the �rst 
ase. Here t0 is a subtree of t. Flex-Flex2 
overs these
ond 
ase. It has to guess a fun
tion symbol f (of some arity n) at whi
h the twoex
eption paths bran
h and a permutation $ of an n-ary sequen
e 
onsisting of 
ontextsC2 and C3 \leading to" the holes of C and C 0, respe
tively, and n� 2 fresh variables x.As we have remarked in Chapter 2, CLLS has evolved from a CU approa
h to underspe
-i�
ation [95℄. In that analysis, both s
ope and ellipsis were modeled by 
ontext variables.To pro
ess the ensuing CU equation systems, the pro
edure in Fig. 4.17 was used, but thetwo Flex-Flex rules were omitted to keep the 
omputation tra
table [74℄, whi
h makesthe pro
edure in
omplete.So what are the advantages of using a dedi
ated pro
edure for parallelism 
onstraintsinstead of falling ba
k on the CU pro
edure? The biggest advantage is that the parallelism
onstraint pro
edure in
orporates a dominan
e 
onstraint solver: It 
an use a dedi
ated,faster sub-pro
edure for handling dominan
e 
onstraints, while a CU pro
edure 
annotdis
riminate between dominan
e and parallelism { dominan
e 
onstraints do not seemto 
orrespond to any 
lear-
ut fragment of 
ontext uni�
ation. Furthermore the CUpro
edure determines the shape of a 
ontext in a top-down fashion, starting at the rootof the 
ontext and working downward. In the pro
ess, it sometimes has to guess labels.In 
ontrast, the parallelism 
onstraint pro
edure handles parallelism literals without anypreferred dire
tion, and it never has to guess labels.4.8 The Sear
h Tree that Pp ExploresIn the sear
h tree that Pp explores, the nodes are 
onstraints, and if a saturation rule'0 ! Wni=1 9Vi'i is applied to a 
onstraint ', then the node ' has n 
hildren ' ^ '0i for1 � i � n and fresh Vi-variants '0i of 'i. A leaf of the sear
h tree 
an be either su

eeded,in whi
h 
ase it is a Pp-saturated 
onstraint that does not 
ontain false, or failed, inwhi
h 
ase it 
ontains false.What does 
ompleteness of Pp mean stated in terms of sear
h trees? The �rst thing tonote is that there may be more than one sear
h tree starting with the same 
onstraintat the root, sin
e the appli
ation of saturation rules is don't 
are indeterministi
. So
ompleteness means that in all sear
h trees with the same 
onstraint ' at the root andfor ea
h model � of ' there must be a su

eeded leaf at �nite depth satis�ed by �. Thereare sear
h trees with in�nite bran
hes, for example any sear
h tree for the unsatis�able
onstraint of Ex. 4.7. For the 
onstraint of Ex. 4.8 the fairness 
ondition { (P.new) is



116 Solving Parallelism Constraintsapplied only to 
onstraints saturated under Po { is ne
essary to ensure that there aresu

ess nodes at �nite depth.Another interesting question to study in 
onne
tion with the sear
h tree of Pp is �nitefailure. Suppose that for a given 
onstraint ' there exists a sear
h tree with root ' thatis �nite, and all its leaves are failed. Then, is Pp guaranteed to �nd that sear
h tree, or
an it still diverge into an in�nite bran
h of some other sear
h tree with root '? Thequestion of �nite failure has been extensively studied in 
onne
tion with Negation asFailure [4℄. A literal A is in the �nite failure set of a program P if there exists a �nitelyfailed SLD-tree with A as root. Lassez and Maher [83℄ show that for programs P andground atoms A, A is in the �nite failure set of P i� every fair SLD-tree with  A asroot is �nitely failed. Here, fairness means that the tree is either �nite, or every atomappearing in it is eventually sele
ted.Is the two-level 
ontrol we use with the saturation rules of Pp suÆ
ient to guarantee thatwe �nd ea
h �nitely failed sear
h tree? The answer to this question is not known yet.The failed sear
h tree might in
lude some edges that are instan
es of (P.new). Can weguarantee that we 
an always �nd the \right" instan
es, the ones that do not lead toin�nite sear
h tree bran
hes?4.9 SummaryIn this 
entral 
hapter we have introdu
ed the pro
edure Pp for parallelism 
onstraints. Itextends the solver Pd for dominan
e 
onstraints, whi
h we have dis
ussed in the previous
hapter. Like Pd, Pp is a saturation pro
edure. It keeps on extending a set of 
lausesuntil a state of saturation is rea
hed, and it never eliminates any information it hasgathered.The main idea in solving parallelism literals is to 
ompute synta
ti
 
orresponden
e fun
-tions. The pro
edure makes sure that ea
h variable o

urring in one of the two parallelsegment terms has a 
orrespondent in the other segment term, and 
opies all materialfrom one parallel segment term to the other.The 
orresponden
e formulas that make up a synta
ti
 
orresponden
e fun
tion are ex-pressed by path parallelism literals. Path parallelism states that the tree path betweentwo nodes is the same as the path between two other nodes, in
luding the labels en
oun-tered on the way. The properties of path parallelism literals, expressed as saturationrules, enfor
e the right intera
tion between di�erent synta
ti
 
orresponden
e fun
tions.Fairness is ensured by a 
ontrol on the order of rule appli
ations: the rules that introdu
enew variables are applied only to 
onstraints saturated under all other rules.The pro
edure is sound: All rules are equivalen
e transformations. Also, ea
h Pp-saturated 
onstraint is satis�able. We have shown how to 
onstru
t a model from agiven saturated 
onstraint. For saturated 
onstraints that already look like trees, we 
anname a satisfying tree dire
tly, using the models for Pd-saturated 
onstraints that we
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onstru
ted in the previous 
hapter. For other saturated 
onstraints we again labelunlabeled variables until a tree-shaped 
onstraint is rea
hed, but this time we have tolabel all variables linked by 
orresponden
e at the same time.The pro
edure Pp is 
omplete: It 
omputes all minimal saturated 
onstraints for a giveninput 
onstraint. While in the previous 
hapter we have 
onsidered minimality withrespe
t to subset in
lusion, we now use the family of partial orders �G , parametrized bya set G � Var of variables, that 
an be des
ribed as subset in
lusion modulo �-renamingof variables introdu
ed during 
omputation with Pp.We have shown that Pp is 
omplete: First, given a 
onstraint to whi
h a rule is appli
able,and a minimal saturation for it, we 
an apply the rule in su
h a way that we move 
loserto the minimal saturation in question. Se
ond, when we move towards su
h a minimalsaturation by 
onse
utive rule appli
ations, the saturationis a
tually rea
hed in a �nitenumber of steps. To show this, we have used a distan
e measure between 
onstraintand saturation, a measure that 
ounts the number of variables that still need to beintrodu
ed in the 
onstraint and the number of 
orresponden
es still to be �xed. Thefairness 
ondition plays a 
riti
al role in the 
ompleteness proof.
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Chapter 5Solving CLLS Constraints
In this 
hapter we 
omplete the semi-de
ision pro
edure for CLLS. It in
orporates thepro
edures we have been dis
ussing in the previous two 
hapters: the semi-de
ision pro
e-dure Pp for parallelism 
onstraints, and hen
e also the solver Pd for dominan
e 
onstraints(whi
h forms part of the pro
edure Pp). What we add to the pro
edure Pp in the 
urrent
hapter are rules for handling lambda and anaphori
 binding. We again formulate thepro
edure within the framework of saturation: It keeps on adding material to a set of
lauses until a state of saturation is rea
hed (i.e. a set of saturated 
onstraints), in whi
hnothing new 
an be added anymore.The new saturation rules that we introdu
e in the 
urrent 
hapter are rather simple: Theyjust implement the 
onditions on the intera
tion of parallelism and binding in lambdastru
tures that we have laid down in Chapter 2.We prove the semi-de
ision pro
edure for CLLS sound and 
omplete, using again thesame proof s
hemata as in the previous 
hapter. Finally, we sum up all saturation rulesof the pro
edure, the new rules as well as those that we have dis
ussed in the previoustwo 
hapters.5.1 A Semi-De
ision Pro
edure for CLLS: PIn this se
tion we present a semi-de
ision pro
edure for the 
onstraint language CLLS.Again, the pro
edure tries to �nd out, for a given 
onstraint, whether there exists amodel, a lambda stru
ture that satis�es the 
onstraint. Given a satis�able 
onstraint,the pro
edure 
omputes a set of saturations. From ea
h of those a model 
an be read o�.We again formulate this pro
edure as a saturation pro
edure: It operates on a set of
lauses, adding more and more material to them until nothing new 
an be added anymore.A saturation rule � has the form '0 ! Wni=1 9Vi'i, where for 0 � i � n, 'i is a 
lause andfor 1 � i � n, Vi is a set of variables. The rule is appli
able to a 
lause & if the appli
ation
ondition app
� holds. This 
ondition, laid down in Def. 4.1 (p. 76), basi
ally states that� is appli
able only if none of its 
onsequen
es 'i, 1 � i � n, is already in & (modulorenaming of the existentially quanti�ed variables Vi). See the beginning of Chapters 3and 4 for formal de�nitions and more detailed explanations of saturation pro
edures.119



120 Solving CLLS ConstraintsIn the previous 
hapter we have introdu
ed a few formulas that we reuse here. Rememberthat these formulas may 
ontain disjun
tions: A disjun
tion on the right-hand side ofa saturation rule just makes it a distribution rule, but if a disjun
tion o

urs on theleft-hand side of a rule, then this rule is a
tually an abbreviation for a set of rules, inthe way explained at the beginning of Chapter 4. We reuse the following formulas: LetA = X0=X1; : : : ;Xn, B = Y0=Y1; : : : ; Yn be segment terms. ThenA �sym B =def A � B _ B � Aseg(A) =def Vni=1X0/�Xi ^V1�i<j�n �(Xi?Xj) _ (Xi=Xj)�X 2 b(A) =def X0/�X ^ Vni=1(X/�Xi _X?Xi)X 2 b�(A) =def X 2 b(A) ^Vni=1(X 6=Xi _X?Xi)X 62b(A) =def X/+X0 _X?X0 _Wni=1Xi/+XX 62b�(A) =def X/+X0 _X?X0 _Wni=1Xi/�X
o(A;B)(U)=V =def A�symB ^ p(X0U Y0V ) ^ U 2 b(A):5.1.1 The Rules in DetailRemember that the language CLLS has the following abstra
t syntax:'; & ::= X/�Y j X:f(X1; : : : ;Xn) j X?Y j X 6=Y (ar(f) = n) (1)j X0=X1; : : : ;Xn�Y0=Y1; : : : ; Yn n � 0 (2)j �(X)=Y j ante(X)=Y (3)j false j ' ^ & (4)The semi-de
ision pro
edure P for CLLS is shown in Fig. 5.1. The �rst blo
k of rules inFig. 5.1 implements the 
onditions laid down in Def. 2.6 (p. 29). (D.�.fun
) states that� is a fun
tion: It has the form �(X)=Y ^ �(U)=V ^X=U ! Y=V , i.e. ea
h node of alambda stru
ture has at most one image under �. The rule (D.ante.fun
) does the samefor ante. (D.�.dom), whi
h is �(X)=Y ! Y /�X, implements the 
ondition that a lambdabinder always dominates its bound nodes. (D.�.var) �xes the label of bound nodes: Bystating �(X)=Y ! X:var, it says that node with a lambda binder must be labeled var.Likewise, (D.ante.ana) states that a node with an anaphori
 binder must be labeled ana.The rule (D.�.lam), whi
h says �(X)=Y ! 9Y 0:(Y :lam(Y 0)_Y :8(Y 0)_Y :9(Y 0)), makessure that a lambda binder is labeled either lam, 8, or 9.The se
ond blo
k of rules realizes the 
onditions of Def. 2.7 (p. 29). The rule (P.�.same)mat
hes the 
ondition (�.same) by stating �(U1)=U2 ^ V2i=1 
o(A;B)(Ui)=Vi ^ U1 2b�(A) ! �(V1)=V2: For a variable bound within the same segment term, the 
orre-sponding variable is bound 
orrespondingly. (P.�.out) implements the 
ondition (�.out):It says �(U1)=Y ^ 
o(A;B)(U1)=V1^U1 2 b�(A)^Y /+X0 ! �(V1)=Y for A = X0= : : :,i.e., if a variable is bound above its segment term, then its 
orrespondent must be boundat the same binder. For the 
ondition (�.hang) we have (P.�.hang), an additional 
lashrule, whi
h is �(U1)=U2 ^ A � B ^ U2 2 b�(A) ^ U1 62b�(A) ! false. It de
lares a
onstraint unsatis�able if a lambda binder inside a segment term binds a variable that



Solving CLLS Constraints 121Let A = X0=X1; : : : ;Xn and B = Y0=Y1; : : : ; Yn.(D.�.fun
) �(X)=Y ^ �(U)=V ^X=U ! Y=V(D.�.dom) �(X)=Y ! Y /�X(D.�.var) �(X)=Y ! X:var(D.�.lam) �(X)=Y ! 9Y 0:(Y :lam(Y 0) _ Y :8(Y 0) _ Y :9(Y 0))(D.ante.fun
) ante(X)=Y ^ ante(U)=V ^X=U ! Y=V(D.ante.ana) ante(X)=Y ! X:ana(P.�.same) �(U1)=U2 ^V2i=1 
o(A;B)(Ui)=Vi ^ U1 2 b�(A) ! �(V1)=V2(P.�.out) �(U1)=Y ^ 
o(A;B)(U1)=V1 ^ U1 2 b�(A) ^ Y /+X0 ! �(V1)=Y(P.�.hang) �(U1)=U2 ^A � B ^ U2 2 b�(A) ^ U1 62b�(A) ! false(P.ante.same) ante(U1)=U2 ^V2i=1 
o(A;B)(Ui)=Vi ^ U1 2 b�(A) ^A � B !ante(V1)=U1 _ ante(V1)=V2(P.ante.out) ante(U1)=U2 ^ 
o(A;B)(U1)=V1 ^U2 62b(A)^U1 2 b�(A)^A � B !ante(V1)=U2(P.ante.distr) ante(U1)=U2^A � B^U1 2 b�(A)! X0/�U2 _ U2/+X0 _ U2?X0plus the rules of the parallelism 
onstraint pro
edure Pp in Fig. 4.3, p. 81.Figure 5.1: Solving CLLS 
onstraints: pro
edure P.is below the segment term. The distribution rule (P.ante.same) implements the 
on-dition (ante.same): It says ante(U1)=U2 ^ V2i=1 
o(A;B)(Ui)=Vi ^ U1 2 b�(A) ^ A �B ! ante(V1)=U1 _ ante(V1)=V2, i.e. if a variable has its anaphori
 binder withinthe same segment term, there are two possible anaphori
 bindings for its 
orrespon-dent. These two bindings mat
h the stri
t and the sloppy reading of anaphora o

urringwithin an ellipsis. (This phenomenon is dis
ussed in Se
. 2.3.4, p. 38.) Note the 
on-dition A � B in the premise of this rule: The 
orresponden
e formula only 
ontainsA �sym B. Here, for the �rst time, we need to make use of the fa
t that parallelismliterals are not symmetri
, the reason being that the 
onditions for anaphori
 bindingare not symmetri
. The 
ondition (ante.out) is realized by the rule (P.ante.out), whi
his ante(U1)=U2 ^ 
o(A;B)(U1)=V1 ^U2 62b(A) ^U1 2 b�(A) ^A � B ! ante(V1)=U2: Ifa variable is anaphori
ally bound outside its segment term, then its 
orrespondent musthave the same anaphori
 binder. Again, we have A � B in the premise be
ause the
ondition (ante.out) is not symmetri
. The distribution rule (P.ante.distr), whi
h statesante(U1)=U2^A � B^U1 2 b�(A)! X0/�U2 _ U2/+X0 _ U2?X0, makes sure that we
an always de
ide whether to apply (P.ante.same) or (P.ante.out). A similar rule is notneeded for lambda binding: (D.�.dom) together with (D.distr.notDisj) already enfor
esa de
ision between (P.�.same) and (P.�.out).



122 Solving CLLS Constraintsand � Z� X0� � U1� �a � ws � lam �� � � U2� � X1ev � ling � lam �� � Y0� � Y1ev � 
s �X0=X1�Y0=Y1� � U3� �attend � var �var �Figure 5.2: Constraint for senten
e (2.6): \Every linguist attended a workshop. Every
omputer s
ientist did, too."(a) and � Wlam � U1� U2 � X0var � U3 � Y0 (b) and � W� X0lam � U1� U2var � U3 � Y0lam � U 01� U 02var � U 03 (
) lam � U1� U2and � W� X0var � U3 � Y0var � U 03X0=�Y0= X0=�Y0= X0=�Y0=Figure 5.3: Applying lambda binding rules to a simpler version of Fig. 5.25.1.2 ExamplesExample 5.1 (Lambda binding). The 
onstraint in Fig. 5.2 shows the representationof the senten
e \Every linguist attended a workshop. Every 
omputer s
ientist did, too."What is interesting for our 
urrent purpose is the lambda binding from U1 to U2, andwhere its 
opy in the \target segment term" will be. So we 
on
entrate on the essentials(1) 
o(A;B)(X0)=Y0 (P.init)(2) X0/�U2 _ U2/�X0 (D.distr.notDisj)(2a) X0/�U2:. . . X0/�U1(3) 9U 0i :
o(A;B)(Ui)=U 0i ,1 � i � 3 (P.new)(4) Y0/�U 01; U 02/�U 03 (P.
opy.dom)(5) U 01:lam(U 02) (P.
opy.lab)(6) U 03:var (P.
opy.lab)(7) �(U 03)=U 01 (P.�.same)
(2b) U2/�X0:. . . U2/�W(8) 9U 03:
o(A;B)(U3)=U 03(P.new)(9) Y0/�U 03 (P.
opy.dom)(10) U 03:var (P.
opy.lab)(11) U1/+X0 (D.lab.ineq),(P.distr.ineq)(12) �(U 03)=U1 (P.�.out)Figure 5.4: Computation of Pp on Fig. 5.3 (a)
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onstraint and regard Fig. 5.3 (a) instead. The relevant part of the 
omputationby the pro
edure P is shown in Fig. 5.4. Line (2) basi
ally de
ides between two possiblepositions for the \a workshop" fragment. This 
hoi
e determines whi
h lambda bindingrule will be applied: Either the rule (P.�.same) applies in line (7), stating that bindingwithin the two parallel segment terms must be parallel { the 
onstraint that we have atthis point is depi
ted in Fig. 5.3 (b). Or rule (P.�.out) 
omes to bear in line (12), bindingU3 and its 
orrespondent U 03 at the same variable outside the two parallel segment terms{ at this point, we have the 
onstraint shown in Fig. 5.3 (
).and �� X0� �� �
at of � ana � X lam ��� �� �likes � var �mary � X1� Y0sue � Y1
X0=X1�Y0=Y1Figure 5.5: Constraint for senten
e (2.11): \Mary1 likes her1 
at, and Sue does, too."(a) and �� X0� �ana � U0 �mary � X1 � Y0sue � Y1X0=X1�Y0=Y1(b) and �� X0� �ana � U0 �mary � X1 � Y0� �ana � U 00 �sue � Y1 (
) and �� X0� �ana � U0 �mary � X1 � Y0� �ana � U 00 �sue � Y1X0=X1�Y0=Y1 X0=X1�Y0=Y1Figure 5.6: Applying anaphori
 binding rules to a simpler version of Fig. 2.15Example 5.2 (Anaphori
 binding). Figure 5.5 shows the 
onstraint representing thesemanti
s of the senten
e \Mary1 likes her1 
at, and Sue does, too" (where the indi
essignify that the \her" relates to \Mary", i.e. that Mary likes her own 
at). What isinteresting for our 
urrent purpose is the anaphori
 binding edge ending at the variable



124 Solving CLLS Constraints(1) X0/�X1 ^ Y0/�Y1 ^
o(A;B)(X0)=Y0 ^ 
o(A;B)(X1)=Y1 (P.init)(2) 9U 00:
o(A;B)(U0)=U 00 (P.new)(3) X0/�U0 (D.dom.trans)(4) U0?X1 (D.disj)(5) ante(U 00)=U0 _ ante(U 00)=U0 (P.ante.same)Figure 5.7: Computation of Pp on Fig. 5.6 (a)X1. So again, we use a simpli�ed version of the 
onstraint in Fig. 5.5: the 
onstraintin Fig. 5.6 (a). On this 
onstraint, the pro
edure P works as shown in Fig. 5.7. Themost interesting line is (5), where (P.ante.same) is applied. It guesses an anaphori
binder for the variable U 00 in the \target segment term". This binder 
an be either the
orrespondent of U 00, whi
h is U0. This is the stri
t reading; if we saturate the 
onstraintfurther by 
opying all labeling literals from the \sour
e segment term" to the \targetsegment term", we get the 
onstraint depi
ted in Fig. 5.6 (b). Or the binder of U 00 
anbe Y1, whi
h 
orresponds to the binder X1 of U0. This is the sloppy reading. If we now
opy all labeling literals from the \sour
e segment term" to the \target segment term",we get the 
onstraint drawn in Fig. 5.6 (
).5.2 Some Properties of the Pro
edure: Soundness, SaturationsIn this and the following se
tions we examine properties of the semi-de
ision pro
edureP for CLLS. All results are 
olle
ted in a theorem in Se
. 5.5.5.2.1 SoundnessIn Se
. 3.5, Def. 3.3, we have stated the notion of soundness that we use: We 
all asaturation pro
edure sound if all its rules are equivalen
e transformations. As we areworking in a saturation framework, it suÆ
es to show that in all rules the premise entailsthe 
on
lusion.The rules in Fig. 5.1 are dire
t translations of the 
onditions laid down in Def. 2.6 and2.7. So the following lemma obviously holds:Lemma 5.3 (Soundness). The semi-de
ision pro
edure P for CLLS is sound for lambdastru
tures.5.2.2 Nontermination, FairnessThere are 
onstraints for whi
h the pro
edure P does not terminate: This is obviousfrom the fa
t that it in
orporates the pro
edure Pp, whi
h has the same property.
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. 4.2.3, Def. 4.11, we have laid down what we mean by fairness: Whenever a rule isappli
able, one of the disjun
ts in its 
on
lusion will ultimately be added. The fairness
ondition we use for the pro
edure P is a straightforward adaptation of the 
ondition forthe pro
edure Pp:Fairness 
ondition. (P.new) is applied only to 
onstraints saturated underP� f(P.new)g. (P.new) is applied to variables in the order of their introdu
-tion into the 
onstraint.5.2.3 Saturated ConstraintsIn the previous two 
hapters we have given a sket
h of what 
onstraint graphs of Pd-saturations and Pp-saturations look like. Basi
ally, a 
onstraint graph for a Pd-saturationis a forest, and we have on the one hand labeled nodes { all their outgoing edges arelabeling edges, and their 
hildren are ordered { and on the other hand unlabeled nodes {all their outgoing edges are dominan
e edges, and their 
hildren are unordered (p. 63). Inthe 
onstraint graph of a Pp-saturation, there are additional 
onditions on the \parallelregions of the forest" (p. 90). So what additional features does a 
onstraint graph for aP-saturation have? This is simple: It 
ontains two additional sorts of edges, lambda andanaphori
 binding edges, and they basi
ally obey the 
onditions that we have laid downin the De�nitions 2.6 and 2.7 (p. 29) and 29).5.3 Satis�ability of Saturated ConstraintsIn this se
tion we show that from ea
h saturated 
onstraint that P 
omputes, a model
an be read o�. We pro
eed as in the two previous 
hapters: We regard �rst simple
onstraints, then we extend non-simple saturated 
onstraints to simple ones.As before, we restri
t ourselves to generated 
onstraints: They only 
ontain path paral-lelism literals that 
ould have been added to pro
ess parallelism literals, but not pathparallelism literals in arbitrary pla
es. We lift the de�nition of generatedness (Def. 4.14)
anoni
ally from Cpp to CLLSp. Lemma 4.15, whi
h states that all Cpp 
onstraints 
om-puted by Pp are indeed generated, trivially also holds for CLLSp 
onstraints and P.5.3.1 Simple ConstraintsIn Def. 3.7 (p. 64) we have introdu
ed simple 
onstraints: they possess a root variabledominating all others, and every variable is labeled. This de�nition 
an be lifted 
anoni-
ally from dominan
e 
onstraints to CLLSp 
onstraints: A CLLSp 
onstraint ' is 
alledsimple i� the maximal subset of ' that is a Cd 
onstraint is simple. In this paragraph weshow that every simple generated P-saturated CLLSp-
onstraint is satis�able.First, we state that in a simple P-saturated 
onstraint, we have 
omplete informationabout whi
h variables are inside whi
h segment terms.



126 Solving CLLS ConstraintsLemma 5.4. Let ' be a simple P-saturated CLLSp-
onstraint. Then for ea
h variableU 2 Var(') and ea
h segment term A of ' with seg(A) in ', ' 
ontains either U 2 b(A)or U 62 b(A), and either U 2 b�(A) or U 62 b�(A).Proof. Suppose we have a variable U 2 Var(') and a segment term A of ' su
h thatseg(A) is in '. We want to show that ' 
ontains either U 2 b(A) or U 62 b(A). LetA = X= : : :. The easy 
ase is X/�U 2 ' { here we get the desired result by the 
losureof ' under (P.distr.seg). So suppose otherwise.As ' has a root variable, there exists a variable Z that is the \lowest" dominating bothX and U : Z/�U , Z/�X are in ', and all Z 0 dominating both U and X in ' also dominateZ. Z is labeled, w.l.o.g. let us assume ' 
ontains a literal Z:f(Z1; : : : ; Zn). By 
losureof ' under (D.distr.
hild) there are four possibilities: Either Z=X is in ', but that isimpossible, sin
e we have assumed that X does not dominate U in '; or Z=U is in ',then U/+X is in ' by 
losure under (P.distr.eq); or the same 
hild of Z dominates bothU and X, but that is impossible, sin
e we have assumed that Z is the lowest variabledominating both U and X; or there are two di�erent 
hildren Zi; Zj of Z, 1 � i 6= j � n,with Zi/�X and Zj/�U , then U?X 2 ' by 
losure under (D.lab.disj) and (D.disj). Inany 
ase, ' 
ontains either U 2 b(A) or U 62 b(A).Furthermore, we know that ' also 
ontains either U 2 b�(A) or U 62 b�(A) be
ause it is
losed under (P.distr.eq).Lemma 5.5 (Satis�ability of simple generated saturations). A simple generatedP-saturated CLLSp-
onstraint is satis�able.Proof. Let ' be a simple generated P-saturated CLLSp-
onstraint. In Chapter 4 we haveshown that any simple generated Pp-saturated Cpp-
onstraint is satis�able (Lemma 4.16,p. 93). Now we pro
eed as follows: We 
onstru
t a model for the maximal subset of 'that is a parallelism 
onstraint, in the same way as in Lemma 4.16, and then we extendthis model to a lambda stru
ture satisfying '. So let 'p be the maximal subset of ' thatis a parallelism 
onstraint, and let (�; �) be a model for 'p 
onstru
ted as in the proofof Lemmas 3.8 (p. 65) and 4.16. We now extend � to a lambda stru
ture L�0 that is amodel of '.We have to make sure that every var-labeled node possesses a binder. Suppose S �Var(') is the set of var-labeled variables without a lambda binder in '. We 
onstru
t anew tree �0 by adding one lam-labeled node \above" �: let �0 = lam(�). Now we de�nethe binding fun
tions we are going to use in the model:�(�(X))=� �(Y ) if �(X)=Y in '" if X 2 Sand ante(�(X))=�(Y ) if ante(X)=Y in '



Solving CLLS Constraints 127for all X 2 Var('). It remains to show that for L�0 = (�0; �; ante), (L�0 ; �) is indeed amodel of '.The fun
tion � is well-de�ned: Con
erning the variables in Var(') � S this follows bythe 
losure of ' under (D.�.fun
), and for the variables in S this is due to the fa
t thatwe map them all to the same binder ". The fun
tion ante is well-de�ned by the 
losureof ' under (D.ante.fun
). Ea
h node in the domain of � is labeled var: For the nodesinterpreting variables in Var(')� S this is be
ause ' is 
losed under (D.�.var), and forthe nodes denoting variables in S, this is true by the de�nition of S. Ea
h node in thedomain of ante is labeled ana by (D.ante.ana). Ea
h node in the range of � is labeledlam;9 or 8 by (D.�.lam) and the way we have 
onstru
ted �0 from �. The fun
tion �is total on the var-labeled nodes of � by the way we have de�ned it. For ea
h � in thedomain of �, �(�) is a pre�x of � by (D.�.dom) and the 
onstru
tion of �.It remains to show that the 
onditions of Def. 2.7 on the intera
tions of parallelism andbinding are met. For a var- or ana-labeled variable that possesses a binder in ', the rules(P.�...) and (P.ante...) take 
are of this be
ause by Lemma 5.4 we know, for ea
h variablein ' and ea
h segment term involved in a parallelism literal, whether the variable is insidethe segment term or not. For a var-labeled node that is not bound in the 
onstraint ', the
onstru
tion of the fun
tion � makes sure that the 
onditions of Def. 2.7 are ful�lled: Forall A � B in ', the lam-node we have newly introdu
ed in �0 is outside of the segmentsthat A;B denote. So we have not introdu
ed any hanging binders, and if some var-labelednode of �0 is inside some parallelism segment and is bound at ", then its 
orrespondentis bound at " too { if a var-labeled variable in ' is unbound, then all its 
orrespondentsare unbound too by 
losure under (P.�.same) and (P.�.out).5.3.2 Non-simple ConstrainsNow we 
onsider the 
ase of non-simple P-saturated 
onstraints. We �rst show thatgiven a non-simple P-saturation 
ontaining an unlabeled variable, we 
an extend it bylabeling that variable in su
h a way that the extension is still P-saturated.Lemma 5.6 (Extension by labeling). Every P-saturated CLLSp-
onstraint with anunlabeled variable U0 
an be extended to a P-saturated 
onstraint in whi
h U0 is labeled.Proof. Let fU1; : : : ; Umg be a maximal '-disjointness set in 
on'(U0). Assume that �
ontains a fun
tion symbol f of arity m. (If it does not, then we 
an en
ode it using anullary fun
tion symbol and a symbol of arity 2, as in Lemma 3.12 (p. 67).) We use thesame de�nition of an extension extU0;:::;Um(') of ' ^U0:f(U1; : : : ; Um) as in Lemma 4.19(p. 98). We repeat it here:extU0;:::;Um(') =def ' ^ ^V0:f(V1;:::;Vm)2
opy'�U0;U1;:::;Um) �V0:f(V1; : : : ; Vm) ^ Vmi=1 V0 6=Vi ^V Vi/�Z;Vj/�W2';1�i<j�n Z?W ^V Z:g(:::)2';g 6=f _ ar(g)6=ar(f) Z 6=V0�



128 Solving CLLS ConstraintsWithout loss of generality we 
an assume that f is neither var, lam or ana: In Chapter 2we have de�ned the signature � in su
h a way that it 
ontains these symbols in additionto at least one nullary and one at least binary fun
tion symbol.We show for ea
h rule of P, unless it is already in Pp, that it is not appli
able toextU0;:::;Um(').(D.�...), (D.ante...) We have not added any var- or lam-labels. Also, we have not addedany binding literals. Thus, none of these rules are appli
able.(P.�.same), (P.�.out): (P.�.same) is �(U1)=U2 ^ V2i=1 
o(A;B)(Ui)=Vi ^ U1 2b�(A)! �(V1)=V2, and (P.�.out) is �(U1)=Y ^ 
o(A;B)(U1)=V1 ^ U1 2 b�(A) ^Y /+X0 ! �(V1)=Y . We have not added any lambda binding or parallelism liter-als. Also, we 
annot re
ently have a
quired new information on whether a binderor a bound variable is situated inside a segment term: if we have �(W1)=W2 andW1 2 b�(A) in ' for some segment term A = X0=X1; : : : ;Xn involved in a paral-lelism literal, then ' 
ontains either W2 2 b�(A) or W2 62 b�(A) by 
losure under(D.distr.notDisj), (P.distr.seg) and (P.distr.eq). And if W2 2 b�(A) is in ' then' 
ontains either W1 2 b�(A) or W1 62 b�(A) by 
losure under (P.distr.seg) and(P.distr.eq).(P.�.hang): (P.�.hang) is �(U1)=U2 ^ A � B ^ U2 2 b�(A) ^ U1 62b�(A) ! false.We have not added any new parallelism literals or lambda binding literals. Also,we have not introdu
ed new dominan
e literals. So if �(W1)=W2 2 ' and thereis a segment term A = X0=X1; : : : ;Xn with X0/�W2 2 ', then ' 
ontains eitherW1 2 b�(A) or W1 62 b�(A) by 
losure under (P.distr.seg) and (P.distr.eq).(P.ante.distr): (P.ante.distr) is ante(U1)=U2 ^ A � B ^ U1 2 b�(A) !X0/�U2 _ U2/+X0 _ U2?X0. We have not introdu
ed any new parallelismor anaphori
 binding literals. Also, we have not introdu
ed new dominan
e literals.So if ante(W1)=W2 2 ', and we have a segment term A = X0=X1; : : : ;Xn su
h thatX0/�W1 2 ' already, then by the 
losure of ' under (P.distr.seg) and (P.distr.eq)' 
ontains either W1 2 b�(A) or W1 62 b�(A).(P.ante.same), (P.ante.out): (P.ante.same) is ante(U1)=U2^V2i=1 
o(A;B)(Ui)=Vi^U1 2 b�(A) ^ A � B ! ante(V1)=U1 _ ante(V1)=V2, and (P.ante.out) isante(U1)=U2^ 
o(A;B)(U1)=V1 ^U2 62b(A)^U1 2 b�(A)^A � B ! ante(V1)=U2.We have not added any anaphori
 binding literals. It remains to show that wehave not re
ently a
quired new information on whether an anaphori
 binder or aana-labeled variable is situated in a segment term involved in some parallelism.Suppose A � B and ante(W1)=W2 are in ', and W1 2 b�(A) is in extU0;:::;Um(').Then W1 2 b�(A) is in ' already, as pointed out above, and by 
losure of ' under(P.ante.distr), either W2 2 b�(A) is in ' or W2 62 b�(A) is. So either (P.ante.same)or (P.ante.out) has been applied to W1 and W2 in ' already.



Solving CLLS Constraints 129By extending a non-simple P-saturated 
onstraint a �nite number of times until allvariables are labeled, we obtain a simple saturated 
onstraint.Proposition 5.7. Every generated P-saturated CLLSp-
onstraint 
an be extended to asimple generated P-saturated 
onstraint.Proof. As for Prop. 4.21 (p. 101).Hen
e, any generated P-saturated 
onstraint is satis�able.Lemma 5.8 (Satis�ability of generated saturations). A generated P-saturatedCLLSp-
onstraint is satis�able.Proof. By Lemma 5.5 and Prop. 5.7.
5.4 Completeness of Pro
edure PGiven a partial order � on 
onstraints, a solver is 
omplete with respe
t to � i� it
omputes all �-minimal saturated 
onstraints for a given 
onstraint (Def. 3.16, p. 69).The family of partial orders that we use is �G, parametrized by a set G � Var. We haveintrodu
ed it in Se
. 4.4. It 
an be des
ribed as subset in
lusion modulo �-renaming ofthe variables not in G.For the proof that P is 
omplete, we lift the equivalen
e relations =exG and the partialorders�G from Cpp to CLLSp. All lemmas of Se
. 4.4 still hold. The proof of 
ompletenesspro
eeds in two steps: First, given a 
onstraint ' and a minimal saturated 
onstraint &for ', any saturation rule that is appli
able to ' 
an be applied in su
h a way that theresult is \
loser to" &. This step is the same as in the previous 
hapter: Lemma 4.34 (p.110) holds for P as well as for Pp.Now, in the se
ond step, we show that P 
an not only move 
loser to any given minimalsaturation & of a 
onstraint ', but that it 
an a
tually rea
h it. It turns out that thearguments laid out in the proof of Lemma 4.38 for Pp 
over the 
ase of P as well. Weagain make use of Def. 4.33 in formulating the following lemma:Lemma 5.9 (Completeness). Let ' be a CLLSp 
onstraint and G � Var('). Then P
an 
ompute from ', in a �nite number of steps, any minimal P-saturation for ' withrespe
t to G.Proof. In Lemma 4.38 (p. 112) we have shown that the parallelism 
onstraint Pp 
an
ompute ea
h minimal saturation of a given parallelism 
onstraint in �nite time. Theonly saturation rules that are expli
itly used in the proof are (P.new) and (P.distr.eq).



130 Solving CLLS ConstraintsIn P, there is one additional saturation rule that introdu
es new variables, namely(D.�.lam). But this rule is appli
able at most on
e per lambda binding literal. Hen
e,the proof of Lemma 4.38 
overs the 
urrent lemma as well.It is interesting to note that for the proof of 
ompleteness the a
tual saturation rules playalmost no role. The only rules that are mentioned are those that introdu
e additionalvariables { they are the ones that make the more 
omplex proof via a distan
e measurene
essary { and the proje
tion rule (P.distr.eq), whi
h for ea
h additionally introdu
edvariable enfor
es a 
hoi
e between the introdu
tion of a new node in the 
onstraint graph,and identi�
ation with an already existent variable.As before, ea
h model of a 
onstraint is also a model of one of its minimal saturated
onstraints. This holds by Prop. 4.39 (p. 113).5.5 Re
apitulation: Properties of the Pro
edure PIn the previous se
tions, we have shown a number of properties of the pro
edure P, whi
hwe now sum up.Theorem 5.10. The semi-de
ision pro
edure P for CLLS has the following properties:1. It is sound for lambda stru
tures.2. There are unsatis�able CLLS 
onstraints for whi
h it does not terminate.3. A generated P-saturated CLLSp-
onstraint is satis�able.4. P is 
omplete: Given a CLLS 
onstraint ', P
omputes all minimal P-saturationsfor '.5. This set of minimal P-saturations for a CLLS 
onstraint may be in�nite.Proof. 1. by Lemma 5.3, 2. by Ex. 4.7, 3. by Lemma 5.8, 4. by Lemma 5.9, 5. by Ex. 4.6and 4.8.5.6 All Rules of P Colle
tedIn this se
tion we list all saturation rules of the solver P for CLLS, 
olle
ted from Fig.3.2, 4.3 and 5.1.



Solving CLLS Constraints 131Let A = X0=X1; : : : ;Xn and B = Y0=Y1; : : : ; Yn.Rules of Pd(D.
lash.ineq) X=Y ^X 6=Y ! false(D.
lash.disj) X?X ! false(D.dom.re
) ' ! X/�X where X 2 Var(')(D.dom.trans) X/�Y ^ Y /�Z ! X/�Z(D.lab.de
om) X:f(X1; : : : ;Xn) ^ Y :f(Y1; : : : ; Yn) ^X=Y ! ^ni=1Xi=Yi(D.lab.ineq) X:f(: : :) ^ Y :g(: : :) ! X 6=Y where f 6= g(D.lab.disj) X:f(: : : Xi; : : : ;Xj ; : : :) ! Xi?Xj where 1 � i < j � n(D.lab.dom) X:f(: : : ; Y; : : :) ! X/+Y(D.disj) X?Y ^X/�X 0 ^ Y /�Y 0 ! Y 0?X 0(D.distr.notDisj) X/�Z ^ Y /�Z ! X/�Y _ Y /�X(D.distr.
hild) X/�Y ^X:f(X1; : : : ;Xn) ! Y=X _ Wni=1Xi/�YAdditional Rules of Pp(P.init) A�B ! seg(A) ^ seg(B) ^ 
o(A;B)(Xi)=Yi where 0 � i � n(P.
opy.dom) U1RU2 ^V2i=1 
o(A;B)(Ui)=Vi ! V1RV2 where R 2 f/�;?; 6=g(P.
opy.lab) U0:f(U1; : : : ; Um) ^Vmi=0 
o(A;B)(Ui)=Vi ^ U0 2 b�(A) !V0:f(V1; : : : ; Vm)(P.new) A�symB ^ U 2 b(A) ! 9U 0:
o(A;B)(U)=U 0 where U 0 is a freshvariable(P.distr.seg) A�symB ^X0/�X ! X 2 b(A) _ Wnj=1Xj/+X(P.distr.eq) ' ! X=Y _ X 6=Y where X;Y 2 Var(')(P.path.dom) p(XU YV ) ! X/�U ^ Y /�V(P.path.eq.1) p(X1X2 X3X4 ) ^V4i=1Xi=Yi ! p(Y1Y2 Y3Y4 )(P.path.eq.2) p(XU XV ) ! U=V(P.trans.h) p(XU YV ) ^ p(YV ZW ) ! p(XU ZW )(P.trans.v) p(X1X2 Y1Y2 ) ^ p(X2X3 Y2Y3 ) ! p(X1X3 Y1Y3 )



132 Solving CLLS Constraints(P.di�.1) p(X1X2 Y1Y2 ) ^ p(X1X3 Y1Y3 ) ^X2/�X3 ^ Y2/�Y3 ! p(X2X3 Y2Y3 )(P.di�.2) p(X1X3 Y1Y3 ) ^ p(X2X3 Y2Y3 ) ^X1/�X2 ^ Y1/�Y2 ! p(X1X2 Y1Y2 )Additional Rules of P(D.�.fun
) �(X)=Y ^ �(U)=V ^X=U ! Y=V(D.�.dom) �(X)=Y ! Y /�X(D.�.var) �(X)=Y ! X:var(D.�.lam) �(X)=Y ! 9Y 0:(Y :lam(Y 0) _ Y :8(Y 0) _ Y :9(Y 0))(D.ante.fun
) ante(X)=Y ^ ante(U)=V ^X=U ! Y=V(D.ante.ana) ante(X)=Y ! X:ana(P.�.same) �(U1)=U2 ^V2i=1 
o(A;B)(Ui)=Vi ^ U1 2 b�(A) ! �(V1)=V2(P.�.out) �(U1)=Y ^ 
o(A;B)(U1)=V1 ^ U1 2 b�(A) ^ Y /+X0 ! �(V1)=Y(P.�.hang) �(U1)=U2 ^A � B ^ U2 2 b�(A) ^ U1 62b�(A) ! false(P.ante.same) ante(U1)=U2 ^ V2i=1 
o(A;B)(Ui)=Vi ^ U1 2 b�(A) ^ A � B !ante(V1)=U1 _ ante(V1)=V2(P.ante.out) ante(U1)=U2 ^ 
o(A;B)(U1)=V1 ^U2 62b(A)^U1 2 b�(A)^A � B !ante(V1)=U2(P.ante.distr) ante(U1)=U2^A � B^U1 2 b�(A)! X0/�U2 _ U2/+X0 _ U2?X05.7 SummaryIn this 
hapter we have 
ompleted the presentation of the semi-de
ision pro
edure P forCLLS. We have extended the semi-de
ision pro
edure Cp for parallelism 
onstraints bysaturation rules for lambda and anaphori
 binding. These rules implement the de�nitionsof lambda and anaphori
 binding of Chapter 2, in parti
ular the 
onditions that governthe intera
tion of binding and parallelism.While it is not hard to formulate a semi-de
ision pro
edure for CLLS 
onstraints (justenumerate lambda stru
tures and 
he
k for ea
h if it satis�es the given 
onstraint), thepro
edure P has the following properties:� It terminates for the linguisti
ally relevant 
onstraints. For these 
onstraints it
omputes saturations that 
orrespond to the 
orre
t readings.� It introdu
es 
orresponden
e formulas as a data stru
ture for handling parallelismwithin partial tree des
riptions.� It in
ludes an algorithm for solving dominan
e 
onstraints. Given a dominan
e 
on-straint as an input, the pro
edure behaves exa
tly like the dominan
e 
onstraint



Solving CLLS Constraints 133solver that it en
ompasses. This is advantageous be
ause, as we have seen in Chap-ter 2, dominan
e 
onstraints play an important role in the linguisti
 appli
ation.� It is built in a modular fashion: a di�erent dominan
e 
onstraint solver 
an besubstituted for the one we use here. For example, the saturation algorithm ofDu
hier and Niehren [34℄, whi
h needs less distribution, 
an be employed. A
tually,a re
ent overview paper on pro
essing CLLS [44℄ 
ombines this latter dominan
e
onstraint solver with the rules for parallelism that we present in this 
hapter.A 
entral notion in the pro
edure P is that of a 
orresponden
e formula: Su
h a for-mula states that the denotations of two variables 
orrespond with respe
t to a 
ertainparallelism relationship. Corresponden
e formulas enable us to handle parallelism in aframework of underspe
i�ed des
riptions of lambda stru
tures: Even though the posi-tion of the nodes interpreting these two variables may not be 
ompletely determined,the 
orresponden
e formula states that the two nodes must be situated at 
orrespondingpositions in the two parallel segments. And the pro
edure 
an test the satis�ability of a
orresponden
e formula by 
opying all 
onstraints that 
on
ern one of the two variablesto the other variable.The pro
edure P is a saturation pro
edure that extends a set of 
lauses until nothingnew 
an be added anymore. It is sound, i.e. all its rules are equivalen
e transformations.All the saturations that it 
omputes are satis�able: We have shown how to 
onstru
t amodel from a given saturated 
onstraint. The pro
edure is also 
omplete in the sensethat it 
omputes all minimal saturated 
onstraints for a given 
onstraint. We have de-�ned minimality via a family �G of partial orders (parametrized by a set G � Var ofvariables). These partial orders 
an be des
ribed as subset in
lusion modulo �-renamingof the variables not in G; alternatively we 
ould say that they identify all variables that
onstitute the same node in the 
onstraint graph. Interestingly, the proof of 
omplete-ness for the pro
edure P is the same as for the pro
edure Pp, i.e. the proof is almostindependent of the set of saturation rules used.
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Chapter 6Underspe
i�ed Beta Redu
tion
The parallelism relation was originally introdu
ed to model parallelism phenomena inlinguisti
s. But it also allows a de
larative des
ription of rewriting steps on lambdaterms, and more generally rewriting of trees. This surprising fa
t was �rst dis
overed inthe 
ontext of underspe
i�ed beta redu
tion.Underspe
i�ed beta redu
tion is a question that arises naturally when we study CLLS
onstraints, partial des
riptions of lambda terms: Can we lift beta redu
tion from lambdaterms to partial des
riptions? By beta redu
ing a des
ription, we 
ould redu
e all lambdaterms that it des
ribes at the same time. But the problem turns out not to be so easy: Thesimplest approa
h, graph rewriting, fails. The reason is that, given a CLLS 
onstraintwith a redex that we want to redu
e, we may not yet know where in the lambda termsome material will end up being { for example, it may or it may not be part of the redex'argument.The solution to this problem is to redu
e it to solving parallelism 
onstraints [12℄: Ba-si
ally, if we take a lambda term and perform a beta redu
tion step, the result 
onsistsof segments of the term we had before, arranged in a di�erent way. So if we view theoriginal term and the resulting term as parts of the same bigger lambda stru
ture, we 
anrelate segments of both terms by parallelism. That is, the idea is to give a de
larativedes
ription of the result of a single beta redu
tion step.In the 
urrent 
hapter, we are going to dis
uss the following issues:� We give the de�nitions of two additional relations on nodes of a lambda stru
ture:The relation between segments of the lambda terms before and after a beta redu
-tion step is des
ribed by the beta redu
tion relation, whi
h in turn 
an be expressedusing the group parallelism relation [11, 12℄. Group parallelism is a generalizationof parallelism, the only di�eren
e being the 
onditions on lambda and anaphori
binding.� We generalize the semi-de
ision pro
edure P for CLLS su
h that it also handlesgroup parallelism literals and inverse lambda binding literals. Extended in this way,the pro
edure 
an 
ompute the result of a single underspe
i�ed beta redu
tion step.� However, we would like to keep the lambda term des
ription \as underspe
i�ed as itwas" while we perform a beta redu
tion step. The pro
edure P may disambiguate137



138 Underspe
i�ed Beta Redu
tiontoo mu
h for that purpose. For example, given a 
onstraint from the linguisti
appli
ation, P resolves all s
ope ambiguities { while ideally ambiguity resolutionand beta redu
tion should be kept independent.We present a variant of the above pro
edure that in many 
ases 
an perform anunderspe
i�ed beta redu
tion step without disambiguation. The idea is to exploitthe fa
t that we know the relative positions of the segments that stand in thebeta redu
tion relation. In this pro
edure we employ underspe
i�ed 
orresponden
eformulas.� Finally, we show how either of the two pro
edures for a single beta redu
tion step
an be integrated into a pro
edure for underspe
i�ed beta redu
tion (whi
h 
anperform more than one beta redu
tion step in a row).6.1 The Problem of Underspe
i�ed Beta Redu
tionThe problem of underspe
i�ed beta redu
tion is the following:Given an underspe
i�ed des
ription of some set of higher-order lambda terms(in the form of a CLLS 
onstraint), 
ompute an underspe
i�ed des
ription ofall �rst-order formulas that 
an be derived from that set by beta redu
tion.Of 
ourse, we would like to do this without enumerating readings inbetween.(a)
A

C
@

lam

var
B

(b)
B

C

Aredu
ing tree redu
tFigure 6.1: Beta redu
tion on lambda stru
tures { abstra
t s
hemaWe �rst take a look at \normal" beta redu
tion. Consider Fig. 6.1, a sket
h of two lambdastru
tures. The sket
h in (a) is the redu
ing tree, the lambda stru
ture to whi
h betaredu
tion is applied. One beta redu
tion step yields the redu
t in pi
ture (b). The redexof the redu
ing tree starts at the �-labeled node. It 
ontains the body B as well as theargument A. The beta redu
tion step repla
es all o

urren
es of the obje
t-level variableshown in the pi
ture by o

urren
es of the argument. The rest of the term around theredex, the 
ontext C, remains un
hanged.Figure 6.2 shows an instan
e of this abstra
t s
hema. Again, pi
ture (a) 
ontains theredu
ing tree and (b) the redu
t. Redex, 
ontext, body and argument in the redu
ing tree



Underspe
i�ed Beta Redu
tion 139(a) � � �0g � � � �1lam � �2� � �4var � �5 a � f � �3 (b) � �  0g � � �  1f �  2 a �g�(�x:x(a))f� g�f(a)�Figure 6.2: A beta redu
tion step performed on the lambda stru
ture in (a) produ
es(b).are segments: The redex has the form �1=, the 
ontext is the segment �0=�1, the bodyis the segment �4=�5 and the argument is �3=.Up to now we have just 
onsidered lambda stru
tures. If we move on to partial des
rip-tions in the form of CLLS 
onstraints, what 
hanges? Consider Fig. 6.3, a sket
h of aCLLS 
onstraint. Again, C;B;A are 
ontext, body and argument of the redu
ing tree.D is some segment term that is dominated by some variable in C and dominates somevariable in A, but that is all that is known about it. So we do not know whether Dbelongs to the 
ontext C or the argument A of the redu
ing tree { 
an we still 
omputethe redu
t without disambiguating the position of D �rst? The situation sket
hed inFig. 6.3 is one that we will be dis
ussing frequently in this 
hapter. So in referen
e tothis �gure we will informally refer to a segment term in a position that is underspe
i�edbetween 
ontext, argument and body of a redu
ing tree as a D segment term.
B

@
λ

var

C

A

D

Figure 6.3: An underspe
i�ed des
ription of a redu
ing treeThis parti
ular situation is a
tually a quite 
ommon one in the linguisti
 appli
ation.It o

urs, for example, in the 
onstraint in Fig. 6.4 (a), whi
h represents the meaningof the senten
e \Every student does not pay attention". This senten
e 
ontains a s
opeambiguity between \every student" and "not". In the reading with \every student"taking wide s
ope, it states that of all students it is true that their minds are wandering.In the reading with \not" taking wide s
ope, the senten
e says that it is not the 
ase thatall students pay attention.1 The 
onstraint in Fig. 6.4 (a) re
e
ts this s
ope ambiguity.1Some speakers of English 
onsider the use of \not" in this se
ond fashion to be very 
olloquial;however, they do not judge it as ungrammati
al.
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i�ed Beta Redu
tion(a) � � X0lam � X18 �! �� �student � var � � �var � var � lam ��� � X2payatt � var � � � Z0not � Z1 � Z2
(b) 8 �! �� �student � var � � � Y0lam ��� �payatt � var �var � Y2

� � Z0not � Z1 � Z2
Figure 6.4: A simple beta redu
tion step: \Every student does not pay attention"(a) � � X0lam � X1f �� X3� � X4b � var � � X2a � not � Z0� Z1 (b) f � X0� X3� � X4b � � X2a � not � Z0� Z1

Figure 6.5: The graph rewriting approa
h failsIn the 
onstraint there is a redex starting at X0, within the representation for \everystudent". With respe
t to this redex, the representation of \not" (
onsisting of Z0; Z1; Z2)is a D segment term (as in Fig. 6.3). It dominates X2 in the argument, but it 
ould alsobe part of the 
ontext above X0. But in this 
ase, it is not hard to write down anunderspe
i�ed des
ription of the redu
t: it is the one in Fig. 6.4 (b). In this 
onstraint,the obje
t-level variable (the one bound by the lambda binder X1 in (a)) has just beenrepla
ed by the argument.For the example we have just seen, we 
an 
ompute the result of an underspe
i�ed betaredu
tion step with a simple graph rewriting approa
h. But that is not always the 
ase.Consider Fig. 6.5, whi
h again shows two 
onstraints. Pi
ture (a) is a redu
ing tree,and pi
ture (b) shows what the graph rewriting approa
h yields as the redu
t. But thisredu
t is wrong, it has too many solutions: In the redu
ing tree in (a), there is againa D segment term. In this 
ase, it 
onsists of Z0 and Z1, and it may be either aboveX0 or below X2. However, in the redu
t in (b) there are three possible positions for theD segment term: It may additionally be pla
ed inbetween X3 and X4. So one of thesolutions of the 
onstraint in (b) is f(not(b(a)), whi
h 
annot be obtained by redu
ing
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tion 141any of the terms des
ribed by (a). This means that the naive graph rewriting approa
his unsound; the ensuing des
riptions may have too many solutions. In performing thedestru
tive graph rewriting step, we have lost important information that was present inthe redu
ing tree: the fa
t that the D segment term 
annot go between X3 and X4.There is an alternative approa
h that is sound: modeling the result of a beta redu
tionstep by parallelism. Take another look at Fig. 6.1: If we 
ompare the redu
ing tree (a) andthe redu
t (b), we see that the 
ontext, body and argument segment of the redu
ing treeall reappear in the redu
t; the 
ontext and body segments reappear exa
tly on
e, and theargument appears in the redu
t as often as there are o

urren
es of the bound obje
t-levelvariable in the redu
ing tree.So we regard redu
ing tree and redu
t as parts of the same big lambda stru
ture, andwe relate the 
ontext in redu
ing tree and redu
t by parallelism, likewise the two bodies,and the argument in the redu
ing tree with ea
h argument 
opy in the redu
t. In thisway, we keep all the information of the redu
ing tree.How does that help us with 
onstraints like the one in Fig. 6.5 (a), where the simplerewriting approa
h resulted in too many solutions for the redu
t in (b)? We now haveone big 
onstraint whi
h in
ludes both the redu
ing tree 
onstraint in Fig. 6.5 (a) andthe redu
t 
onstraint in (b) as sub
onstraints. The two sub
onstraints are related byparallelism literals. This will ex
lude the wrong solution that we got for the redu
t
onstraint in Fig. 6.5 (b) on its own: In any solution of the 
onstraint (a), the \not"fragment must go either above X0 or below X2, and so, by the isomorphi
 stru
ture thatthe parallelism imposes, the \not" fragment in (b) must be either above X0 or below X2.6.2 Beta Redu
tion and Group ParallelismIn this se
tion we introdu
e the beta redu
tion relation [11, 12℄, whi
h, inside a singlelambda stru
ture, relates the segments belonging to the redu
ing tree and the segmentsbelonging to the redu
t. Furthermore we introdu
e the group parallelism relation, ageneralization of the parallelism relation (the only di�eren
e being in the 
onditions onbinding), with whi
h we 
an express the beta redu
tion relation. For both relations, weadd mat
hing new literals to the language CLLS. We also add inverse lambda bindingliterals, whi
h spe
ify the set of all variables bound by a binder.6.2.1 The Beta Redu
tion RelationFirst we make our notions of a redu
ing tree and a redu
t pre
ise.De�nition 6.1 (Redu
ing tree, redu
tlike). Let L� be a lambda stru
ture.� A redu
ing tree in L� is a sequen
e (
; �; �) of segments of L� su
h that there existsnodes �0; �1 of L� with the following properties.hs(
) = �0, �0:�(�1; r(�)), �1:lam(r(�)), and ��1(�1) = fhs(�)g.
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tion� We 
all a sequen
e of segments (
0; �0; �01; : : : ; �0n) of L� redu
tlike i� hs(
0) =r(�0), and r(�0i) is the ith hole of �0 for all 1 � i � n.Re
all that hs(�) is the sequen
e of holes of the segment �, ordered from left to right.Also, ��1 is the inverse of the lambda binding fun
tion of Def. 2.6 (p. 29).In a redu
ing tree the hole of the 
ontext segment 
, the node �0, must be labeled �.Its left 
hild, �1, is labeled lam, and its right 
hild is the root of the argument segment�. Con
erning the lambda binder �1, its 
hild must be the root of the body segment �,and the var-nodes that �1 binds must be exa
tly the holes of the body segment �.For a sequen
e of segments to be redu
tlike, it must 
ontain one \
ontext segment" 
0dire
tly \on top" of a \body segment" �0, and the holes of �0 must be the roots of the�0i. Note that not every redu
tlike segment sequen
e is a potential redu
t: If there is abinder from the argument into the body, the sequen
e 
annot be a redu
t be
ause thatwould violate the freeness 
ondition of beta redu
tion.Now, using the notions of a redu
ing tree and a redu
tlike segment sequen
e, we 
ande�ne the beta redu
tion relation on sequen
es of segments.2De�nition 6.2 (Beta redu
tion relation). Let L� be a lambda stru
ture. Then thebeta redu
tion relation !� is a relation on sequen
es of segments of L�, de�ned asfollows: (
; �; �) !� (
0; �0; �01; : : : ; �0n)holds in L� i� �rst, (
; �; �) form a redu
ing tree and (
0; �0; �01; : : : ; �0n) are redu
tlike.Se
ond, there are 
orresponden
e fun
tions 

 between 
; 
0, 
� between �; �0 and 
i�between �; �0i (for 1 � i � n), su
h that for ea
h Æ; Æ0 among these segment pairs with
orresponden
e fun
tion 
 between them and for ea
h � 2 b�(Æ), the following 
onditionshold:(�.�.same) For a var-labeled node bound in the same segment, the 
orrespondent isbound by the 
-
orresponding binder node.��(�) 2 b�(Æ) _ �(
(�)) 2 b�(Æ0)�) �(
(�)) = 
(�(�))(�.�.di�) For a var-labeled node bound in a di�erent segment �, the 
orrespondent isbound by the 
�-
orresponding binder node.8(�; �0; 
�) 2 f(
; 
0; 

); (�; �0; 
�)g��(�) 2 b�(�) _ �(
(�)) 2 b�(�0)�) �(
(�)) = 
�(�(�))2In earlier texts by Bodirsky [11℄ and Bodirsky, Erk, Koller and Niehren [12℄ the 
onditions on lambdabinding in the beta redu
tion relation are not symmetri
. But these nonsymmetri
 
onditions are notstrong enough in 
ases where the redu
ing tree segments and the redu
t segments overlap: They do notfor
e lambda binding to behave exa
tly as in group parallelism.
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tion 143(�.�.out) For a var-labeled node bound above the redu
ing tree, the 
orresponding nodeis bound at the same pla
e:��(�) =2 b(r(
)=) _ �(
(�)) =2 b(r(
0)=)�) �(
(�)) = �(�)(�.ante.same) For an ana-labeled node bound in the same segment, the 
orrespondenthas two possible ante
edents, mat
hing the stri
t and the sloppy reading:ante(�) 2 b(Æ)) ante(
(�))=� _ ante(
(�))=
(ante(�))(�.ante.di�) For an ana-labeled node bound inside another segment � of theredu
ing tree, there are again two possible ante
edents, only this time with respe
tto 
�: 8(�; 
�) 2 f(
; 

); (�; 
�)g [ f(�; 
i�) j 1 � i � ngante(�) 2 b(�)) ante(
(�))=� _ ante(
(�))=
�(ante(�))(�.ante.out) If an ana-labeled node is bound outside the redu
ing tree, then its 
orre-spondent has the same anaphori
 binder:ante(�) 62 (b(
) [ b(�) [ b(�))) ante(
(�)) = �The beta redu
tion relation on lambda stru
tures models beta redu
tion on lambda termsfaithfully. This even holds for lambda terms with global variables, although lambdastru
tures 
an only model 
losed lambda terms. Global variables 
orrespond to var-labeled nodes that are bound in the surrounding tree, i.e. above the redu
ing tree.Condition (�.�.out) of Def. 6.2 thus ensures a proper treatment of global variables.The de�nition of the beta redu
tion relation 
onsists of two 
onditions:� First, the segments 
on
erned need to have the right relative positions: we musthave a redu
ing tree and a redu
tlike sequen
e as de�ned above.� Se
ond, the segments in the redu
ing tree and the redu
t must be parallel, ex-
ept that the 
onditions on binding are less stri
t than in ordinary parallelism.Spe
i�
ally, a lambda binder from the body (or argument) to the 
ontext of theredu
ing tree has to parallel a lambda binder from the body (or argument, respe
-tively) to the 
ontext of the redu
t.This se
ond 
ondition 
an be 
ast in a more general form, a group parallelism relation.6.2.2 The Group Parallelism RelationGroup parallelism relates a group (a sequen
e) of segments to another group of segments,spe
ifying parallelism between ea
h segment in the left group and its 
ounterpart in theright one. The di�eren
e between one group parallelism and several \normal" parallelismsis that in group parallelism the restri
tions on binding are more liberal.
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i�ed Beta Redu
tionLike in the 
ase of the parallelism relation (Def. 2.7, p. 29), we de�ne the group parallelismrelation � in two steps: First we de�ne a symmetri
 relation �� that des
ribes 
onditionson lambda binding, then we de�ne � as a non-symmetri
 subrelation of ��.De�nition 6.3 (Group parallelism relation). The relation �� of a lambda stru
tureL� is the largest symmetri
 relation between equal-size groups (sequen
es) of segments ofL� su
h that (�1; : : : ; �n) �� (�1; : : : ; �n) implies there are 
orresponden
e fun
tions 
k :b(�k) ! b(�k) for all 1 � k � n that satisfy the following properties for all 1 � i; j � nand � 2 b�(�i):(gp.�.same) For a var-labeled node bound in the same segment, the 
orresponding nodeis bound 
orrespondingly:�(�) 2 b�(�i)) �(
i(�)) = 
i(�(�))(gp.�.di�) For a var-labeled node bound outside �i but inside �j, the 
orrespondent isbound at the 
orresponding pla
e with respe
t to 
j:�(�) 2 b�(�j) ^ �(�) =2 b�(�i)) �(
i(�))=
j(�(�))(gp.�.out) Corresponding var-labeled nodes with binders outside the group segments arebound by the same binder:�(�) =2 n[k=1 b�(�k)) �(
i(�)) = �(�)(gp.�.hang) There are no hanging binders:��1(�) � [k=1 b�(�k)The group parallelism relation � of a lambda stru
ture L� is the largest relation betweenequal-size groups (sequen
es) of segments of L� su
h that(�1; : : : ; �n) � (�1; : : : ; �n)implies (�1; : : : ; �n) �� (�1; : : : ; �n), and the 
orresponden
e fun
tions 
k : b(�k) !b(�k), 1 � k � n, satisfy the following properties for all 1 � i; j � n and � 2 b�(�i):(gp.ante.same) For an ana-node bound within the segment, the 
orrespondent has twopossible ante
edents, mat
hing the stri
t and the sloppy reading:ante(�) 2 b(�i)) ante(
i(�))=� _ ante(
i(�))=
i(ante(�))
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tion 145(a) (b) (
)lam�:var lamvarlamvar�0� �0
2
1
1
2 lamvarlamvar�� �0�0
2
1 varlamvar�� �0�0(gp.�.same)(�; �) � (�0; �0) (gp.�.di�)(�; �) � (�0; �0) (gp.�.out)(�; �) � (�0; �0)Figure 6.6: Possible bindings in a group parallelism.(gp.ante.di�) For an ana-node bound outside �i but inside �j, there are again twopossible ante
edents, only this time with respe
t to 
j:ante(�) 2 b(�j) ^ ante(�) =2 b(�i)) ante(
i(�))=� _ ante(
i(�))=
j(ante(�))(gp.ante.out) If an ana-node is bound outside the group, then its 
orrespondent has thesame anaphori
 binder:ante(�) 62 n[k=1 b(�k)) ante(
i(�)) = �Again, as in Def. 2.7 (p. 29), the 
onditions on lambda binding are symmetri
, but the
onditions on anaphori
 binding are not.The �rst three 
onditions are illustrated in Fig. 6.6. Condition (gp.�.di�) is the maindi�eren
e between parallelism and group parallelism. It allows lambda binding from onesegment to another of the same group, provided that there is a parallel binder in theother group. If the segment pairs �; �0 and �; �0 of pi
ture (b) were related by ordinaryparallelism, the bound node in � would be bound outside the segment �, thus the (�.out)
ondition would apply, and the 
orresponding node would have to be bound by the samebinder. Ordinary parallelism is now simply a spe
ial 
ase of group parallelism, withgroups of size one.Another interesting observation in Fig. 6.6 is that the 
onditions (gp.�.same) and(gp.�.di�) must be mutually ex
lusive. If (gp.�.di�) was appli
able in pi
ture (a), itwould enfor
e �(
1(�)) = 
2(�(�)), whi
h is 
learly wrong.6.2.3 Beta Redu
tion Literals and Group Parallelism LiteralsBeta redu
tion literals are interpreted by the beta redu
tion relation. They have the form(C;B;A)!� (C 0; B0; A01; : : : ; A0n)
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i�ed Beta Redu
tionfor segment terms C;B;A;C 0; B0; A01; : : : ; A0n. Group parallelism literals are interpretedby the group parallelism relation. They take the form(A1; : : : ; Am) � (B1; : : : ; Bm):for segment terms A1; : : : Am; B1; : : : ; Bm. Inverse lambda binding literals of the form��1(Y )=fX1; : : : ;Xmgfor m � 1 are interpreted by the inverse of the lambda binding fun
tion. Su
h a literalis true in ((�; �; ante); �) i� ��1(�(Y )) = �(fX1; : : : ;Xng). That is, X1; : : : ;Xn are allo

urren
es of the obje
t-level variable bound by Y . The variables X1; : : : ;Xn need notdenote distin
t nodes.We are going to extend the language CLLS not by all three types of literals but only bygroup parallelism and inverse lambda binding literals, be
ause they 
an already expressbeta redu
tion literals. The formula that expresses a beta redu
tion literal makes use offormulas that state that a sequen
e of segments forms a redu
ing tree or is redu
tlike.Let C = X0=X1, B = Y0=Y1; : : : ; Yn and A = X3=, thenredtreeX2(C;B;A) =def seg(A) ^ seg(B) ^ seg(C)^ X1:�(X2;X3) ^ X2:lam(Y0)^ ��1(X2) = fY1; : : : ; YngThis formula states that the interpretations of the segment terms C;B;A form aredu
ing tree. Re
all that we have de�ned seg(A), for segment termsA = X0=X1; : : : ;Xn,as seg(A) = Vni=1X0/�Xi ^V1�i<j�n �(Xi?Xj) _ (Xi=Xj)�:We need an inverse lambda binding literal in this formula be
ause the form of the redu
tdepends in part on the number of o

urren
es of the bound obje
t-level variable { itdetermines the number of 
opies of the argument segment in the redu
t. And in anunderspe
i�ed des
ription of a redu
ing tree, the only way of knowing how many timesthe obje
t-level variable o

urs is to have an inverse lambda binding literal, be
ause itexpli
itly states that we have 
olle
ted all var-variables bound by this lambda binder.Now we give a formula stating that the interpretations of a sequen
e of segment termsform a redu
tlike segment sequen
e. Let C = X0=X1, B = Y0=Y1; : : : ; Yn and Ai = Zi=for 1 � i � n, thenredu
tlike(C;B;A1; : : : ; An) =def seg(A1) ^ � � � ^ seg(An) ^ seg(B) ^ seg(C)^X1=Y0 ^ n̂i=1 Yi=ZiThen we 
an express beta redu
tion literals as follows:
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tion 147Lemma 6.4 (Expressing beta redu
tion literals with group parallelism liter-als).(C;B;A)!� (C 0; B0; A01; : : : ; A0n) j=j 9 X2:redtreeX2(C;B;A)^ (C;B;A; : : : ; A) � (C 0; B0; A01; : : : ; A0n)^ redu
tlike(C 0; B0; A01; : : : ; A0n)Proof. We will 
he
k the two-side entailment separately, �rst from right to left. Let �be a variable assignment into some lambda stru
ture that solves the right hand side.Then the 
onditions (gp.�.same), (gp.�.di�), (gp.�.out), (gp.ante.same), (gp.ante.di�),and (gp.ante.out) of group parallelism (Def. 6.3) subsume the 
orresponding 
onditionson the beta redu
tion relation (Def. 6.2).For the other dire
tion, let (L�; �0) solve the beta-redu
tion literal on the left hand side,with �0(C) = 
, �0(B) = �, �0(A) = �, �0(C 0) = 
0, �0(B0) = �0, and �0(A0i) = �0i for1 � i � n. (Remember that we have extended valuations from variables to segmentterms in Se
. 4.3.1, p. 91.) Then by Def. 6.2, (
; �; �) must form a redu
ing tree in L�with nodes �0; �1 as in Def. 6.1. Let � be the variable assignment �0[�0=X0; �1=X1℄. Itremains to 
he
k that (L�; �) solves the group parallelism literal on the right hand side.We 
onsider the relation � whi
h relates the group (
; �; �, . . . , �) to (
0; �0; �01; : : : ; �0n).We show that � satis�es all 
onditions in the de�nition of group parallelism (Def. 6.3),whi
h means that � is subsumed by the group parallelism relation �. By Def. 6.2 thereexist 
orresponden
e fun
tions 

 between the segments 
 and 
0, 
� between � and �0,and 
i� between � and �0i for 1 � i � n. By the de�nition of group parallelism (Def.6.3), we have to 
he
k the 
onditions (gp.�.same), (gp.�.di�), and (gp.�.out) both forthe 
orresponden
e fun
tions and their inverse fun
tions. For the rest of the proof, let(Æ; Æ0) 2 f(
; 
0); (�; �0)g [ f(�; �0i) j 1 � i � ng, let S = b�(
) [ b�(�) [ b�(�), and letS0 = b�(
0) [ b�(�0) [Sni=1 b�(�0i).(gp.�.same): If � is a var-labeled node in b�(Æ) that is bound within the same segment(i.e. �(�) 2 b�(Æ)), then its 
orrespondent 
Æ(�) must have its lambda binder withinb�(Æ0) by (�.�.same).Likewise, if �0 is a var-labeled node in b�(Æ0) that is bound in the same segment,that is, �(�0) 2 b�(Æ0), then its 
orrespondent 
�1Æ (�0) must be lambda bound inb�(Æ) by (�.�.same).(gp.�.di�): Suppose � is a var-labeled node in b�(Æ) that is bound in a di�erent segment.Then we must have �(�) 2 b�(
) be
ause the lambda binder must dominate all thevar-nodes that it binds, and 
; �; � are arranged into a redu
ing tree. But then wemust have �(
Æ(�)) = 

(�(�)) by (�.�.di�), so the 
ondition (gp.�.di�) is ful�lled.Now suppose �0 is a var-labeled node in b�(�0i) that is bound in a di�erent segment,i.e. �(�0) 2 S0 � b�(�0i). There are three possibilities: Either �(�0) 2 b�(�0j) forj 6= i, or �(�0) 2 b�(�0) or �(�0) 2 b�(
0). The �rst 
ase is impossible as the
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tionholes of the segment �0 are disjoint (Def. 2.2, p. 27). The se
ond 
ase is impossibleby 
ondition (�.�.di�) and the fa
t that no node of b(�) dominates any node ofb(�). The only remaining 
ase is the third one: �(�0) 2 b�(
0). Let � be the
orrespondent of �0, i.e. 
i�(�) = �0. Then by 
ondition (�.�.di�), we must have�(�0) = 

(�(�)), so (gp.�.di�) is ful�lled. The 
ase that �0 is a var-labeled nodein b�(�0) that is bound in a di�erent segment is 
ompletely analogous.(gp.�.out): The 
ase of a var-labeled node � 2 b�(Æ) with �(�) 62 S is subsumed by(�.�.out), and likewise the 
ase of a var-labeled node �0 2 b�(Æ0).(gp.�.hang): Both above groups satisfy 
ondition (gp.�.hang). This is 
lear for thegroup (
0; �0; �01; : : : ; �0n), whi
h 
overs the 
omplete subtree below r(
0). A similarargument applies to (
; �; �; : : : ; �). This group 
overs the whole tree below r(
)exept the �-labeled node �0, the lam-labeled node �1 and the var-labeled nodeshs(�). But these var-labeled nodes are bound by �1.(gp.ante.same), (gp.ante.di�), (gp.ante.out): These properties of group paral-lelism are subsumed by the 
orresponding 
onditions on the beta redu
tion relation(Def. 6.2).
So it suÆ
es to extend CLLS by group parallelism and inverse lambda binding literalsto be able to express beta redu
tion literals. In the rest of this 
hapter, we regard(C;B;A) !� (C 0; B0; A01; : : : ; A0n) as a formula abbreviating the right-hand side of theequation in Lemma 6.4. We 
all CLLS extended by group parallelism literals and inverselambda binding literals the language CLLSgr.6.3 Extending the Semi-De
ision Pro
edure for CLLS to GroupParallelism and Inverse Lambda Binding LiteralsIn this se
tion we extend the semi-de
ision pro
edure P for CLLS su
h that it 
an alsohandle group parallelism and inverse lambda binding literals. As we have seen in theprevious se
tion, the thus extended pro
edure will also be able to handle beta redu
tionformulas.We use some more formulas to make the rules easier to read. First we introdu
e asymmetri
 group parallelism formula: Let A = A1; : : : ; An and B = B1; : : : ; Bn, thenA �sym B =def A � B _ B � A:This is simply an extension of the symmetri
 parallelism formula A �sym B to groupparallelism. Similarly we extend the formulas that state that some variable is (or is not)
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tion 149inside some segment term. They are de�ned in Chapter 4, p. 79.X 2 b(A1; : : : ; Am) =def Wmi=1X 2 b(Ai)X 2 b�(A1; : : : ; Am) =def Wmi=1X 2 b�(Ai)X 62 b(A1; : : : ; Am) =def Vmi=1X 62 b(Ai)X 62 b�(A1; : : : ; Am) =def Vmi=1X 62 b�(Ai)Next we generalize 
orresponden
e formulas to the group parallelism 
ase. Let A =A1; : : : ; An and B = B1; : : : ; Bn. Then
ok(A;B)(U)=V =def A �sym B ^ p(X0kU Y 0kV ) ^ U 2 b(Ak)
o�k (A;B)(U)=V =def 
ok(A;B)(U)=V ^ U 2 b�(Ak)for 1 � k � n, Ak = X0k=: : :, Bk = Y 0k =: : :. There are some more formulas that we dis
usswhen we get to the rules that use them.6.3.1 Solving CLLSgr Constraints: Pro
edure Pgr.Let A = A1; : : : ; An and B = B1; : : : ; Bn.Lifting the Core Parallelism Rules(GP.init) A � B ! seg(Ak) ^ seg(Bk) ^ 
ok(A;B)(Xjk)=Y jkwhere 1 � k � n, Ak = X0k=X1k ; : : : ;Xmkk ,Bk = Y 0k =Y 1k ; : : : ; Y mkk , and 0 � j � mk(GP.new) A �sym B ^ U 2 b(Ak) ! 9U 0:
ok(A;B)(U)=U 0where U 0 is a fresh variable, 1 � k � n(GP.
opy.dom) U1RU2 ^V2i=1 
ok(A;B)(Ui)=Vi ! V1RV2 where 1 � k � n,R 2 f/�;?; 6=g(GP.
opy.lab) U0:f(U1; : : : ; Un) ^Vni=0 
ok(A;B)(Ui)=Vi ^ U0 2 b�(Ak) !V0:f(V1; : : : ; Vn) where 1 � k � n(GP.distr.seg) A �sym B ^X0k/�X ! X 2 b(Ak) _ Wmkj=1Xjk/+Xwhere 1 � k � n, Ak = X0k=X1k ; : : : ;XmkkBinding(D.�.equal) �(X1)=X2 ^V2i=1Xi=Yi ! �(Y1)=Y2(D.�.inverse) ��1(X)=fY1; : : : ; Ymg ! Vmi=1 �(Yi)=X
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tion(D.�.distr.inv) ��1(X)=fY1; : : : ; Ymg ^ �(Z)=X ! Wmi=1 Z=Yi(GP.�.same) �(U1)=U2 ^V2i=1 
o�k (A;B)(Ui)=Vi ! �(V1)=V2where 1 � k � n(GP.�.di�) �(U1)=U2 ^V2i=1 
o�ki(A;B)(Ui)=Vi ^ U2 =2b�(Ak1) ! �(V1)=V2where 1 � k1; k2 � n(GP.�.out) �(U)=Y ^ 
o�k (A;B)(U)=V ^ Y =2b�(A) ! �(V )=Ywhere 1 � k � n(GP.�.hang) �(U1)=U2 ^A �sym B ^ U22b�(A) ! U12b�(A)(GP.ante.same) ante(U1)=U2 ^ 
o�k (A;B)(U1)=V1 ^ 
ok(A;B)(U2)=V2 ^ A � B! ante(V1)=U1 _ ante(V1)=V2 where 1 � k � n(GP.ante.di�) ante(U1)=U2 ^ 
o�k1(A;B)(U1)=V1 ^ 
ok2(A;B)(U2)=V2 ^U2 =2b(Ak1) ^A � B ! ante(V1)=U1 _ ante(V1)=V2where 1 � k1; k2 � n(GP.ante.out) ante(U)=Y ^
o�k (A;B)(U)=V ^Y =2b(A)^A � B ! ante(V )=U(GP.�.distr.1) �(U1)=U2 ^A �sym B ^ U12b�(A) ! distr�A(U2)(GP.�.distr.2) �(U1)=U2 ^A �sym B ^ U2 2 b�(A) ! distr�A(U1)(GP.ante.distr.1) ante(U1)=U2 ^A � B ^ U12b�(A) ! distrA(U2)(GP.ante.distr.2) ante(U1)=U2 ^A � B ^ U2 2 b(A) ! distr�A(U1)(GP.�.inverse) ��1(X)=S1 ^ 
o�k (A;B)(X)=Y ^ 
o�(A;B)(S1)=S2 [ S3 ^VV 2S2 �(V )=Y ^VV 2S3 �(V )6=Y ! ��1(Y )=S2where 1 � k � nplus the rules of the semi-de
ision pro
edure P for CLLS in Se
. 5.6.6.3.2 The Rules in DetailSe
tion 6.3.1 shows the semi-de
ision pro
edure Pgr for CLLSgr.3 The �rst blo
k of ruleslifts the 
ore rules of the parallelism 
onstraint pro
edure to the group parallelism 
ase.(GP.init), (GP.
opy.dom), (GP.
opy.lab), (GP.new), and (GP.distr.seg) are straightfor-3The pro
edure as we present it here is more extensive than in the paper by Bodirsky, Erk, Koller andNiehren [12℄. This is due mostly to the fa
t that they used 
orresponden
e literals rather than formulasand thus 
ould reuse more rules of the CLLS pro
edure.
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tion 151ward generalization of their 
ounterparts in Se
tion 5.6. The tasks of the new rules are thesame as those of the old ones: (GP.init) introdu
es 
orresponden
e formulas for roots andholes of a pair of parallel segment terms, (GP.
opy.dom) 
opies dominan
e, inequality,and disjointness literals, (GP.
opy.lab) 
opies labeling literals, (GP.new) introdu
es 
or-responden
e formulas for variables inside a segment term involved in a group parallelismliteral, and (GP.distr.seg) guesses whether a variable is inside a segment term involvedin a group parallelism literal. Compare (GP.new), whi
h is A �sym B ^ U 2 b(Ak) !9U 0 
ok(A;B)(U)=U 0, where A = A1; : : : ; An, B = B1; : : : ; Bn, U 0 is a fresh variable and1 � k � n, to (P.new), whi
h is A�symB ^ U 2 b(A) ! 9U 0:
o(A;B)(X)=U 0, whereagain U 0 is a fresh variable. The only di�eren
e is that (GP.new) pi
ks out the k-th of nparallel segment pairs.The rule (D.�.equal), of the form �(X1)=X2 ^ V2i=1Xi=Yi ! �(Y1)=Y2, will helpus make the other rules easier to write down. The rule (D.�.inverse), whi
his ��1(X)=fY1; : : : ; Ymg ! Vmi=1 �(Yi)=X, infers lambda binding literals fromthe mat
hing inverse lambda binding literal. The rule (D.�.distr.inv), whi
h is��1(X)=fY1; : : : ; Ymg ^ �(Z)=X ! Wmi=1 Z=Yi, states that when fY1; : : : ; Ymg are allthe variables bound at X, then any variable Z bound at X must be equal to one of the Yi.The rules (GP.�.same) through (GP.�.hang) and (GP.ante.same) through (GP.ante.out)express the 
onditions on lambda binding and anaphori
 binding laid down in Def. 6.3.(GP.�.same) has the form �(U1)=U2 ^ V2i=1 
o�k (A;B)(Ui)=Vi ! �(V1)=V2; it handlesthe 
ase of both U1 and U2 being inside the same segment term of a group. The rule(GP.�.di�) is �(U1)=U2 ^ V2i=1 
o�ki(A;B)(Ui)=Vi ^ U2 =2b�(Ak1) ! �(V1)=V2. It han-dles the 
ase that U2 is inside a segment term of the group, but not the same segmentterm that U1 is in. (GP.�.out) handles the 
ase of U being bound outside the wholegroup, and (GP.�.hang) states that hanging binders (lam-labeled nodes inside the groupbinding variables outside the group) are not permitted. (GP.ante.same), (GP.ante.di�),and (GP.ante.out) handle the 
ases of a variable being anaphori
ally bound inside thesame segment term, in a di�erent segment term of the group, and outside the group,respe
tively.In the pro
edure P, we did not need any distribution rule for determining whi
h of(P.�.same) or (P.�.out) applied to a lambda binder. (This is shown in the dis
ussion of(P.�.same) and (P.�.out) in the proof of Lemma 4.19, p. 98.) But for the new CLLSgrpro
edure this is di�erent be
ause now we have to 
onsider all segment terms of the samegroup. The distribution rules (GP.�.distr...) and (GP.ante.distr...) use the formulasdistr�A(U) =def Vni=1 �U 2 b�(Ai) _ U 62b�(Ai)�distrA(U) =def Vni=1 �U 2 b(Ai) _ U 62b(Ai)�again for A = A1; : : : ; An. Given a lambda binding literal �(U1)=U2, if U1 2 b�(A) isin the 
onstraint for a group A of a group parallelism literal, then (GP.�.distr.1) guesseswhether U2 is inside a segment term of the same group, and if U2 is inside the group, then(GP.�.distr.2) guesses whether U1 is, too. For an anaphori
 binding literal ante(U1)=U2,the rules (GP.ante.distr.1) and (GP.ante.distr.2) perform the same guesses.
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Figure 6.7: Illustrating the rule (GP.�.inverse)The most 
omplex rule is (GP.�.inverse), whi
h handles the 
opying of inverse lambdabinding literals. This rule is important in the appli
ation of group parallelism to betaredu
tion: Inverse lambda binding is needed to identify redu
ing trees, so we need to
opy these literals to the redu
t in 
ase we want to perform a se
ond beta redu
tion step.The rule uses two more formulas, the �rst just being�(X)6=Y =def 9Z(�(X)=Z ^ Z 6=Y ):The se
ond formula 
olle
ts, for a �nite set S1 of variables, all 
orrespondents with respe
tto A � B. Let S1; S2 stand for �nite sets of variables, and let A = A1 : : : ; An. Then
o�(A;B)(S1)=S2 =def Vni=1VX2S1(X 62b�(Ai) _WY 2S2 
o�i (A;B)(X)=Y )^ VY 2S2 WX2S1 Wni=1 
o�i (A;B)(X)=YUsing these two formulas, the rule (GP.�.inverse), of the form ��1(X)=S1 ^
o�k (A;B)(X)=Y ^ 
o�(A;B)(S1)=S2 [ S3 ^ VV 2S2 �(V )=Y ^ VV 2S3 �(V )6=Y !��1(Y )=S2, 
olle
ts all 
orrespondents of a variable bound by X. We have to know,for ea
h of these 
orrespondents, whether it is bound by Y or de�nitely bound by some-thing else. Only then 
an we determine ��1(Y ). The rule is illustrated in Fig. 6.7: Theleftmost segment term A is parallel to both the middle segment term B and the rightmostsegment term C. The variable X inside A 
orresponds to both Y in B and Z in C , andU , whi
h is bound at X, 
orresponds to both V in B and W inside C. As usual, wedraw 
orresponden
e formulas as dotted ar
s. We have ��1(X) = fUg, so S1 = fUg. Vis bound at Y , but W is bound at Z following 
ondition (gp.�.same). So for the binderX and its �rst 
orrespondent Y , we have S2 = fV g and S3 = fWg. For the 
onstraintsket
hed in Fig. 6.7, we get ��1(Y ) = fV g by rule (GP.�.inverse).6.3.3 An ExampleWe illustrate the pro
edure Pgr on the 
onstraint in Fig. 6.8. It 
ontains the redu
ing tree(C;B;A), along with a group parallelism literal (C;B;A;A)�(C 0; B0; A0; A00) that de-s
ribes the result of a beta redu
tion step for this redu
ing tree. Furthermore, there isthe lam-labeled variable Y1, whi
h may belong either to the 
ontext C or to the argumentA. Thus, the variables Y1 and Y2 form a \D segment term" like the one in Fig. 6.3.
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tion 153(C;B;A;A) � (C 0; B0; A0; A00)with C = X=X0,C 0 = X 0=X 00,B = Xt=X1;X2,B0 = X 00=X 01;X 02,A = Xa=,A0 = X 01=, andA00 = X 02=.��1(X`) = fX1;X2g,��1(Y1) = fZg.
� X� � X0lam � X`f � Xfvar � X1 var � X2 � Xavar � Z lam � Y1� Y2

Figure 6.8: A group parallelism 
onstraint en
oding a beta redu
tion stepFigure 6.9 and 6.10 list 
omputation steps that the pro
edure Pgr 
an perform on this
onstraint. In step (4), the pro
edure guesses whether Y1; Y2 belong to the 
ontext C orto the argument A. We have to disambiguate the position of the fragment 
onsisting ofY1; Y2 before we 
an fully solve the group parallelism literal. The left 
olumn, startingwith (4a), explores the 
ase that Y1; Y2 belong to A, and the right 
olumn, starting with(1) Y1 6=X0 (D.lab.ineq)(2) Y1/+Y2;X0/+Xa (D.lab.dom)(3) Y1/�Z;X0/�Z (D.dom.trans)(4) X0/�Y1 _ Y1/�X0 (D.distr.notDisj)(4a) X0/�Y1:(5) X0=Y1 _X`/�Y1 _Xa/�Y1 (D.distr.
hild) (4b) Y1/�X0:(7) Y1=X0 _ Y2/�X0 (D.distr.
hild)(5a) X0=Y1: (5b) X`/�Y1:. . . both lead to false (7a) Y1=X0 :(8) false (D.
lash.ineq)(5
) Xa/�Y1: (7b) Y2/�X0:(9) 
o(A;A0)(Xa)=X 01 (P.init)(10) 
o(A;A0)(Y1)=Y 01 , (P.new)
o(A;A0)(Y2)=Y 02 ,
o(A;A0)(Z)=Z 0(11) X 01/�Y 01 ; Y 02/�Z 0 (P.
opy.dom)(12) Y 01 :lam(Y 02) (P.
opy.lab)(13) 
o(A;A00)(Xa)=X 02 (P.init)(14) 
o(A;A00)(Y1)=Y 001 , (P.new)
o(A;A00)(Y2)=Y 002 ,
o(A;A00)(Z)=Z 00(15) X 02/�Y 001 ; Y 002 /�Z 00 (P.
opy.dom)(16) Y 001 :lam(Y 002 ) (P.
opy.lab)
(17) 
o(C;C 0)(X)=X 0, (P.init)
o(C;C 0)(X0)=X 00(18) 
o(C;C 0)(Y1)=Y 01 , (P.new)
o(C;C 0)(Y2)=Y 02(19) X 0/�Y 01 ; Y 02/�X 00 (P.
opy.dom)(20) Y 01 :lam(Y 02) (P.
opy.lab)

Figure 6.9: Solving the group parallelism 
onstraint in Fig. 6.8
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tionContinuing (5
)(21) �(Z 0) = Y 01 , �(Z 00) = Y 001 (GP.�.same)(22) Z 62b�(B) _ Z 2 b�(B) (GP.�.distr.2)(22a) Z 62b�(B)(23) Z 62b�(C) _ Z 2 b�(C) (GP.�.distr.2) (22b) Z2b�(B). . . false(23a) Z 62b�(C)(24) Y 01 6=Y 001 _ Y 01=Y 001 (P.distr.eq) (23b) Z 2 b�(C). . . false(24a) Y 01 6=Y 001(25) ��1(Z 00) 6= Y 01(26) ��1(Y 001 ) = fZ 0g (GP.�.inverse)(27) ��1(Y 001 ) = fZ 00g (GP.�.inverse) (24b) Y 01=Y 001. . . falseFigure 6.10: Inverse Binding in 
ase (5
)(4b), explores the 
ase that they belong to the 
ontext C. In the left 
olumn we maketwo 
opies of Y1 and Y2 ea
h. This is be
ause A re
eives two 
opies in the redu
t, A0 andA00 (whi
h in turn is 
aused by X` binding two o

urren
es of the obje
t-level variable,X1 and X2). In the right 
olumn, on the other hand, Y1 and Y2 are only 
opied on
e:They belong to the 
ontext C, whi
h is parallel only to C 0.Figure 6.10 
ontinues the left 
olumn of Fig. 6.9, i.e. Y1; Y2 belong to the argument A.The purpose of this �gure is to demonstrate rule (GP.�.inverse): All steps from (22) onprepare the determination of ��1(Y 01) and ��1(Y 001 ) in (25) and (26).So, to sum up, the pro
edure Pgr 
an solve this group parallelism literal, and the betaredu
tion formula that it is part of, but it has to disambiguate the position of the fragment
onsisting of Y1; Y2. In the following se
tion we introdu
e a pro
edure for a single betaredu
tion step that 
an avoid disambiguation in many 
ases. (However, it will not beable to handle this parti
ular example without disambiguating.)6.3.4 Properties of the Pro
edure PgrWe now prove properties of the pro
edure Pgr, extending the proofs from Chapter 4. Atthe end of this se
tion, we sum them up in one theorem.Soundness. As we have de�ned in Def. 3.3 (p. 62), a saturation rule is sound i� it isan equivalen
e transformation. And as we have remarked there, it suÆ
es to show thatthe left-hand side of the rule entails the right-hand disjun
tion be
ause we are workingin a saturation framework.The rules (GP.init), (GP.new), (GP.
opy.dom), and (GP.
opy.lab) are sound forthe same reason as their (P...) 
ounterparts { see Se
. 4.2.1 (p. 89). For rules(GP.distr.seg), (D.�.equal), (D.�.inverse) and (D.�.distr.inv) soundness is obvious, like-wise for (GP.�.distr.1), (GP.�.distr.2), (GP.ante.distr.1), and (GP.ante.distr.2). The
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tion 155rules (GP.�.same), (GP.�.di�), (GP.�.out), (GP.�.hang), (GP.ante.same), (GP.ante.di�),and (GP.ante.out) are dire
t translations of the 
onditions laid down in Def. 6.3. It re-mains to show the soundness of (GP.�.inverse), whi
h is not obvious: Is it really suÆ
ientto look among the 
orrespondents of ��1(X) to 
ompute ��1(Y )? The following lemmashows that it is.Lemma 6.5 (Inverse lambda binding). Given a lambda stru
ture in whi
h the groupparallelism (�1; : : : ; �n) � (�01; : : : ; �0n) holds with 
orresponden
e fun
tions 
1; : : : ; 
n.Then for all 1 � k � n and all � 2 b�(�k),��1(
k(�)) � n[i=1f
i(�0) j �0 2 ��1(�) \ b�(�i)gProof. Let  0 2 ��1(
k(�)). The "no hanging binders" 
ondition (gp.�.hang) of Def. 6.3is 
riti
al here. It enfor
es  0 2 Sni=1 b�(�0i). There are two possibilities. Either we have 0 2 b�(�0k). Then there is a node  2 b�(�k) with 
k( ) =  0.  is var-labeled byDef. 2.3 (p. 27) and has a binder sin
e � is total. We must have �(
k( )) = 
k(�( ))by 
ondition (gp.�.same). Now �(
k( )) = 
k(�) and 
k is a bije
tion, so  2 ��1(�).The other possibility is that  0 62 b�(�0k) but  0 2 b�(�0j) for some j 6= k; 1 � j � n.Then there is again a node  with 
j( ) =  0, and �(
j( )) = 
k(�( 0)) by 
ondition(gp.�.di�), so again  2 ��1(�).To sum up, we have shown the following:Lemma 6.6 (Soundness). The semi-de
ision pro
edure Pgr for CLLSgr is sound forlambda stru
tures.Nontermination. The pro
edure Pgr subsumes the pro
edure P, whi
h for some input
onstraints does not terminate. An example is shown in Ex. 4.7.Fairness. In Se
. 4.2.3 (p. 89) we have stated what we mean by fairness: Whenever arule is appli
able, one of the disjun
ts in its 
on
lusion will ultimately be added. For thepro
edure Pgr we adapt the fairness 
onditions of Chapter 4 and 5 in a straightforwardway: Fairness 
ondition. (P.new) and (GP.new) are applied only to 
onstraintssaturated under Pgr� f(P.new), (GP.new)g. (GP.new) and (P.new) are ap-plied to variables in the order of their introdu
tion into the 
onstraint.That is, the fairness 
ondition simply treats (P.new) and (GP.new) the same way.
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tionSaturated 
onstraints. As in the previous 
hapters, we attempt to give an indepen-dent des
ription of saturated 
onstraints by des
ribing what their 
onstraint graphs looklike (i.e. we attempt no more than an informal des
ription of saturations). In the 
urrent
ase, this is parti
ularly easy: A Pgr-saturation looks just like a P-saturation, ex
ept thatthe properties of lambda binding and anaphori
 binding for some parallel regions (more
on
retely, those parallel regions that arise from group parallelism literals) are di�erent.Satis�ability of saturated 
onstraints. We show that ea
h saturated 
onstraintthat Pgr 
omputes is satis�able. To this purpose, we extend the de�nitions and lemmasof Se
tion 5.3, whi
h proves the same result for P-saturated 
onstraints.As before, we restri
t ourselves to generated 
onstraints, whi
h only 
ontain path literalsthat have been added to pro
ess parallelism literals, but not path literals in arbitrarypla
es. We have to adapt the de�nition of generatedness: Path literals 
an be li
ensednot only by segment terms of parallelism literals, but also by those of group parallelismliterals. We write CLLSgrp for the language CLLSgr extended by path literals.De�nition 6.7 (Corresponden
e-generated). Let ' be a CLLSgrp-
onstraint. A pathliteral p(U1U2 V1V2 ) 2 ' is 
orresponden
e-generated in ' i�� either there exists some literal A � B 2 ' with A = U1=: : : and B = V1=: : : su
hthat either U2 2 b(A) or V2 2 b(B) is in '.� or there exists some literal (A1; : : : ; An) � (B1; : : : ; Bn) 2 ' and some k 2f1; : : : ; ng with Ak = U1=: : : and Bk = V1=: : : su
h that either U2 2 b(Ak) orV2 2 b(Bk) is in '.We lift the de�nition of a generated 
onstraint (Def. 4.14, p. 92) 
anoni
ally to this newde�nition of 
orresponden
e-generatedness. Lemma 4.15 (p. 92) still holds for the newde�nition of generatedness.In Chapters 3, 4 and 5 we showed satis�ability of saturated 
onstraints in two steps: Weshowed �rst that every simple generated saturation is satis�able, then we showed howto redu
e a non-simple saturation to a simple one. We pro
eed in the same way here.A

ording to Def. 3.7 (p. 64), a simple Cd-
onstraint possesses a root variable dominatingall others, and every variable of the 
onstraint is labeled. We lift this de�nition 
anoni-
ally: A CLLSgrp 
onstraint is 
alled simple i� its maximal subset that is a Cd 
onstraintis simple.Lemma 6.8 (Satis�ability of simple generated saturations). A simple generatedPgr-saturated CLLSgrp-
onstraint is satis�able.Proof. Let ' be a CLLSgrp 
onstraint that is a simple generated Pgr-saturation. Sin
egroup parallelism is a 
anoni
al extension of parallelism that only di�ers in its 
onditionson binding, we 
an basi
ally reuse the proofs of Lemmas 4.16 and 5.5 (p. 93 and 126).
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tion 157First, let 'dom be the maximal subset of ' that is a Cd 
onstraint, and let (�; �) be amodel for 'dom 
onstru
ted as in the proof of Lemma 3.8 (p. 65). Then ea
h path literaland ea
h group parallelism literal of ' is satis�ed in �: The proof is 
ompletely analogousto the one for parallelism literals in Lemma 4.16, ex
ept that in the argument the rules(GP.init), (GP.new), (GP.
opy.dom), (GP.
opy.lab), (GP.distr.seg) repla
e their (P...)
ounterparts.It remains to 
onsider the binding literals. As in the proof of Lemma 5.5, we extend �to a lambda stru
ture L�0 that is a model of ': Let S � Var(') be the set of var-labeledvariables without a lambda binder in ', then we 
onstru
t our new tree �0 as �0 = lam(�).As before, we set �(�(X))=� �(Y ) if �(X)=Y in '" if X 2 Sand ante(�(X))=�(Y ) if ante(X)=Y in 'for all X 2 Var('). We have shown in Lemma 5.5 that both fun
tions are well-de�ned,the binders and the bound nodes are labeled as they should be, and that � is a totalfun
tion in whi
h a binder dominates ea
h node that it binds. The binding fun
tionsof L�0 intera
t 
orre
tly with its group parallelism relation: Either a rule (GP.�...) ora rule (GP.ante...) is appli
able to ea
h bound variable of ' be
ause of Lemma 5.4 (p.126), so the rules (GP.�.same), (GP.�.di�), (GP.�.out), (GP.�.hang), (GP.ante.same),(GP.ante.di�), and (GP.ante.out) enfor
e the 
onditions of Def. 6.3. If a var-labeledvariable is not bound in ', our de�nition of �0 ensures that the variable's binder intera
ts
orre
tly with the group parallelism relation (again in the same way as in Lemma 5.5).Furthermore, all inverse lambda binding literals of ' are satis�ed in L�0 : If ' 
ontains aliteral ��1(X)=fY1; : : : ; Ymg then by 
losure under (D.�.inverse) and the fa
t thatm � 1,�(X) is not bound at " in L�0 , and by 
losure under (D.�.distr.inv) and our 
onstru
tionof the fun
tion �, if �(�)=�(X) in L�0 , then �(Yi)=� for some i 2 f1; : : : ;mg.Next we show that we 
an again extend any non-simple saturated 
onstraint to a simpleone. To that end, we have to adapt the de�nition of ,!' slightly: It has to build ongroup parallelism (whi
h subsumes normal parallelism) now.De�nition 6.9 (Copy set). Let ' be a CLLSgrp 
onstraint. Then ,!' is the largestrelation on equal-sized sequen
es of variables in Var(') su
h that(U0; U1; : : : ; Um) ,!' (V0; V1; : : : ; Vm)implies that there exists a group parallelism literal (A1; : : : ; An) � (B1; : : : ; Bn) in 'and some k � n su
h that Ui 2 b(Ak) and U0 2 b�(Ak) are in ' for 1 � i � m and
ok(A;B)(Ui)=Vi is in ' for 0 � i � m.The de�nition of 
opy'�U0; U1; : : : ; Um) is lifted 
anoni
ally to the new de�nition of ,!'.Lemma 4.18 (p. 96) still holds: Sequen
es (U0; U1; : : : ; Un), (V0; V1; : : : ; Vn) in the same
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opy set share the properties that �rst, if U0 is unlabeled, then so is V0; se
ond, if(U1; : : : ; Un) is in the 
onne
tedness set (Def. 3.9, p. 66) of U0, then (V1; : : : ; Vn) is in the
onne
tedness set of V0; third, if (U1; : : : ; Un) are a maximal disjointness set (Def. 3.10,p. 67) within the 
onne
tedness set of U0, then the same holds of (V1; : : : ; Vn) and V0.Now we show, like in the previous 
hapters, that given a generated saturation that is notsimple, we 
an extend it by labeling at least one previously unlabeled variable.Lemma 6.10 (Extension by labeling). Every Pgr-saturated CLLSgrp-
onstraint withan unlabeled variable U0 
an be extended to a Pgr-saturated 
onstraint in whi
h U0 islabeled.Proof. Let fU1; : : : ; Umg be a maximal '-disjointness set in 
on'(U0). As in the proof ofLemma 5.6 (p. 127), we assume that � 
ontains a fun
tion symbol f of arity m that isneither var, lam or ana. (If it does not, then we 
an en
ode it using a nullary fun
tionsymbol and a symbol of arity 2, as in Lemma 3.12.) We use the same de�nition of anextension extU0;:::;Um(') of ' ^U0:f(U1; : : : ; Um) as in Lemma 4.19 (p. 98). We repeat ithere:extU0;:::;Um(') =def ' ^ ^V0:f(V1;:::;Vm)2
opy'�U0;U1;:::;Um) �V0:f(V1; : : : ; Vm) ^ Vmi=1 V0 6=Vi ^V Vi/�Z;Vj/�W2';1�i<j�n Z?W ^V Z:g(:::)2';g 6=f _ ar(g)6=ar(f) Z 6=V0�For simpli
ity, we write ext(') for extU0;:::;Um(') in the rest of the proof.To show that ext(') is a Pgr-saturation, we examine ea
h of the rules in Se
. 6.3.1 andshow that none of them is appli
able to the 
onstraint. (For the other rules of Pgr, listedin Se
. 5.6, we have already shown in Lemmas 3.12, 4.19, and 5.6 (p. 67, 98, and 127)that they are not appli
able.)(GP.init), (GP.new), (GP.
opy.dom), (GP.
opy.lab), (GP.distr.seg): Theserules are just group parallelism versions of the mat
hing (P...) rules. The onlydi�eren
e is that the group parallelism rules pi
k out the k-th of n segment termsof a group while in the parallelism rules there is only one segment term in ea
h\group" (i.e. on ea
h side of the �). The 
onstraint ext(') is 
losed under thegroup parallelism rules for the same reasons that it is 
losed under their (P...)
ounterparts { see Lemma 4.19.(D.�.equal), (D.�.inverse), (D.�.distr.inv): We have not added any lambda bind-ing, inverse lambda binding, or dominan
e literals.
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tion 159(GP.�.distr.i), (GP.ante.distr.i), i = 1; 2: (GP.�.distr.1) has the form �(U1)=U2 ^A �sym B ^ U12b�(A) ! distr�A(U2), and the other three rules are very similar.We have not introdu
ed any new group parallelism, lambda binding or anaphori
binding literals. Also, we have not introdu
ed new dominan
e literals. So theonly thing that 
ould be new in ext(') 
ould be the information U1 2 b�(A). LetA = (A1; : : : ; An). Now if there exists some k � n with Ak = X0k=X1k ; : : : ;Xmkkand X0k/�U1 2 ', then by the 
losure of ' under (GP.distr.seg) and (P.distr.eq) the
onstraint ' 
ontains either U1 2 b�(Ak) or U1 62 b�(Ak) already.(GP.�.same), (GP.�.di�), (GP.�.out), (GP.�.hang): We fo
us on (GP.�.out),whi
h is �(U)=Y ^ 
o�k (A;B)(U)=V ^ Y =2b�(A)! �(V )=Y . We have not addedany lambda binding literals. The 
orresponden
e formula stands for A �symB^ p(X0kU Y 0kV ) ^U 2 b(Ak)^U 2 b�(Ak), where A = A1; : : : ; An, B = B1; : : : ; Bn,1 � k � n, Ak = X0k= : : : and Bk = Y 0k = : : :. We have not added any group paral-lelism or path literals. The only thing that 
ould still be new in ext(') is a formulaU 2 b(Ak) or U 2 b�(Ak) or Y =2 b�(A). So suppose U 2 b(Ak) is new in ext(').Sin
e we have not added any dominan
e literals, X0k/�U must be in ' already.But sin
e ' is 
losed under (GP.distr.seg), ' already 
ontains either U 2 b(Ak) orU 62 b(Ak). And likewise U 2 b�(Ak) 
annot be new in ext(') be
ause ' already
ontains either U 2 b(Ak) or U 62 b(Ak) and is 
losed under (P.distr.eq), whi
hguesses equality or inequality between U and the holes of Ak. Furthermore, ifU 2 b�(Ak) is in ' already, then by 
losure of ' under (GP.�.distr.1) we know forea
h j � n whether Y 2 b�(Aj) or Y =2b�(Aj). So one of (GP.�.same), (GP.�.di�),and (GP.�.out) has been applied to U and Y in ' already.For the rules (GP.�.same), (GP.�.di�) and (GP.�.hang), the argument is the same.(GP.ante.same), (GP.ante.di�), (GP.ante.out): We fo
us on (GP.ante.out), whi
his ante(U)=Y ^ 
o�k (A;B)(U)=V ^ Y =2b(A) ^A � B ! ante(V )=U . We have notadded any anaphori
 binding literals or group parallelism literals. Con
erning the
orresponden
e formula, the argument is the same as for the rules (GP.�.same)through (GP.�.hang): We have not added any group parallelism or path literals,and the formula U 2 b�(Ak) 
annot be new be
ause we have added no dominan
eliterals and ' is 
losed under (GP.distr.seg). It remains to be shown that theformula Y 62 b(A) 
annot be new in ext('). So suppose (A1; : : : ; An) � (B1; : : : ; Bn)and ante(U)=Y are in ', and U 2 b�(A)k is in ext(') for some k � n. Then in '(GP.ante.distr.1) has already de
ided, for ea
h j � n, whether Y belongs to b(Aj)or not.For the rules (GP.ante.same) and (GP.ante.di�) the argument is analogous.(GP.�.inverse): This rule is ��1(X)=S1 ^ 
o�k (A;B)(X)=Y ^ 
o�(A;B)(S1)=S2 [S3 ^ VV 2S2 �(V )=Y ^ VV 2S3 �(V )6=Y ! ��1(Y )=S2. We have not addedany inverse lambda binding literals or lambda binding literals. Con-
erning 
orresponden
e formulas, we have argued above (for the rules(GP.�.same) through (GP.�.hang)) that they 
annot be new in ext(').
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o�(A;B)(S1)=S2 [ S3 stands for Vni=1VZ2S1(Z 62b�(Ai) _WY 2S2[S3 
o�i (A;B)(Z)=Y ) ^ VY 2S2[S3 WZ2S1 Wni=1 
o�i (A;B)(Z)=Y . We showfor ea
h part of the formula that it 
annot be new in ext('). Sin
e ' 
ontains��1(X)=S1 and is 
losed under (D.�.inverse), it 
ontains �(Z)=X for ea
h Z 2 S1.So by (GP.�.distr.2) and the fa
t that X 2 b�(A), the 
onstraint ' 
ontains eitherZ 2 b�(Ai) or Z 62 b�(Ai) for ea
h 1 � i � n. Again, a 
orresponden
e formula
o�i (A;B)(Z)=Y 
annot be new in ext('), for the same reasons as above. Finally,�(V )6=Y 
annot be new in ext(') be
ause we have not added any lambda bindingliterals, and ' is 
losed under (P.distr.eq).
Completeness. For 
ompleteness, no new proofs are needed. Lemma 4.34 (p. 110)is general enough to 
over the new saturation rules as well, and the proofs of Lemmas4.38 and 5.9 (p. 112 and 129), whi
h handle fresh variables introdu
ed by (P.new) and by(D.�.lam), apply to (GP.new) and (GP.�.inverse) as well. So we dire
tly get the followingresult (for the notation see Def. 4.33, p. 110):Lemma 6.11 (Completeness). Let ' be a CLLSgrp 
onstraint and G � Var('). ThenPgr 
an 
ompute from ', in a �nite number of steps, any minimal Pgr-saturation for 'with respe
t to G.Re
apitulationIn this se
tion we have shown a number of properties of the pro
edure Pgr, whi
h we nowsum up.Theorem 6.12. The semi-de
ision pro
edure Pgr for CLLSgr has the following properties:1. It is sound for lambda stru
tures.2. There are unsatis�able CLLSgr 
onstraints for whi
h it does not terminate.3. A generated Pgr-saturated CLLSgrp-
onstraint is satis�able.4. Pgr is 
omplete: Given a CLLSgr 
onstraint ' and a set G � Var('), Pgr 
an
ompute from ' any minimal Pgr-saturation for ' with respe
t to G in a �nitenumber of steps.5. This set of minimal Pgr-saturations for a CLLSgr 
onstraint may be in�nite.Proof. 1. by Lemma 6.6, 2. by Ex. 4.7, 3. by Lemma 6.8, 4. by Lemma 6.11, 5. by Ex.4.6 and 4.8.
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Figure 6.11: An underspe
i�ed des
ription of a redu
ing treeIn the previous se
tion, we have dis
ussed the pro
edure Pgr for CLLSgr. It is 
om-plete, so it 
omputes all minimal saturations for a 
onstraint 
ontaining a beta redu
tionformula. However, it may not be exa
tly the pro
edure we want to use to perform anunderspe
i�ed beta redu
tion step. In Se
. 6.3.3 we have illustrated Pgr on an example
onstraint, whi
h 
ontained a D segment term, i.e. a segment term in a position thatis underspe
i�ed between two segment terms of the redu
ing tree. This situation is de-pi
ted in Fig. 6.3, repeated here as Fig. 6.11. To solve the beta redu
tion literal, Pgr�rst had to disambiguate the position of the D segment term. However, we would liketo separate the two tasks, on the one hand underspe
i�ed beta redu
tion, on the otherhand the enumeration of readings.In this se
tion we present a se
ond pro
edure P� for a single beta redu
tion step thatdi�ers from Pgr in the following ways:� It in
ludes all deterministi
 saturation rules of Pgr, but none of the distributionrules.� There are redu
ing trees for whi
h the pro
edure 
annot 
ompute the redu
t. Butfor a large 
lass of redu
ing trees, one that is important in the linguisti
 appli
ation,it 
an 
ompute the redu
t without any disambiguation.� To that end, the pro
edure P� 
ontains additional deterministi
 saturation rulesthat make use of underspe
i�ed 
orresponden
e literals to handle D segment terms.The main problem in performing a beta redu
tion step on a partial des
ription of alambda stru
ture is that we do not always know whi
h part of the redu
ing tree a variablebelongs to. We have referred to this as the problem of \D segment terms". Figure 6.11shows a s
hemati
 view of su
h a situation: there is a segment D whi
h may belong eitherto the 
ontext C or to the argument A of the redu
ing tree.The main idea about P� is that as soon as we are 
ertain that a variable must be in oneof b(C), b(B), or b(A) (in the notation of Fig. 6.11), we 
an 
opy that variable to the
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tionredu
t, even if we do not know yet whi
h of the three segment terms the variable belongsto. That is, we just have to make sure that the variable 
annot be above the root of C,and it 
annot be X2 (again in the notation of Fig. 6.11).The data stru
ture we use for this are underspe
i�ed 
orresponden
e literals of the formu-
o(f(C1;D1); : : : ; (Cn;Dn)g)(X)=Y , whi
h state that 
o(Ci;Di)(X)=Y holds for somei; 1 � i � n. We de�ne them as literals, not as formulas, be
ause we want to avoiddistribution whenever possible. For the same reason, we now rede�ne some formulas ofthe previous 
hapters as literals.De�nition 6.13 (Underspe
i�ed 
orresponden
e literal). Let A, B, A1; : : : ; An,B1; : : : ; Bn be segment terms, and let (L�; �) be a pair of a lambda stru
ture and a valu-ation. Then the 
orresponden
e literal
o(A;B)(X)=Yis satis�ed by (L�; �) i� there exists a 
orresponden
e fun
tion 
 in L� between �(A) and�(B),and 
(�(X)) = �(Y ). The symmetri
 group parallelism literal(A1; : : : ; An) �sym (B1; : : : ; Bn)is satis�ed by (L�; �) i� either (�(A1); : : : ; �(An)) � (�(B1); : : : ; �(Bn)) or(�(B1); : : : ; �(Bn)) � (�(A1); : : : ; �(An)) holds in L�. The underspe
i�ed 
orrespon-den
e literal u-
o(f(A1; B1); : : : ; (An; Bn)g)(X)=Yis satis�ed by (L�; �) i� three 
onditions are met: First, for 1 � i < j � n, b(�(Ai)) andb(�(Aj)) are disjoint. Se
ond, for all 1 � i � n there exists a 
orresponden
e fun
tion 
ibetween �(Ai) and �(Bi). Third, there exists an i, 1 � i � n, su
h that 
i(�(X)) = �(Y ).Like path literals, these literals are used during the 
omputation, but they do not belongto the language that may be used for the input 
onstraint to the pro
edure.We rede�ne the formulas 
ok(A;B) and 
o�k (A;B) from earlier in this 
hapter a

ordingto the new literals that we now have: Let A = A1; : : : ; An and B = B1; : : : ; Bn, then
ok(A;B)(U)=V =def 
o(Ak; Bk)(U)=V
o�k (A;B)(U)=V =def 
o(Ak; Bk)(U)=V ^ U 2 b�(Ak)for 1 � k � n. Furthermore, we use the following formulas for beta redu
tion steps andunderspe
i�ed 
orresponden
e (with 1 � i � n):betaX2;n =def redtreeX2(C;B;A) ^ (C;B;A; : : : ; A) � (C 0; B0; A0; : : : ; A0)^redu
tlike(C 0; B0; A01; : : : ; A0n)betan =def betaX2;nu-
oi(Z)=Z 0 =def u-
o(f(C;C 0); (B;B0); (A;A0i)g)(Z)=Z 0:
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tion 163That is, we use betaX2;n when we need to talk about the variable X2 and betan else.Furthermore, with C = X0=X1 and B = Y0=Y1; : : : ; Yn, we useu-
o�i (Z)=Z 0 =def u-
o(f(C;C 0); (B;B0); (A;A0i)g)(Z)=Z 0 ^ Z 6=X1 ^ n̂i=1Z 6=Yi:Note that the formulas for redu
ing tree and redu
tlike use subformulas of the form seg(A),whi
h 
ontain disjun
tions. Hen
e we have to be 
areful in using these formulas in aframework where we want to restri
t indeterministi
 rules as far as possible. But we willonly use these formulas on left rule sides, where they do not present a problem.6.4.1 A pro
edure that partially solves CLLSgr 
onstraints: P�Let C = X0=X1, B = Y0=Y1; : : : ; Yn, and A = X3=.All rules are parametrized by 1 � i � n.(UB.init) (A1; : : : ; Am) � (B1; : : : ; Bm) ^ seg(Ak) ^ seg(Bk)! 
o(Ak; Bk)(Zj)=Wjwhere 1 � k � m, Ak = Z0=Z1; : : : ; Zmk , Bk = W0=W1; : : : ;Wmk ,and 0 � j � mk(UB.new) betaX2;n ^X0/�Z ^ Z 6=X2 ! 9Z 0:u-
oi(Z)=Z 0(UB.
opy.lab) betan^Z0:f(Z1; : : : ; Z`)^Vk̀=0 u-
oi(Zk)=Z 0k^Z0 6=X1^Vnj=1 Z0 6=Yj! Z 00:f(Z 01; : : : ; Z 0̀)(UB.
opy.dom) betan ^V2k=1 u-
oi(Zk)=Z 0k ^ Z1/�Z2 ! Z 01/�Z 02(UB.
opy.ineq) betan ^V2k=1 u-
oi(Zk)=Z 0k ^ Z1 6=Z2 ^V2k=1(Zk 6=X1 ^Vnj=1 Zk 6=Yj)! Z 01 6=Z 02(UB.�.in) betan ^V2k=1 u-
o�i (Zk)=Z 0k ^ �(Z1)=Z2 ! �(Z 01)=Z 02(UB.�.out) betan^�(Z1)=Z2^u-
o�i (Z1)=Z 01^ (Z2/�X0_Z2?X0)! �(Z 01)=Z2(UB.�.1) betaX2;n ^ �(Z1)=Z2 ^ u-
o�i (Z2)=Z 02! X0/�Z1 ^ Z1 6= X1 ^ Z1 6= X2 ^Vnj=1 Z1 6= Yj(UB.�.2) betan ^ �(Z1)=Z2 ^ u-
o�i (Z1)=Z 01 ! X0/�Z2 _ Z2/+X0 _ Z2?X0(UB.�.inverse) beta1 ^ ��1(Z0)=fZ1; : : : ; Zmg ^Vmk=0 u-
o1(Zk)=Z 0k ! ��1(Z 00)=fZ 01; : : : ; Z 0mg redex linear(UB.
o.path) 
o(D;D0)(U)=V ! p(Z0U W0V ) where D = Z0= : : :, D0 =W0= : : :
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tion(UB.
o.
orr) p(Z0U W0V ) ^ (A1; : : : ; Am) �sym (B1; : : : ; Bm) ^ U 2 b(Ak) !
o(Ak; Bk)(U)=V where 1 � k � m, Ak = Z0= : : :, Bk =W0= : : :(UB.
o.u-
orr) betan ^ 
o(D;D0)(U)=V ! u-
oi(U)=Vwhere (D;D0) 2 f(C;C 0); (B;B0); (A;A0i)g(UB.sym) A � B ! A �sym B ^B �sym A where A = A1; : : : ; Am,B = B1; : : : ; Bm(D.di�Parent) Z:f(Z1; : : : ; Zm) ^W :g(W1; : : : ;W`) ^ Z 6=W ! Vmj=1Vk̀=1 Zj 6=Wk(D.di�Child) Z:f(Z1; : : : ; Zm) ^W :f(W1; : : : ;Wm) ^ Zj 6=Wj ! Z 6=Wwhere 1 � j � mplus all rules of the semi-de
ision pro
edure Pgr for CLLSgr in Se
. 6.3.1 and 5.6that are deterministi
 if 
orresponden
e and symmetri
 group parallelismare literals rather than formulas, plus (D.�.lam) and (D.�.distr.inv).6.4.2 The Rules in DetailSe
tion 6.4.1 shows the pro
edure P�. The �rst blo
k of rules are the 
ore rules dealingwith group parallelism literals, but this time geared to the spe
ial 
ase of beta redu
-tion formulas. The main idea is to 
opy all material from the redu
ing tree to theredu
t, ex
ept the part between the hole of the 
ontext and the roots of body and ar-gument, and ex
ept the parts below the holes of the body. The rule (UB.init), whi
h is(A1; : : : ; Am) � (B1; : : : ; Bm)^ seg(Ak)^ seg(Bk)! 
o(Ak; Bk)(Zj)=Wj, for 1 � k � m,Ak = Z0=Z1; : : : ; Zmk , Bk =W0=W1; : : : ;Wmk , and 0 � j � mk, states that in two paral-lel segment terms, the two roots 
orrespond, and mat
hing holes 
orrespond as well. Thedi�eren
e between this rule and (GP.init) is that (UB.init) demands seg(Ak) and seg(Bk)in the premise, while (GP.init) states it in the 
on
lusion (whi
h makes it a distributionrule). The rule (UB.new), of the form betaX2;n ^ X0/�Z ^ Z 6=X2 ! 9Z 0:u-
oi(Z)=Z 0,states that all variables of the redu
ing tree have a 
orrespondent in the redu
t ex-
ept X2 (whi
h is the lam-labeled variable between C and B, see Fig. 6.11). The rule(UB.
opy.lab) has the form betan ^ Z0:f(Z1; : : : ; Z`) ^ Vk̀=0 u-
oi(Zk)=Z 0k ^ Z0 6=X1 ^Vnj=1 Z0 6=Yj ! Z 00:f(Z 01; : : : ; Z 0̀). It states that all labeling literals of the redu
ing treereappear in the redu
t, ex
ept the labels of X1, X2 and Y1 through Yn. (UB.
opy.dom)says that all dominan
e literals of the redu
ing tree must also hold between the 
orre-sponding variables in the redu
t: betan ^V2k=1 u-
oi(Zk)=Z 0k ^ Z1/�Z2 ! Z 01/�Z 02. Therule (UB.
opy.ineq) 
opies inequalities. All inequalities from the redu
ing tree are 
opiedto the redu
t, ex
ept the following: The 
orrespondent of X1 and the 
orrespondentof B's root are equal in the redu
t. And the 
orrespondent of Yi and the root of thei-th argument 
opy are equal in the redu
t. (UB.
opy.ineq) expresses this by stating
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tion 165betan ^V2k=1 u-
oi(Zk)=Z 0k ^ Z1 6=Z2 ^V2k=1(Zk 6=X1 ^Vnj=1 Zk 6=Yj)! Z 01 6=Z 02.The rule (UB.�.in), whi
h is betan^V2k=1 u-
o�i (Zk)=Z 0k^�(Z1)=Z2 ! �(Z 01)=Z 02, 
opieslambda binding literals from the redu
ing tree to the redu
t. The rule (UB.�.out), ofthe form betan ^ �(Z1)=Z2 ^ u-
o�i (Z1)=Z 01 ^ (Z2/�X0 _Z2?X0)! �(Z 01)=Z2, handlesthe 
ase of a lambda binder outside the redu
ing tree. The rule (UB.�.1), of the formbetaX2;n ^ �(Z1)=Z2 ^ u-
o�i (Z2)=Z 02 ! X0/�Z1 ^ Z1 6= X1 ^ Z1 6= X2 ^Vnj=1 Z1 6= Yj,states that if the lambda binder is inside the redu
ing tree, then so is any bound variable.The rule (UB.�.2) is a distribution rule, of the form betan^�(Z1)=Z2^u-
o�i (Z1)=Z 01 !X0/�Z2 _ Z2/+X0 _ Z2?X0: Given a bound variable in the redu
ing tree, it guesseswhether the binder is in the redu
ing tree too. The rule (UB.�.inverse) is beta1 ^��1(Z0)=fZ1; : : : ; Zmg ^ Vmk=0 u-
o1(Zk)=Z 0k ! ��1(Z 00)=fZ 01; : : : ; Z 0mg. It 
opies in-verse lambda binding literals, i.e. the information that all variables bound by a lambdabinder are known. It is a spe
ial 
ase of (GP.�.inverse). The segments of a beta redu
-tion literal, those in the redu
ing tree group as well as those in the redu
t group, do notoverlap properly, so we need not 
onsider the possibilities that any 
orrespondents ofZ1; : : : ; Zm might be bound somewhere else than at the 
orrespondent of Z0. Note thatthe rule (UB.�.inverse) is restri
ted to linear redexes: In a linear redex there is exa
tlyone o

urren
e of the bound obje
t-level variable. For the nonlinear 
ase, we have totake re
ourse to disambiguation. In se
tion 6.6 we will dis
uss an example that showswhy nonlinear redexes are a problem.Now that we have 
orresponden
e literals rather than 
orresponden
e formulas, we haveto make the 
onne
tion between them and path literals expli
it by saturation rules:The rules (UB.
o.path) and (UB.
o.
orr), whi
h are 
o(D;D0)(U)=V ! p(Z0U W0V ) forD = Z0= : : :, D0 = W0= : : : and p(Z0U W0V ) ^ (A1; : : : ; Am) �sym (B1; : : : ; Bm) ^ U 2b(Ak) ! 
o(Ak; Bk)(U)=V for 1 � k � m, Ak = Z0= : : :, Bk = W0= : : :, des
ribe this
onne
tion. The rule (UB.
o.u-
orr), of the form 
o(D;D0)(U)=V ! u-
oi(U)=V for(D;D0) 2 f(C;C 0); (B;B0); (A;A0i)g, infers underspe
i�ed 
orresponden
e literals fromnormal ones. Note that if D0 = A0i, then we 
an only infer u-
oi(U)=V for that samei. Be
ause of this rule, we 
an use the (UB.
opy. . . ) rules to 
opy information forvariables for whi
h we know whi
h segment term they are in, as well as for variablesfor whi
h we only have underspe
i�ed 
orresponden
e literals. The rule (UB.sym) isA � B ! A �sym B ^B �sym A. Sin
e we now have �sym literals rather than formulas,we make the 
onne
tion between them and group parallelism literals expli
it in this rule.The rules (D.di�Parent), whi
h is Z:f(Z1; : : : ; Zm) ^ W :g(W1; : : : ;W`) ^ Z 6=W !Vmj=1Vk̀=1 Zj 6=Wk, and (D.di�Child), whi
h is Z:f(Z1; : : : ; Zm) ^W :f(W1; : : : ;Wm) ^Zj 6=Wj ! Z 6=W for 1 � j � m, infer additional inequalities: Two inequal parent vari-ables must have inequal 
hild variables, and vi
e versa. We will need these rules to trigger(UB.new).Design de
isions. The pro
edure P� 
ontains three distribution rules: the rule(UB.�.2), whi
h lets us 
hoose between (UB.�.in) and (UB.�.out) for 
opying lambda
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i�ed Beta Redu
tion(a) � X0� � X1lam � X28 � Y0! �� �student � var � � �var � Y1 var � lam � X3�� �payatt � var � � � Z0not � Z1 � Z2
(b) � X 008 � X 01! �� �student � var � � �lam � Y 01�� �payatt � var � var � � � Z 00not � Z 01 � Z 02
Figure 6.12: A simple beta redu
tion step: \Every student does not pay attention"binding literals; the rule (D.�.lam), whi
h determines the label of a binder; and the rule(D.�.distr.inv), whi
h enfor
es 
omplian
e with an inverse lambda binding literal. Whydo we allow these distribution rules, and omit all others?The idea is that the pro
edure P�, whi
h fo
uses on beta redu
tion steps, has to makede
isions 
on
erning lambda binding, be
ause we may need the information on lambdabinding for subsequent beta redu
tion steps; all other disambiguation rules, whi
h maylead to an enumeration of readings in a 
onstraint from the linguisti
 appli
ation, areavoided. In parti
ular, the pro
edure P� does not make de
isions about anaphori
 bindingliterals, nor does it disambiguate s
ope ambiguities like the one in Fig. 2.8, p. 34.6.4.3 ExamplesFigure 6.4 (a), repeated (and extended by the root variable of the 
ontext) in Fig. 6.12(a), shows the 
onstraint that represents the semanti
s of the senten
e \Every studentdoes not pay attention." This 
onstraint in pi
ture (a) is the redu
ing tree. To performa single underspe
i�ed beta redu
tion step, we extend it by(C;B;A)!� (C 0; B0; A01) ^X0?X 00 withC = X0=X1; B = Y0=Y1; A = X3=;C 0 = X 00=X 01; B0 = X 01=Y 01 ; A01 = Y 01=for new variables X 00;X 01; Y 01 . A
tually, this is inexa
t: Instead of the disjun
tion seg(C)that is part of redtreeX2(C;B;A) (whi
h is itself part of the beta redu
tion formula) weadd X0/�X1 ^X1=X1, and likewise for all other seg(.) formulas.Now the pro
edure P� 
an work as shown in Fig. 6.13. To be able to apply (UB.new)and the (UB.
opy...) rules, we have to derive inequalities: For (UB.new) we have to
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tion 167(1) Z0 6=X2 (D.lab.ineq) (7) Z0 6=Y1 (D.lab.ineq)(2) Z1 6=X2 (D.lab.ineq) (8) Z 00:�(Z 01; Z 02) (UB.lab)(3) Z2 6=X2 (D.di�Child) (9) Z1 6=X1 (D.lab.ineq)(4) 9Z 0i:u-
o1(Zi)=Z 0i (UB.new) (10) Z1 6=Y1 (D.lab.ineq)i = 0; 1; 2 (11) Z 01:not (UB.
opy.lab)(5) Z1 6=X2 (D.lab.ineq) (12) X 00/�Z 00 (UB.
opy.dom)(6) Z0 6=X1 (D.di�Parent)Figure 6.13: Computation of P� on Fig. 6.12.(a) � X0� � X1lam � X2and � Y0� �var � Y1 peter � � �var � Y2 mary � lam � X3�� �laugh � var � � �not � �
(b) � X 00� �not � � and � X 01� �lam � Y 01�� �laugh � var � peter � � �lam � Y 02�� �laugh � var � mary � � �not � �

Figure 6.14: A nonlinear redex: Constraint for \Peter and Mary do not laugh."show that Z0; Z1; Z2 in Fig. 6.12 (a) are not the variable X2 between the 
ontext and thebody. And for (UB.
opy.lab) we have to show that they are not equal to a hole of the
ontext or the body segment term. Figure 6.13 only shows the part of the 
omputationthat pertains to Z0; Z1; Z2. For all other variables in the redu
ing tree, it is known insidewhi
h segment term they are. So to them the \normal" group parallelism literal rules(of Se
. 6.3.1) apply. The result of the 
omputation is the 
onstraint in Fig. 6.12 (a) plusthe 
onstraint in Fig. 6.12 (b).Figure 6.14 (a) shows the 
onstraint that represents the semanti
s of the senten
e \Peterand Mary do not laugh." This 
onstraint 
ontains a nonlinear redex: The lambda binderX2 binds two o

urren
es of the obje
t-level variable, at Y2 and Y3. We extend the
onstraint in (a) by(C;B;A)!� (C 0; B0; A01; A02) ^X0?X 00 withC = X0=X1; B = Y0=(Y1; Y2); A = X3=;C 0 = X 00=X 01; B0 = X 01=(Y 01Y 02); A01 = Y 01=;A02 = Y 02=
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i�ed Beta Redu
tionfor new variables X 00;X 01; Y 01 ; Y 02 . Again, this is inexa
t, sin
e we do not add disjun
tionsfor the seg(.) formulas: In the 
ase of B we add Y0/�Yi ^Yi=Yi ^Y1?Y2 for 1 = 1; 2, andlikewise for B0.From this 
onstraint, the pro
edure P� 
omputes the 
onstraint in Fig. 6.14 (a) plus (b):As the redex is 2-ary, the rules produ
e two 
opies of the negation fragment, one viau-
o1 and one via u-
o2. We return to this example in a minute.6.4.4 Properties of the Pro
edure P�Soundness. As we have de�ned in Def. 3.3 (p. 62), we 
all a saturation rule sound i� itis an equivalen
e transformation. And as we have remarked there, it suÆ
es to show thatthe left-hand side of the rule entails the right-hand disjun
tion be
ause we are workingin a saturation framework.(UB.init) is sound for the same reason as (P.init) is (see Se
. 4.2.1, p. 89). The u-
oiliterals in (UB.new) through (UB.
opy.ineq) are ful�lled be
ause redtreeX2(C;B;A) ispart of the formula betan: The segments interpreting C;B;A do not share any nodes.Con
erning (UB.new), if X0 is the root variable of C and X2 the lam-labeled variablethat is the 
hild of C's hole, then all variables that are inside b(X0=) and inequal toX2 must denote a node in either the 
ontext, the body or the argument segment ofthe redu
ing tree. A

ording to the de�nition of 
orresponden
e fun
tions (Def. 2.3,p. 27), (UB.
opy.lab) must additionally ex
lude the holes of B and C before 
opyinglabeling literals. Similar arguments yield the soundness of the rules (UB.
opy.dom)and (UB.
opy.ineq). The rule (UB.�.in) is sound by the 
onditions (�.�.same) and(�.�.di�) of the beta redu
tion relation (Def. 6.2, p. 142). (UB.�.1) is sound be
ausea lambda binder must dominate the variables it binds, so if we have �(Z1)=Z2, andZ2 2 b(X0=) and Z2 6=X2 are in ', then Z1 must be dominated by X0 and mustnot be the hole of either C, B or A by 
ondition (gp.�.hang) of the group paral-lelism relation (Def. 6.3, p. 144). (UB.�.2) is obviously sound. (UB.�.inverse) is asimpli�ed version of (GP.�.inverse): (UB.�.inverse) is beta1 ^ ��1(Z0)=fZ1; : : : ; Zmg ^Vmk=0 u-
o1(Zk)=Z 0k ! ��1(Z 00)=fZ 01; : : : ; Z 0mg. (GP.�.inverse) is ��1(X)=S1 ^
o�k (A;B)(X)=Y ^ 
o�(A;B)(S1)=S2 [ S3 ^ VV 2S2 �(V )=Y ^ VV 2S3 �(V )6=Y !��1(Y )=S2. Sin
e the redex in (UB.�.inverse) is linear, Z0 will have exa
tly one 
or-respondent in the redu
t, as will Z1; : : : ; Zm. Furthermore all of the 
orrespondents ofZ1; : : : ; Zm have to be bound at the 
orrespondent of Z0 by (UB.�.in). So the distin
-tion of S2 and S3 whi
h is ne
essary in (GP.�.inverse) 
an be omitted in (UB.�.inverse)be
ause S3 will always be empty. Returning to the question of soundness: We haveshown the soundness of (GP.�.inverse) in Lemma 6.5, so (UB.�.inverse) is sound as well.(UB.
o.path) and (UB.
o.
orr) spell out the 
onne
tion between 
orresponden
e literalsand their previous de�nition as a formula, and (UB.sym) does the same for symmetri
group parallelism literals. (UB.
o.u-
orr) is sound be
ause the 
ontext, body, and argu-ment segments of the redu
ing tree must be disjoint. (D.di�Parent) and (D.di�Child)are obviously sound.
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tion 169Saturated 
onstraints. It is not easy to des
ribe what a P�-saturated 
onstraint lookslike. It need not be saturated under Pgr be
ause in P� we have left out a number of rules.The pro
edure P� may have partially solved the beta redu
tion formulas o

urring inthe input 
onstraint. Below we des
ribe 
onditions under whi
h the pro
edure 
an solvebeta redu
tion formulas.Fairness. Above (p. 155) we have stated a fairness 
ondition for the pro
edure Pgr.For the pro
edure P� , we extend this 
ondition 
anoni
ally by treating (UB.new) thesame way as (P.new) and (GP.new).Satis�ability of saturated 
onstraints? While the pro
edure Pgr 
he
ks a 
onstraintfor satis�ability and enumerates readings for a linguisti
ally relevant 
onstraint, the pro-
edure P� is 
on
erned just with beta redu
tion formulas. A

ordingly, a P�-saturated
onstraint need not ne
essarily be satis�able. In the pro
edure P� we have left out,among other rules, (D.distr.
hild), whi
h means for example that P� 
annot dete
t theunsatis�ability of this 
onstraint: a � f �b �Whi
h 
onstraints 
an the pro
edure handle? The pro
edure P� allows us toperform an underspe
i�ed beta redu
tion step for many examples from underspe
i�ednatural language semanti
s without any disambiguation. Why is this so? We now takea 
loser look at the 
onstraints that o

ur in the linguisti
 appli
ation.The semanti
 representation of a senten
e is 
onstru
ted a

ording to the synta
ti
 stru
-ture of the senten
e, in the syntax/semanti
s interfa
e. A re
ent overview paper on CLLSby Egg, Koller and Niehren [41℄ des
ribes the syntax/semanti
s interfa
e 
urrently in usewith CLLS. With this semanti
 
onstru
tion, a CLLS 
onstraint representing a senten
e'ssemanti
s has the following properties: The 
onstraint possesses a root variable as de�nedin Def. 3.7, p. 64: a variable that dominates all others. The 
onstraint does not 
ontainany disjointness literals X?Y . For all lam-labeled variables X, there exists an inverselambda binding literal ��1(X)=f: : :g. If the 
onstraint 
ontains labeling literalsX:f(: : :)and Y :g(: : :) for two distin
t variables X;Y , then it also 
ontains X 6=Y , independent ofwhether f and g are the same symbol. And �nally, the 
onstraint graph has no \emptyfragments", fragments that 
onsist of a single node.To perform a single underspe
i�ed beta redu
tion step, we extend su
h a 
onstraint asfollows4:� We add a beta redu
tion formula (C;B;A)!� (C 0; B0; A01; : : : ; A0n) for appropriatesegment terms C for the 
ontext, B for the body, and A for the argument. This4A dis
ussion of a pro
edure for underspe
i�ed beta redu
tion that automates this step follows in thenext se
tion.
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i�ed Beta Redu
tionbeta redu
tion formula also states that any two distin
t holes of the body segmentterm B are disjoint: If B = Y0=Y1; : : : ; Yn then we also add Yi?Yj for 1 � i < j � n.� The variables that form the redu
t segment terms C 0; B0; A01; : : : ; A0n are all fresh.� If Z is the root variable of the 
onstraint and C 0 = X 00= : : :, then we also add X 00?Z.What 
an P� 
ompute for su
h a 
onstraint '? Suppose C = X0=X1, B = Y0=Y1; : : : ; Yn,and X1 is the parent of X2 like in Fig. 6.11. Now �rst, if we have a variable U withX0/�U 2 ', then P� 
an derive either U=X2 or U 6=X2 using the fa
t that all variablesU1; U2 with U1:f(: : :), U2:g(: : :) are inequal in ', the fa
t that we have no empty frag-ments, and the rule (D.di�Parent). For su
h a variable U we 
an further derive eitherU=X1 or U 6=X1, and U=Yi or U 6=Yi for 1 � i � n, in the same way. This is all theinformation that is needed for the (UB.
opy...) rules of P� .For all variables in the redu
ing tree that have a lambda binder, we additionally need toknow whether (UB.�.in) applies or (UB.�.out). This is determined by (UB.�.2). So we
an 
opy lambda binding literals from the redu
ing tree to the redu
t. But how aboutinverse lambda binding literals? The rule (UB.�.inverse) is restri
ted to linear redexes,in whi
h there is exa
tly one o

urren
e of the bound obje
t-level variable. So we 
an
opy inverse lambda binding literals with P� only if the redex that we are working with islinear. Otherwise we need to fall ba
k on the pro
edure Pgr to disambiguate the positionof the lambda binder and the bound variables. But note that this does not mean thatwe 
annot handle nonlinear redexes at all: The se
ond example for P� that we havedis
ussed in Se
. 6.4.3 
ontained a nonlinear redex, and P� 
ould handle it without anyproblem. This was due to the fa
t that in this 
ase the D segment term did not 
ontainany lambda binder or bound variable.Sin
e the redu
ing tree and the redu
t in ' are disjoint, and the variables of the redu
tare not involved in any (group) parallelism literals ex
ept the one introdu
ed by the betaredu
tion formula, we 
an say in advan
e how many new variables Pgr will add at mostto 
ompute the redu
t: as many variables as X0 dominates in '. So if the 
onstraint '
ontains no further (group) parallelism literals that 
ould 
ause trouble (or if we havetemporally removed any su
h literals), P� terminates on '.6.5 Underspe
i�ed Beta Redu
tionUnderspe
i�ed beta redu
tion means performing a series of beta redu
tion steps on anunderspe
i�ed des
ription of a lambda term, with the aim of a
hieving a des
riptionof a �rst-order term. This task 
an be broken up into two parts, ea
h handled by adi�erent pro
edure: on the one hand a pro
edure that performs a single beta redu
tionstep (i.e. solves a beta redu
tion formula), and on the other hand a pro
edure thatperforms multiple beta redu
tion steps one after the other, in ea
h step identifying aredex, 
onstru
ting a suitable beta redu
tion formula and 
alling the �rst pro
edure tohave the 
onstraint solved.
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tion 171UBPro
(';Z;X) =if all redu
ing trees in ' below X are redu
ed then return (';X)elsepi
k a redu
ing tree redtreeX2(C;B;A) in ' that is unredu
ed,a redu
ing tree with an n-ary redex su
h that X is the root variable of Cadd & = (C;B;A)!� (C 0; B0; A01; : : : ; A0n) to 'where C 0; B0; A01; : : : ; A0n are segment terms 
onsisting of fresh variableslet C 0 = X 00= : : :, thenadd & 0 = Z 0:f(Z;X 00) to ' for a fresh variable Z 0for all Pro
-solved forms '0 of ' ^ & ^ & 0 do UBPro
('0; Z 0;X 00)end Figure 6.15: Underspe
i�ed beta redu
tionIn the 
urrent se
tion we present a pro
edure for the se
ond part of the task. It knows a\
urrent term" within the 
onstraint, within whi
h it identi�es a redu
ing tree. It addsa suitable beta redu
tion formula to the 
onstraint and solves it using either Pgr or P�.This yields a new \
urrent term", the redu
t. So the whole 
onstraint represents a 
hainof lambda terms that arise during the beta redu
tion pro
ess, and the \
urrent term" isthe latest lambda term in this 
hain.This pro
edure UB for underspe
i�ed beta redu
tion is shown in Figure 6.15. It isparametrized by a pro
edure Pro
 for 
omputing the result of a single beta redu
tionstep. As arguments, UB takes a 
onstraint ', a root variable Z 2 Var(') of the whole
onstraint ', and a variable X whi
h is the root variable of the \
urrent term". Forexample for the 
onstraint in Fig. 6.12 (a) both the root variable Z and the 
urrent termroot variable X would be X0.The pro
edure sele
ts an unredu
ed redex within the \
urrent term". By this we mean aredu
ing tree (C;B;A) su
h that (C;B;A)!� (C 0; B0; A01; : : : ; A0n) is not in ' for any seg-ment terms C 0; B0; A01; : : : ; A0n and a suitable n. On
e su
h an unredu
ed redu
ing treeredtreeX2(C;B;A) is found, the pro
edure UB adds a des
ription of the redu
t, 
on-stru
ted out of fresh variables, and for
es the redu
t to be a disjoint position from all of' by adding the labeling literal Z 0:f(Z;X 00) for a new root variable Z 0.To this 
onstraint the pro
edure Pro
 is applied to solve the beta redu
tion formula.This pro
edure 
an be either Pgr or P�. Finally, UB 
alls itself re
ursively with ea
h new
onstraint that Pro
 has 
omputed. The new root variable is Z 0, and the new 
urrentterm starts at X 00, the root variable of the redu
t.6.6 Dis
ussion: Nonlinear RedexesThe rule (UB.�.inverse) requires the redex of the redu
ing tree under 
onsideration tobe linear, with exa
tly one o

urren
e of the bound obje
t-level variable. So what does a
onstraint look like that this rule 
annot handle? Figure 6.16 (a) shows su
h a 
onstraint.
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i�ed Beta Redu
tion(a) � � X1lam �f �var � var � �� � � Y1lam � Y2g �var � Y5 var � Y6�(b) � � Y 01lam � Y 02g �var � Y 05 var � Y 06� f ��� �� � � Y 001lam � Y 002g �var � Y 005 var � Y 006�Figure 6.16: A problemati
 nonlinear redexThere is a redu
ing tree starting at X1, with two o

urren
es of the bound obje
t-levelvariable, and there is a D segment term starting at Y1. This segment term again 
ontainsa lambda binder, Y2, whi
h binds two o

urren
es of its obje
t-level variable.Figure 6.16 (b) shows the result of a beta redu
tion step at the redu
ing tree that startsat X1. This redu
t 
ontains two 
opies of the D segment term starting at Y1. Nowsuppose the 
onstraint shown in (a) 
ontains ��1(Y2)=fY5; Y6g for the lambda binder Y2within the D segment term. Then what is ��1(Y 02)? This a
tually depends on whetherY2 is inside the 
ontext or the argument segment term of the redu
ing tree in (a). If Y2 isinside the 
ontext, then Y 02 and Y 002 denote the same node, and ��1(Y 02)=fY 05 ; Y 06 ; Y 005 ; Y 006 g,but if Y2 is inside the argument segment term, then Y 02 and Y 002 lie at disjoint positions,and ��1(Y 02)=fY 05 ; Y 06g.There is another interesting problem with this 
onstraint. Suppose that we do haveinverse lambda binding literals for Y 02 and Y 002 in pi
ture (b), and that we want to doa se
ond beta redu
tion step, this time for the redu
ing tree starting at Y 01 . Then theredu
t of this beta redu
tion step will 
ontain two 
opies of the fragment starting at Y 001 .Ea
h of these 
opies 
ontains another redu
ing tree (again supposing that we get theinverse lambda binding literals from somewhere). And if we then perform another betaredu
tion step at one of these redu
ing trees, this gives us two 
opies of the other 
opy,and so on at in�nitum.Both problems disappear if we disambiguate the position of the D segment term. Buthow 
an we solve these problems without enumerating readings? I think a solution tothis problem would be to put up a 
onstraint stating that the redexes at Y 01 and Y 001 haveto be redu
ed simultaneously. It is easy to list all the variables bound by Y 02 and Y 002together: we must have ��1(Y 02) [ ��1(Y 002 )=fY 05 ; Y 06 ; Y 005 ; Y 006 g. Furthermore, if we redu
eat both redexes at the same time, we 
an make sure that neither the fragment startingat Y 01 nor the one starting at Y 001 gets 
opied to the redu
t more than on
e.
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i�ed Beta Redu
tion 1736.7 SummaryUnderspe
i�ed beta redu
tion is beta redu
tion on partial des
riptions of lambda terms.While a naive rewriting approa
h may generate spurious solutions, a sound approa
his to give a de
larative des
ription of the result of the rewriting step using parallelism
onstraints.We have de�ned the beta redu
tion relation, whi
h holds between the redu
ing tree andthe redu
t. Furthermore we have introdu
ed the group parallelism relation, a generaliza-tion of the parallelism relation that relates two groups of segments instead of two singlesegments, the only di�eren
e being the 
onditions on binding. We have shown that thebeta redu
tion relation 
an be expressed by the group parallelism relation plus 
ondi-tions detailing the relative position of the 
ontext, body, and argument segments in theredu
ing tree, and likewise of the 
ontext, body and argument segments in the redu
t.A

ordingly, we have de�ned the language CLLSgr, whi
h extends the language CLLS bygroup parallelism literals and inverse lambda binding literals. In this language, a betaredu
tion formula expresses that a beta redu
tion relationship holds.We have presented a sound and 
omplete pro
edure Pgr for CLLSgr. This pro
edure 
analso 
ompute the result of a single beta redu
tion step.However, performing underspe
i�ed beta redu
tion and enumerating readings are twoseparate tasks, and we would like to keep them separate. So we have introdu
ed a se
ondpro
edure P� for solving beta redu
tion formulas, whi
h 
an perform an underspe
i�edbeta redu
tion step without any disambiguation for many examples from underspe
i-�ed semanti
s. This is made possible by the spe
i�
 layout of the segment terms in aredu
ing tree, along with underspe
i�ed 
orresponden
e literals.Finally we have dis
ussed a pro
edure for underspe
i�ed beta redu
tion. It identi�es aredu
ing tree in the 
urrent term to be 
onsidered, generates a suitable beta redu
tionformula, and 
alls either Pgr or P� to solve it. This yields a new 
urrent term under
onsideration, whi
h may again be redu
ed.



174 Underspe
i�ed Beta Redu
tion



Chapter 7Modeling Ellipsis with Group Parallelism andJigsaw Parallelism
The 
urrent 
hapter fo
uses on modeling ellipsis: We look at problems for modelingellipsis with parallelism 
onstraints, and we show how these problems 
an be solved.� Up to now we have assumed that the semanti
s of a 
ontrasting element is a subtreeof the lambda stru
ture. But there are 
ases where the semanti
s of a 
ontrastingelement forms a segment rather than a subtree. To put it di�erently: In these
ases, a group of tree segments for the sour
e senten
e semanti
s are stru
turallyisomorphi
 to a group of tree segments for the target senten
e semanti
s.This problem 
an be solved using group parallelism rather than normal parallelismfor modeling ellipsis. Group parallelism is a 
anoni
al extension to parallelism thatwe have introdu
ed in the previous 
hapter, in the 
ontext of underspe
i�ed betaredu
tion. The di�eren
e between parallelism and group parallelism lies in the
onditions on binding, where the group parallelism 
onditions on binding are morepermissive.� The semanti
 
ontribution of a 
ontrasting element may partake in s
ope ambigu-ities. In some 
ases this means that a disjun
tion of group parallelism literals isneeded to model the meaning of an ellipti
al senten
e, be
ause the position of the
ontrasting element semanti
s is not suÆ
iently spe
i�ed. This is unsatisfa
tory:We want our modeling language to be 
exible enough to model ellipsis withoutexpli
it disjun
tion.We solve this problem by introdu
ing jigsaw parallelism. While the jigsaw paral-lelism relation does not add any expressive power with respe
t to the group par-allelism relation, a jigsaw parallelism literal may express a disjun
tion of groupparallelism literals.7.1 The PhenomenonIn this se
tion we dis
uss ellipsis 
ases that 
an only be modeled by a language that goesbeyond normal parallelism 
onstraints. 175



176 Modeling Ellipsis with Group Parallelism and Jigsaw Parallelism7.1.1 Modeling Ellipsis with Parallelism ConstraintsWe brie
y re
all the way we model ellipsis with parallelism 
onstraints. Consider againthe simple ellipti
al senten
e (7.1), repeated from (2.5).(7.1) Every man sleeps, and so does Mary. and �� X0� �� � X1every � man � lam ��� �sleeps � var � � Y0mary � Y1X0=X1�Y0=Y1Figure 7.1: Constraint for \Every man sleeps, and so does Mary."We represent the meaning of the senten
e by the 
onstraint in Fig. 7.1, repeated fromFig. 2.10: The meaning of the sour
e senten
e \every man sleeps" (represented by thepart of the 
onstraint graph dominated by X0) is the same as the meaning of the targetsenten
e (represented by the part of the 
onstraint graph dominated by Y0), ex
ept forthe 
ontributions of the two subje
ts \every man" and \Mary". In ea
h model of the
onstraint, the segment denoted by X0=X1 must be stru
turally isomorphi
 to the onedenoted by Y0=Y1.7.1.2 Problemati
 CasesConsider the ellipti
al senten
es (7.2) through (7.6). Senten
e (7.2) has two pairs of
ontrasting elements: On the one hand \George" in the target senten
e 
ontrasts \Dan"in the sour
e senten
e; on the other hand the \not" in the target senten
e 
ontrasts toan empty 
ontrasting element in the sour
e senten
e. So, the sour
e senten
e semanti
sex
ept for the 
ontribution of \Dan" has the same stru
ture as the target senten
e se-manti
s ex
ept for the 
ontributions of \George" and \not". Seen as a lambda stru
ture,the semanti
s of this senten
e follows the general s
hema shown in Fig. 7.2 (b): Thesemanti
s of \not" is sket
hed as the deeper shaded segment within the right segment.The remainder of the right segment, the segments �1 and �2, put together have the samestru
ture as the segment �0 in the left of pi
ture (b).(7.2) Dan left, but George did not.(7.3) Bob has wisely walked to work, at least he has 
laimed he has. [56℄(7.4) Heute hat si
h ans
heinend Peter das letzte St�u
k Ku
hen genommen, undgestern hat er das au
h getan. [106℄
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olleague paid attention, but every student did not.(7.6) John went to the station, and every student did, too, on a bike.
α

1

α
2

α
1

α
2

α ’ α ’

(a) (b)

Figure 7.2: Cutting out a 
ontrasting element in the middle: extra 
ontrasting element(a) in the sour
e senten
e, (b) in the target senten
eSenten
e (7.3) follows the s
hema in Fig. 7.2 (a): The target senten
e means the sameas \. . . at least he has 
laimed he has walked to work". The \wisely" of the sour
esenten
e does not reo

ur in the target. So the deeper shaded segment within the leftsegment of Fig. 7.2 (a) represents the meaning of \wisely". Senten
e (7.4) evin
es thesame phenomenon as senten
e (7.3), but for German. Senten
es (7.5) and (7.6) 
onformto the s
hema in Fig. 7.2 (b): In senten
e (7.5) the \not" in the target senten
e is a
ontrasting element that is parallel to nothing in the sour
e senten
e, and the same holdsfor \on a bike" in the target senten
e of (7.6).How 
an we des
ribe these phenomena? In both pi
tures of Fig. 7.2, we have two segmentson one side being stru
turally isomorphi
 to one bigger segment on the other side. Wehave de
ided on the generalization shown in Fig. 7.3:� All 
ases of ellipsis that we have seen in previous 
hapters follow the s
hema de-pi
ted in Fig. 7.3 (a). The semanti
s of the sour
e and the target senten
e, thesubtrees �0= and  0=, have the same stru
ture, ex
ept for the semanti
s of the
ontrasting elements, the subtrees �1= and  1=, drawn as deeper shaded areas.� The 
ases of ellipsis that we have seen in the 
urrent se
tion 
an be generalizedto the s
hema in Fig. 7.3 (b): The semanti
s of the sour
e and target senten
es,the subtrees �0= and  0=, have the same stru
ture, ex
ept for the semanti
s ofthe 
ontrasting elements, the segments �1=�2 and  1= 2. (Again, the ex
eptedsegments are drawn as deeper shaded areas.)Note that there are mixed 
ases, with subtree-shaped as well as segment-shaped
ontrasting element semanti
s. (In fa
t, all the examples we have 
onsidered aboveare of this type.) Note further that in the examples that we have 
onsidered above,we have either a non-singleton ex
epted segment for the sour
e senten
e, and asingleton ex
epted segment for the target (senten
es (7.3) and (7.4)), or vi
e versa(senten
es (7.2), (7.5), (7.6)), where a singleton segment has the form �=� for somenode �.The senten
es (7.5) and (7.6) are interesting for a further reason. We fo
us on (7.5), thesimpler of the two. The target senten
e means the same as \. . . but every student did not
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π0

π1

ψ0

ψ1

π1
π2

(b)

~~

(a) π0

~
ψ0
ψ1
ψ2Figure 7.3: Modeling ellipsis: semanti
s of the 
ontrasting element (a) a subtree, (b) asegment of the senten
e semanti
spay attention"; it 
ontains a s
ope ambiguity between \every student" and "not". In thereading with \not" taking wide s
ope, the senten
e says that it is not the 
ase that allstudents pay attention. In the reading with \every student" taking wide s
ope, it statesthat of all students it is true that their minds are wandering.

pay att.

(a)

pay att.

ev. coll.

not

ev. st.

pay att.

(b)

pay att.

ev. coll. not

ev. st.

Figure 7.4: Sket
h of the two readings of senten
e (7.5): \Every 
olleague paid attention,but every student didn't."These two readings are sket
hed in Fig. 7.4. The darker shaded segments are the seman-ti
s of the 
ontrasting elements. Note the relative position of the two ex
epted segments,the one for \every student" and the one for \not": In Fig. 7.4 (a), the \not" segmentdominates the \every student" segment, while in pi
ture (b) the two ex
epted segmentsare in disjoint positions from ea
h other in the lambda stru
ture. So the target senten
esemanti
s in (a) follows the s
hema sket
hed in the upper right-hand 
orner of that pi
-ture: We have a in
luded segment in the middle with one ex
luded segment above andanother below. For the target senten
e semanti
s in (b), we have again sket
hed thes
hema in the upper right-hand 
orner: It 
omprises two in
luded segments separated byone ex
luded segment, and another ex
luded segment in a disjoint position.7.2 Modeling Ellipsis with Group Parallelism ConstraintsHow 
an we model the ellipsis phenomena that we have just sket
hed? Re
onsider thes
hema in Fig. 7.3 (b). We have two parallel groups of segments, ea
h 
onsisting of twosegments. We have seen something similar in the previous 
hapter, when we studied un-derspe
i�ed beta redu
tion. And in fa
t we 
an now reuse the group parallelism relation,whi
h we introdu
ed to model the result of an underspe
i�ed beta redu
tion step.
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Figure 7.5: Possible bindings in a group parallelism.Re
all that the group parallelism relation relates groups, tuples of segments, of a lambdastru
ture. Group parallelism (�1; : : : ; �n) � (�1; : : : ; �n)holds if �rst, there exists a 
orresponden
e fun
tion for ea
h segment pair �i; �i, 1 �i � n, and se
ond the group parallelism 
onditions on lambda and anaphori
 binding aremet. The 
onditions on lambda binding are sket
hed in Fig. 7.5: For a var-labeled nodebound within the same segment, the 
orresponding node is bound within its own segmentas shown in pi
ture (a). For a var-labeled node of a segment �i bound inside a di�erentsegment �j of the same group, the 
orrespondent is bound at the 
orresponding pla
ewithin �j, as shown in pi
ture (b). This 
ondition 
onstitutes the main di�eren
e fromnormal parallelism. And for a var-labeled node bound outside its group, its 
orrespondentis bound by the same binder, as shown in pi
ture (
). Apart from that we have the familiarex
lusion of hanging binders. The 
onditions on anaphori
 binding are extended in thesame way: An anaphori
 binder between two segments of one group has to be paralleledby an anaphori
 binder between the 
orresponding segments of the other group.In the previous 
hapter we have de�ned the language CLLSgr. It extends CLLS by inverselambda binding literals and by group parallelism literals of the form(A1; : : : ; Am) � (B1; : : : ; Bm):for segment terms A1; : : : Am; B1; : : : ; Bm. We 
an use this language to model the seman-ti
s of the ellipses in the previous 
hapter as follows.and �� X0� �left � dan � X1 � Y0� �neg � � Y2george � Y1((X0=X0); (X0=X1)) � ((Y0=Y0); (Y2=Y1))Figure 7.6: Constraint for senten
e (7.2): \Dan left, but George didn't."We �rst 
onsider senten
e (7.2), \Dan left, but George didn't." Figure 7.6 shows the
onstraint representing the semanti
s of this senten
e. We want to state that the subtrees



180 Modeling Ellipsis with Group Parallelism and Jigsaw ParallelismX0= and Y0= are stru
turally isomorphi
, ex
ept for the 
ontributions of \Dan" and\George" and \not". Here we have done this by stating two pairs of not-ex
epted segmentterms: The target segment term above the 
ontribution of \not" and its 
ounterpart in thesour
e, and the target segment term below the \not" and its 
ounterpart. The �rst pairof segment terms, X0=X0 and Y0=Y0, denote \singleton segments" 
onsisting of just onenode. We have 
hosen this representation be
ause it generalizes to more 
omplex 
aseswhere the segment terms above the ex
epted segments denote non-singleton segments.and �� X0� � X2� � X1every � 
olleague � lam ��� � X3pay att. � var � � Y0 � � Y2not � �� Y3� �� � Y1every � student � lam ��
((X0=X2); (X2=X1)) � ((Y0=Y2); (Y3=Y1)) _ ((X0=X1;X3); (X3=)) � ((Y0=Y1; Y2); (Y3=))Figure 7.7: Constraint for the senten
e (7.5): \Every student paid attention, but every
olleague didn't."Now we turn to senten
e (7.5), \Every 
olleague paid attention, but every student didn't."The 
onstraint representing the semanti
s of this senten
e is shown in Fig. 7.7. Assket
hed in Fig. 7.4, this senten
e has two readings, and to model its meaning using thelanguage CLLSgr, we have to use a disjun
tion of group parallelism literals: The situationwhere \not" takes wide s
ope (Fig. 7.4 (a)) is des
ribed by the �rst disjun
t in Fig. 7.7:Y3 dominates Y1. The situation where \every student" takes wide s
ope (Fig. 7.4 (b)) isdes
ribed by the se
ond disjun
t: Y1 and Y2 lie in disjoint positions.Note that in the reading sket
hed in Fig. 7.4 (b), a var-labeled node in the target \paidattention" fragment is bound by a binder in the \every student" fragment. This lambdabinding obeys the 
ondition sket
hed in Fig. 7.5 (b), i.e. it 
onne
ts a var-labeled variablein one segment to a lam-labeled variable in another segment of the group. So to model thesemanti
s of senten
e (7.5), we truly need group parallelism literals; normal parallelismwould not suÆ
e be
ause it does not allow for this kind of lambda binding.However, this model is not quite satisfa
tory: We would like to model the meaning ofsenten
es like this without resorting to disjun
tion. In the rest of this 
hapter, we showhow this 
an be done.7.3 Jigsaw ParallelismIn this se
tion we introdu
e the jigsaw parallelism relation, whi
h relates pairs of jigsawsegments, and we extend the language CLLSgr by jigsaw parallelism literals, whi
h are
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tion we then show howjigsaw parallelism literals 
an be used to model the semanti
s of senten
es like (7.5)without disjun
tion.
γ1

2γ 3γ

γ1

2γ 3γ

α1
α4α3α2

(a)

α

(b)

Figure 7.8: Sket
h of (a) a jigsaw segment �=
1; 
2; 
3 and (b) its remainder setf�1; �2; �3; �4gWe start with a sket
h of the idea of jigsaw segments and jigsaw parallelism, then wede�ne the 
on
epts formally.A jigsaw segment has the form �=
1; : : : ; 
nfor segments �; 
1; : : : ; 
n of a lambda stru
ture. It 
an be read as \the segment �ex
ept for the segments 
1; : : : ; 
n". What does that mean? Consider Fig. 7.8. Pi
ture(a) shows a sket
h of a jigsaw segment �=
1; 
2; 
3. The segment � has two holes, andsegments 
1; 
2; 
3 are being ex
luded from �. 
1 overlaps only partially with �, and
3 is a singleton segment. Pi
ture (b) shows what we get when we ex
lude 
1; : : : ; 
3from �. It is a set of segments, the remainder set f�1; �2; �3; �4g of �=
1; 
2; 
3: Thesegment � is 
ut along the segments 
1; 
2; 
3 (hen
e the name jigsaw segment). We 
allthe ex
luded segments (in our example 
1; : : : ; 
3) gamma segments, and the elements ofthe remainder set (in our example �1; : : : ; �4) alpha segments for short.
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Figure 7.9: Sket
h of jigsaw parallelism �=
1; 
2; 
3 � �0=
01; 
02; 
03Jigsaw parallelism relates pairs of jigsaw segments. We write�=
1; : : : ; 
n � �0=
01; : : : ; 
0n



182 Modeling Ellipsis with Group Parallelism and Jigsaw Parallelismto state that the jigsaw segments �=
1; : : : ; 
n and �0=
01; : : : ; 
0n are parallel. The twojigsaw segments need to have an equal number of gamma segments as well as an equalnumber of alpha segments. Two jigsaw segments are parallel if group parallelism holdsbetween their remainder sets. How do we determine whi
h pairs of alpha segments shouldbe parallel in the group parallelism? We use the relative positions of alpha and gammasegments. Consider Fig. 7.9, a sket
h of a jigsaw parallelism �=
1; 
2; 
3 � �0=
01; 
02; 
03.The order of gamma segments is important: It states that 
1 is at the same position withrespe
t to � that 
01 o

upies with respe
t to �0, and likewise for the pairs 
2; 
02 and
3; 
03. This order then determines that segments �1 and �01 have to be parallel be
ausetheir roots 
oin
ide with the holes of mat
hing gamma segments 
1; 
01 and their holes
oin
ide with the roots of mat
hing gamma segments 
2; 
02 and 
3; 
03. In the same way,all segment pairs �i; �0i, 1 � i � 4, are mat
hed. So the group parallelism that needsto hold in this 
ase is (�1; �2; �3; �4) � (�01; �02; �03; �04). Note that mat
hing gammasegments 
i; 
0i do not need to have the same stru
ture; after all, they are ex
luded fromthe parallelism.7.3.1 Jigsaw SegmentsWe now de�ne jigsaw segments and remainder sets. We pro
eed in two steps: First wede�ne unary jigsaw segments �=
, then we generalize the de�nition to jigsaw segmentswith several gamma segments.Two segments �; � of a lambda stru
ture overlap properly i� either b�(�) \ b�(�) 6= ;,or � is a singleton with r(�) 2 i(�). (Re
all that by Def. 2.2, p. 27, the set of \interiornodes" i(�) is b�(�) � fr(�)g.) We 
all a segment � of a lambda stru
ture a singletoni� jb(�)j = 1.De�nition 7.1 (Unary jigsaw segment, remainder set). A unary jigsaw segmentof a lambda stru
ture L� is a tuple �=
 of segments �; 
 of L�. The remainder set of�=
, js(�=
) is de�ned as follows.1. js(�=
) = fg if b(�) � b(
).2. js(�=
) = f�g if � and 
 do not overlap properly.3. For non-singleton � to whi
h the �rst two 
ases do not apply, letroots(�=
) = �fr(�)g � b�(
)� [ �hs(
) \ i(�)�holes(�=
) = �hs(�)� (i(
) [ hs(
))� [ �fr(
)g \ i(�)�and for � 2 roots(�=
); letholes�of(�; �=
) = f 2 holes(�=
) j �/+ and =9�0 2 roots(�=
)su
h that ��/+�0/+ �gThenjs(�=
) = f�0=�1; : : : ; �n j �0 2 roots(�=
); �1; : : : ; �n are themembers of holes�of(�0; �=
) ordered left to rightg:
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es by 
utting out 
. What remains is a set of segmentsrooted by the members of roots(�=
). A remainder segment rooted by � has as itsex
eptions the nodes in holes�of(�; �=
). They are those members of holes(�=
) thatare dominated by � su
h that no other member of roots(�=
) intervenes. Figure 7.10illustrates the de�nition of roots(�=
) and holes(�=
): Pi
ture (a) shows a 
ase where 
is \in the middle of" �. Then the root of � and the hole of 
 are in roots(�=
), and theroot of 
 and the hole of � are in holes(�=
). In pi
ture (b) r(�) lies in i(
). The root of� is in roots(�=
) only if it does not lie in b�(
), and the root of 
 lies in holes(�=
) onlyif it is in i(�). So roots(�=
) only 
ontains the hole of 
, and holes(�=
) 
onsists of thehole of �. In pi
ture (
) the hole of 
 is also the hole of �. This ex
ludes the hole of 
from roots(�=
) and the hole of � from holes(�=
), whi
h leaves us roots(�=
) = fr(�)gand holes(�=
) = fr(
)g. In all three pi
tures, the remainder set, js(�=
), 
onsists of theremaining light-shaded segments, 
onforming to our intuition about 
utting � along 
.
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hole ofα hole ofα

root ofα(a)
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α

root ofα
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α/γroots(     )

α

(b)
roots(     )α/γ

holes(     )α/γ α
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γ

roots(     )α/γ

holes(     )α/γ

Figure 7.10: Illustrating Def. 7.1: roots and holesThis de�nition is rather 
omplex. To show that it 
onforms to the above sket
h of what ajigsaw segment is, we prove the following four properties: The remainder set only 
ontainsnon-singleton segments, unless � is a singleton; no two members of the remainder setoverlap properly; all are 
ontained within �, and together with 
, they 
over all of �.Lemma 7.2 (Remainder set 
onsists of segments). If �=
 is a unary jigsaw seg-ment, then all elements of js(�=
) are segments. If � is non-singleton, then so are allelements of js(�=
).Proof. By de�nition 7.1, the set js(�=
) 
onsists of elements �0=�1; : : : ; �n su
h that�0 stri
tly dominates all of �1; : : : ; �n. It remains to show that �1; : : : ; �n are pairwisedisjoint.The nodes �1; : : : ; �n are from the set hs(�) [ fr(
)g. The nodes in hs(�) are pairwisedisjoint by the de�nition of segments. It remains to 
onsider r(
). Suppose r(
) 2holes(�=
) and suppose there is a node � 2 hs(�) with r(
)/��. If r(
)=� we aredone. So suppose r(
)/+�. There are two possibilities: Either � is in i(
) [ hs(
), then� 62 holes(�=
). Or there is a hole  of 
 with  /+�, and we have � 2 holes(�=
). In this
ase all of 
 lies in the interior of �: On the one hand r(
) 2 i(�) sin
e r(
) 2 holes(�=
)and on the other hand  /+� and � is a hole of �. So we also have  2 roots(�=
). Butin that 
ase, r(
) lies in holes�of(r(�); �=
), and � does not lie in holes�of(r(�); �=
)
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), i.e. � and r(
) are not holes of the same element of theremainder set js(�=
).Lemma 7.3 (Remainder segments are non-overlapping). Let �=
 be a unary jig-saw segment of some lambda stru
ture, then its remainder set js(�=
) is a set of segmentsthat do not overlap properly.Proof. Only the third 
ase of Def. 7.1 is of interest here. If the root of ea
h segment injs(�=
) is in hs(
)\ i(�), then the segments lie in disjoint positions. Now suppose js(�=
)
ontains a segment �1 with r(�1) = r(�) 62 b�(
). If js(�=
) 
ontains another segment�2 besides �1, then we must have r(�2) 2 hs(
) \ i(�). Suppose �1 and �2 properlyoverlap, then r(�1)/+r(�2). As r(�) 62 b�(
) but r(�) dominates a hole of 
, we musthave r(�1)/+r(
). So we get r(
) 2 i(�) sin
e r(�2) 2 i(�). Thus, r(
) 2 holes(�=
) andalso r(
) 2 holes�of(r(�1); �=
) sin
e it 
annot be dominated by any other element ofroots(�=
). Whi
h means that �1 and �2 do not properly overlap, after all.This is even true of f
g [ js(�=
): The only interesting 
ase is the one wherejs(�=
) 
ontains a segment �1 with r(�1) = r(�) 62 b�(
). Suppose �1 and 
overlap properly, then r(�1)/�r(
). If r(
) 62 holes(�=
), then there must be some� 2 hs(�) \ holes�of(r(�1); �=
) dominating it. If r(
) 2 holes(�=
), then it is inholes�of(r(�1); �=
) sin
e r(�1) 62 b�(
).Lemma 7.4 (Remainder segments are 
ontained in �). If �=
 is a unary jigsawsegment of some lambda stru
ture, with js(�=
) = f�1; : : : ; �ng, then Sni=1 b(�i) � b(�).Proof. Again, we need only 
onsider the third 
ase of Def. 7.1. By the de�nition ofroots(�=
), js(�=
) 
ontains no segment with a root that stri
tly dominates r(�). Itremains to 
he
k that no segment of js(�=
) extends below a hole of �.Let � 2 hs(�) with � 62 holes(�=
). Then � 2 i(
), so r(
)/+�. Let  2 roots(�=
) with /��. Then  62 hs(
) by the de�nition of the \interior" fun
tion i. If  = r(�) then 62 b�(
) so  /+r(
) and r(
) 2 i(�). So r(
) 2 holes�of( ;�=
), and the segmentbeginning at  ends above � already.Now suppose � 2 hs(�) with � 2 holes(�=
). If there is some  2 hs(
) \ roots(�=
)with r(�)/+ /��, then � 2 holes�of( ;�=
) sin
e  2 i(�). Otherwise, � 2holes�of(r(�); �=
): we have r(�)/+� sin
e � is non-singleton.Lemma 7.5 (Partitioning � with 
 and the remainder set). If �=
 is a unaryjigsaw segment of some lambda stru
ture with js(�=
) = f�1; : : : ; �ng, then b(�) � b(
)[Sni=1 b(�i).Proof. As above, we need only 
onsider the third 
ase of Def. 7.1. Suppose � 2 b(�) �Sni=1 b(�i) and � 62 b(
). Then r(�)/��. There are two 
ases.
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). Then there must be some  2 hs(
) su
h that  /+�. Then 2 i(�), so there exists some j 2 f1; : : : ; ng with  = r(�j). As � 62 b(�j), there mustbe some w 2 hs(�j) with w/+�. But then by the de�nition of holes(�=
), we must havew 2 hs(�), hen
e � 62 b(�), a 
ontradi
tion.The other 
ase is r(�) 62 b�(
). Then there exists some segment �1 2 js(�=
) withr(�1) = r(�). We have � 62 b(�1) so there must be some  2 hs(�1) with  /+�. Sin
e� 2 b(�), it must hold that  62 hs(�), so  = r(
) 2 i(�). Now � 62 b(
), and we 
anpro
eed as in the previous 
ase and get a 
ontradi
tion the same way.We extend the de�nition from unary to general jigsaw segments, where we 
an ex
eptseveral segments 
1; : : : ; 
n from one segment �. To that end, we �rst generalize ournotion of a remainder set as follows:De�nition 7.6 (Remainder set). Given segments �1; : : : ; �n; 
 of a lambda stru
turesu
h that for all 1 � i < j � n, �i and �j do not properly overlap; then the remainderset of f�1; : : : ; �ng and 
 isjs(f�1; : : : ; �ng = 
) =def n[i=1 js(�i=
):Now we 
an de�ne the 
on
ept of a jigsaw segment.De�nition 7.7 (Jigsaw segment, remainder set). A jigsaw segment ! of a lambdastru
ture L� is a tuple ! = � = 
1; : : : ; 
nof segments �; 
1; : : : ; 
n of L�.The remainder set of ! isjs(!) =def js(: : : js(js(�=
1) = 
2) : : : = 
n):js(!) is a set of segments. By Lemma 7.3, js(: : : js(js(�=
1) = 
2) : : : = 
i) is a set ofnon-overlapping segments for 1 � i � n, so js(!) is well-de�ned. We useb(!) =def [�02js(!) b(�0):In the following two lemmas we show that the de�nition of jigsaw segments 
onforms tothe sket
h we have given earlier: The above observations on 
overage and partitioninghold for general jigsaw segments as well, and the order in whi
h gamma segments areex
luded does not matter.



186 Modeling Ellipsis with Group Parallelism and Jigsaw ParallelismLemma 7.8 (Partitioning � with the alpha and gamma sets).Let ! = � = 
1; : : : ; 
n. Lemmas 7.4 and 7.5 s
ale up:1. b(!) � b(�).2. b(�) � Sni=1 b(
i) [ b(!).Proof. We pro
eed by indu
tion on n.1. Suppose the �rst 
laim is true for !` = � = 
1; : : : ; 
` for some `, 1 � ` < n. Letjs(!`) = f�01; : : : ; �0kg. Then for ea
h 1 � i � k, js(�0i=
`+1) � b(�0i) by Lemma 7.4.Hen
e, js(� = 
1; : : : ; 
`+1) � js(� = 
1; : : : ; 
`) � b(�).2. Suppose the se
ond 
laim is true for !` = � = 
1; : : : ; 
` for some `, 1 � ` < n. Letjs(!`) = f�01; : : : ; �0kg. Then for ea
h 1 � i � k, b(�0i) � b(
`+1)[js(�0i=
1; : : : ; 
`+1)by Lemma 7.5. Hen
e, b(�) � S`+1i=1 b(
i) [ js(� = 
1; : : : ; 
`+1).Lemma 7.9 (Order-independen
e of gamma segments). Let �1; : : : ; �n; 
1; 
2 besegments of the same lambda stru
ture su
h that for all 1 � i < j � n, �i and �j do notoverlap properly. Thenjs(js(f�1; : : : ; �ng = 
1) = 
2) = js(js(f�1; : : : ; �ng = 
2) = 
1)Proof. We write Si = js(f�1; : : : ; �ng = 
i), i = 1; 2, for short. Let �0 2 js(S1=
2). Wehave to show that �0 2 js(S2=
1) holds as well. As �0 is in js(S1=
2), there must be some�00 2 S1 with �0 2 js(�00=
2) and some k, 1 � k � n, with �00 2 js(�k=
1). We reasonover the possible positions of �0 and �00.Suppose �00 = �k. Then �k and 
1 do not overlap properly, and neither do �0 and 
1.So �0 2 js(�k=
2) and also �0 2 js(js(�k=
2) = 
1).Now suppose otherwise. W.l.o.g. we 
onsider the 
ase that r(�00) = r(�k) but r(
1) 2hs(�00). (The 
ase where r(�00) 2 hs(
1) and hs(�00) � hs(�k) is analogous.)If r(
1) 62 b(�0), then �0 2 S2 already, and �0 and 
1 do not overlap properly, so �0 2js(S2=
1). Now suppose r(
1) 2 b(�0). If additionally b(
2) \ b(�0) = ;, then �0 = �00and there are two possibilities: either 
2 does not properly overlap �k, i.e. �k 2 S2, so�0 2 js(S2=
1); or r(
1)/�r(
2) and there exists a segment �000 2 S2 with r(
2) 2 hs(�000)and �0 2 js(�000=
1).Now suppose r(
1) 2 b(�0) as well as b(
2) \ b(�0) 6= ;. Then there are two possibilities:either r(
1) = r(
2) and �00 = �0 2 S2 as well as �0 2 js(S2=
1); or 
1; 
2 do not overlapproperly, that is, they ex
ept pie
es of �k that do not overlap properly either, so theorder in whi
h the two ex
lusions take pla
e does not matter.
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Figure 7.11: Jigsaw segments and alpha-gamma trees.7.3.2 The Jigsaw Parallelism RelationNow we de�ne the jigsaw parallelism relation, whi
h relates two jigsaw segments(� = 
1; : : : ; 
n) � (�0 = 
01; : : : ; 
0n). Two jigsaw segments are parallel if group paral-lelism holds between their remainder sets, where we use the relative positions of alphaand gamma segments to determine whi
h pairs of alpha segments should be parallel. Forexample, we have argued that in Fig. 7.9 the segments �1 and �01 have to be parallelbe
ause their roots 
oin
ide with the holes of mat
hing gamma segments 
1; 
01 and theirholes 
oin
ide with the roots of mat
hing gamma segments 
2; 
02 and 
3; 
03. We formal-ize the relative positions of alpha and gamma segments in the notion of an alpha-gammatree.Consider Fig. 7.11. Pi
ture (a) again shows the jigsaw segment �=
1; 
2; 
3 that we havedis
ussed above, and pi
ture (b) again shows how the remainder set f�1; : : : ; �4g of thisjigsaw segment is obtained by 
utting � along the gamma segments. Note that adja
entsegments generally share a node, whi
h is the root of one and a hole of the other segment.The way that the alpha and gamma segments are plugged into ea
h other is representedin the alpha-gamma tree shown in pi
ture (
). An alpha-gamma tree is a tree whi
h
ontains exa
tly one node with label �i for ea
h i, at most one node with label 
i forea
h i, and nodes with label � for holes of alpha or gamma segments that are not rootsof another segment (in Fig. 7.11 represented as Æ). The 
hildren of a node labelled �i arelabelled by the segments plugged into the holes of �i in the 
orre
t left-to-right order;the same holds for a node labelled 
i.De�nition 7.10 (Alpha-gamma tree). An alpha-gamma tree for a jigsaw segment! = � = 
1; : : : ; 
n of a lambda stru
ture is a tree � su
h that the following 
onditions areful�lled, with S = js(!) [ f
i j i 2 f1; : : : ; ng; 
i and � overlap properlyg:1. the nodes in � all bear labels from the set S [ f�g;2. for all � 2 S, there is exa
tly one node labeled � in �;3. for all � 2 S, the node labeled � has exa
tly jhs(�)j 
hildren;
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hild a node labeled �0, then the i-th hole of thesegment � (in left-to-right order) is r(�0); if a node labeled � has as its i-
hild anode labeled �, then the i-th hole of � is not in b�(�).Below, we will use alpha-gamma trees to de�ne jigsaw parallelism: Two parallel jigsawsegments need to have mat
hing alpha-gamma trees, and the way that they mat
h willdetermine whi
h pairs of alpha segments have to be parallel. But before we de�ne thejigsaw parallelism relation, we need to show that alpha-gamma trees are de�ned in auseful way. In the following two lemmas, we show that if the gamma segments do notoverlap properly, the jigsaw segment possesses alpha-gamma trees; and if they exist,alpha-gamma trees are unique up to permutations of equal singleton gamma segments.Lemma 7.11 (Existen
e of alpha-gamma trees). Let ! = � = 
1; : : : ; 
n be a jigsawsegment of a lambda stru
ture su
h that for all 1 � i < j � n, 
i and 
j do not overlapproperly. Then ! possesses an alpha-gamma tree.Proof. We pro
eed by indu
tion on n.n = 1: Then ! = �=
. If js(!) = fg then � = 
(�; : : : ; �) is the only alpha-gamma treefor !. If js(!) = f�g then � = �(�; : : : ; �) is the only alpha-gamma tree for !.Now suppose � is not a singleton, and the two �rst 
ases of Def. 7.1 do not apply.Then there exists a single alpha-gamma tree � for !, whi
h is 
onstru
ted as follows:let the holes of �, ordered left to right in the tree, be �1; : : : ; �m, and the holesof 
, similarly ordered,  1; : : : ;  `. Suppose there exists some �1 2 js(�=
) withr(�1) = r(�). Then there exist 1 � i < j � m su
h that hs(�1), ordered left toright, is �1; : : : ; �i; r(
); �j ; : : : ; �m. Then � has the form�1(�; : : : ; �;| {z }i times 
(�1; : : : ; �`); �; : : : ; �| {z }(m�j+1) times )for trees �1; : : : ; �` that we explain below. If, on the other hand, there exists nosu
h �1, then � has the form 
(�1; : : : ; �`), again for trees �1; : : : ; �` that we explainnext.For 1 � i � `, if  i = r(�0) for some �0 2 js(!), then �i = �0( �; : : : ; �| {z }jhs(�0)j times ).Otherwise, �i = �.(n� 1)! n: Let �0 be an alpha-gamma tree for !0 = � = (
1; : : : ; 
n�1). Su
h a treeexists by the indu
tive hypothesis. There are three possibilities: (1) 
n and �do not overlap properly; or (2) 
n and � overlap properly, but there exists no�0 2 js(!0) su
h that 
n and �0 overlap properly; or (3) there exists exa
tly onesegment �0 2 js(!0) su
h that 
n and �0 overlap properly. No further 
ases exist:any two segments in js(!0) must be separated by some 
i, 1 � i � n, otherwise they
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n does not properly overlap with any other
i.In 
ase (1), �0 is also an alpha-gamma tree for !. Case (2) implies that 
n must bea singleton segment, and that there exists some j, 1 � j � n� 1, su
h that either(2a) r(
n) = r(
j) or (2b) r(
n) 2 hs(
j). (There may be more than one su
h j.)In 
ase (2a), �0 
ontains a subtree 
j(�j) for some �j. Repla
ing this subtree by
n(
j(�j)), we obtain an alpha-gamma tree for !. In 
ase (2b), suppose r(
n) isthe i-th hole of 
j. �0 has a subtree 
j(: : : ; �i; : : :), where the root of �i is the i-th
hild of the node labeled 
j. Repla
ing �i by 
n(�i), we obtain an alpha-gammatree for !.We now 
onsider 
ase (3). Let �new be the only alpha-gamma tree for �0=
n 
on-stru
ted as shown above. �0 
ontains a subtree �0(�1; : : : ; �m) for some m and sometrees �1; : : : ; �m. For 1 � i � m, let �i be the label of the root of �i. Now forea
h � 2 js(�0=
n) [ f
ng, let � be the node in �new labeled �; if the j-th hole of� is equal to r(�i), then ex
hange the j-th 
hild of � by �i. (In that 
ase, the j-th
hild of � must be labeled � in �new.) Let �0new be the tree that results from allthese substitutions. (Note that if for some i 2 f1; : : : ;mg, �i did not get pi
ked,then �i = � be
ause 
n does not overlap any segments of js(!0) ex
ept �0.) Thenthe tree � obtained from �0 by repla
ing the subtree �0(�1; : : : ; �m) by �0new is analpha-gamma tree for !.Lemma 7.12 (Uniqueness of alpha-gamma trees). Let ! = � = 
1; : : : ; 
n be ajigsaw segment of some lambda stru
ture su
h that for all 1 � i < j � n, 
i and 
j donot overlap properly, and ! admits two di�erent alpha-gamma trees �1; �2. Then �2 
anbe obtained from �1 by permuting the singleton 
i labels.Proof. This follows from the proof of the previous lemma: The only 
ase in the 
onstru
-tion of an alpha-gamma tree where we had any 
hoi
e was 
ase (2), the 
hoi
e of 
j forthe 
ase where 
n was singleton.Now we de�ne the jigsaw parallelism relation: Two jigsaw segments are parallel if theiralpha-gamma trees 
an be mat
hed by a tree isomorphism, su
h that gamma segmentswith the same index are mat
hing nodes in the alpha-gamma trees, and alpha segmentsthat are mat
hing nodes in the alpha-gamma trees are stru
turally isomorphi
.De�nition 7.13 (Jigsaw parallelism relation). The jigsaw parallelism relation � ofa lambda stru
ture L�is the largest relation between jigsaw segments with equal numbersof gamma segments su
h that(� = 
1; : : : ; 
n) � (�0 = 
01; : : : ; 
0n)for jigsaw segments ! = � = 
1; : : : ; 
n, !0 = �0 = 
01; : : : ; 
0n implies



190 Modeling Ellipsis with Group Parallelism and Jigsaw Parallelism� there exists a bije
tion f : js(!)! js(!0) su
h that, for js(!) = f�1; : : : ; �mg,(�1; : : : ; �m) � (f(�1); : : : ; f(�m))holds in L�.� there are alpha-gamma trees �; �0 for !; !0 and a tree isomorphism h : D� ! D�0that satis�es the following 
ondition:A node � of � is labeled 
j i� h(�) is labeled 
0j, 1 � j � n; � is labeled �j i� h(�)is labeled f(�j), 1 � j � m; and � is labeled � i� h(�) is.Note that the jigsaw parallelism relation is de�ned only for jigsaw segments in whi
h thegamma segments do not overlap properly.Figure 7.12 illustrates the isomorphism h on alpha-gamma trees. The two trees in the�gure have the same shape. Whenever we have a node labeled 
j in the left tree, themat
hing node in the right tree is labeled 
0j: The order of gamma segments in thejigsaw segments is obeyed, in that mat
hing gamma segments are in the same positionsin the alpha-gamma tree. And parallel alpha segments are 
hara
terized by the fa
t thattheir roots are the holes of mat
hing gamma segments, and their holes are the roots ofmat
hing gamma segments. We 
ould say that the 
ondition that we are imposing isa
tually an extended notion of 
orresponden
e, this time 
orresponden
e between twoalpha-gamma trees.
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Figure 7.12: Mat
hing two alpha-gamma trees by the tree isomorphism h of Def. 7.13:Some h-mappings are drawn in.The jigsaw parallelism relation gives us no additional expressive power:Lemma 7.14 (Jigsaw parallelism subsumed by group parallelism). Given alambda stru
ture L� in whi
h ! � !0 holds for jigsaw segments !; !0 of L�. Then thegroup parallelism $(js(!)) � $0(js(!0)) holds in L� for some permutations $;$0 of theremainder sets js(!); js(!0).Proof. This follows from Def. 7.13.There are group parallelism relationships that 
annot be expressed using jigsaw paral-lelism, sin
e group parallelism allows segments of the same group to overlap, while thealpha segments of a jigsaw segment do not overlap properly (Lemma 7.8, p. 186).



Modeling Ellipsis with Group Parallelism and Jigsaw Parallelism 1917.3.3 Jigsaw Parallelism LiteralsA jigsaw segment term has the formA0 = A1; : : : ; Anfor segment terms A0; : : : ; An. We extend CLLS by jigsaw parallelism literals that areinterpreted by the jigsaw parallelism relation. A jigsaw parallelism literal has the formA0 = A1; : : : ; Am � B0 = B1; : : : ; Bmfor segment terms A0; : : : ; Am; B0; : : : ; Bm. We write CLLSj for the language CLLSgrextended by jigsaw parallelism literals.Whenever two jigsaw segments are parallel, their remainder sets are related by groupparallelism, as Lemma 7.14 shows. However a single jigsaw parallelism literal 
an expressa disjun
tion of group parallelism literals. We state this in the following lemma.The gamma segments of a jigsaw segment term may not overlap properly. We 
an usethe following formula: Let A = X0= : : :, thennonovl(A; fA1; : : : ; Amg) =def m̂i=1X0 62 b�(Ai):Lemma 7.15 (Jigsaw p. literals express disjun
tions of group p. literals). Givena jigsaw parallelism literal C0=C1; : : : ; Cm � C 00=C 01; : : : ; C 0m, there exist group parallelismliterals A1 � B1, . . . , An � Bn su
h thatC0 = C1; : : : ; Cm � C 00 = C 01; : : : ; C 0m j=j Vmi=1 nonovl(Ci; fC1; : : : ; Cmg � fCig)^Vmi=1 nonovl(C 0i; fC 01; : : : ; C 0mg � fC 0ig)^(Wni=1Ai � Bi):Proof. We abbreviate the jigsaw parallelism literal C0 =C1; : : : ; Cm � C 00 =C 01; : : : ; C 0m by'. Given a set V of variables, the formuladisamb(V ) =def _X;Y 2V X=Y _X/+Y _ Y /+X _X?Ydisambiguates the relative positions of all variables in V without guessing labels. Let &be a 
onstraint in the 
lause set ' ^ disamb(Var(')). In & the relative positions of theroot and hole variables of the segment terms o

urring in the jigsaw parallelism literal aredisambiguated. So we 
an put up alpha-gamma trees for the two jigsaw segment termsC0 = C1; : : : ; Cm and C 00 = C 01; : : : ; C 0m in & in the way des
ribed in the proof of Lemma7.11. Note that while that proof uses the fa
t that the left-to-right order of holes of asegment is known, this is not really ne
essary; it suÆ
es to impose an arbitrary order onthe holes of ea
h of C0; : : : ; Cm and to impose the same order on the holes of C 0i as on Cifor ea
h 0 � i � m.



192 Modeling Ellipsis with Group Parallelism and Jigsaw ParallelismIf there is an isomorphism between the two alpha-gamma trees that ful�lls the 
onditionsof Def. 7.13, we 
an read o� one of the group parallelism literals from the set fA1 �B1; : : : ; An � Bng. As the formula disamb(Var(')) exhaustively enumerates all possiblerelative positions of variables in Var('), we �nd all of A1 � B1; : : : ; An � Bn in thisway.7.4 Modeling Ellipsis with Jigsaw Parallelism Constraintsand �� X0 � X2� �� � X1ev � 
oll � lam ��� � Upay att � var � � Y0 � � Y3not � � Y4� �� � Y1ev � std � lam �� Y2�(X0=X1) = (X2=X2)� � �(Y0=Y1) = (Y3=Y4)�Figure 7.13: Constraint for senten
e (7.5): \Every 
olleague paid attention, but everystudent didn't."Consider again the senten
e (7.5), \Every 
olleague paid attention, but every studentdidn't." Above we used a disjun
tion of group parallelism literals to model the semanti
sof this senten
e { see Fig. 7.7. Now we 
an use a single jigsaw parallelism literal instead,as shown in Fig. 7.13. For the sour
e senten
e, there are fragments for \every 
olleagueand \paid attention", and for the target senten
e, there are fragments for \every student"and \not". The relative s
oping of these latter two fragments is left open. Furthermorethere is the jigsaw parallelism literal that models the ellipsis. Intuitively it states that thesour
e senten
e semanti
s ex
ept for the 
ontribution of \every 
olleague", and ex
eptfor a singleton segment term X2=X2, is isomorphi
 to the target senten
e semanti
sex
ept for the 
ontribution of \every student", and ex
ept for the 
ontribution of \not".Additionally, the singleton segment term in the sour
e senten
e semanti
s must be \inthe same position" as the segment term Y3=Y4 in the target senten
e semanti
s. In thisway, the singleton segment term in the sour
e senten
e semanti
s restri
ts the \not"fragment in the target senten
e semanti
s to the 
orre
t positions: It may be situatedeither above the \every student" fragment, or between the \every student" fragment andthe 
opy of the \paid attention" fragment. Note that we 
ould also have formulated thejigsaw parallelism literal for Fig. 7.13 as �(X0=)=(X1=;X2=X2)� � �(Y0=)=(Y1=; Y3=Y4)�.7.5 A Look at Other FormalismsWe now take a look at related approa
hes to modeling ellipsis to see whether they 
anhandle the kind of 
ases that we have dis
ussed in this 
hapter. An approa
h that is
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ially interesting to 
ompare to CLLS is the one by Dalrymple, Shieber and Pereira[30℄ (DSP). As sket
hed in Chapter 2, Se
. 2.5.2, they model ellipsis using higher orderuni�
ation. The senten
e we have been dis
ussing above, \Dan left, but George didn't", isa variant of a senten
e that they analyze, shown here as (7.7). They model the semanti
sof this senten
e by the formula (7.8) together with the equation (7.9): The semanti
s ofsour
e and target senten
e share some property P , whi
h in the sour
e senten
e is statedof \Dan" and \not" and in the target senten
e of \George" and the identity fun
tion (i.e.an empty element).(7.7) Dan didn't leave, but George did.(7.8) neg(left(dan)) ^ P (george)(�x:x)(7.9) P (dan)(neg) = neg(left(dan))The solution that is 
omputed for (7.8) and (7.9) is P = �x�Q:Q(left(x)), whi
h givesthe 
orre
t semanti
s for the target senten
e.But now 
onsider again the senten
e (7.2), \Dan left, but George didn't", whi
h we havestudied above. For this senten
e the DSP formalism derives the formula (7.10) and theequation (7.11).(7.10) left(dan) ^ P (george)(neg)(7.11) P (dan)(�x:x) = left(dan)One solution we get is P = �x�Q:Q(left(x)), whi
h indeed 
orresponds to the 
orre
tmeaning of the senten
e. But unfortunately we also get wrong solutions su
h as P =�x�Q:left(Q(x)). The 
ore of the problem is that HOU performs silent beta 
onversions,to the e�e
t that it 
an no longer easily distinguish between the di�erent o

urren
esof �x:x in P (dan)(�x:x). We 
ould say that what is missing is a way of �xing theposition of the \neg". Interestingly, this is similar to the problem of �xing the positionof the ex
luded tree segment in the CLLS approa
h, whi
h we have solved by demanding\
orresponden
e" of alpha-gamma trees in Def. 7.13.This parti
ular example 
ould be saved by imposing well-typedness restri
tions, but thegeneral problem remains. (Lappin and Shih [82℄ 
omment on problems of DSP with 
aseswhere the target senten
e 
ontains additional adjun
ts, as in example (7.6).)The ellipsis analysis of Crou
h [28℄ is 
losely related to DSP and 
annot handle exampleslike senten
e (7.2) for similar reasons. The approa
h of S
hiehlen [106℄ does not sharethis problem, but he pays for this by having to expli
itly spe
ify all the parallel material.
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ussionIn this se
tion we raise three points: We look at remaining problems with modelingellipsis, we spe
ulate on a pro
edure for pro
essing jigsaw parallelism literals, and we
onsider the problem of automati
ally deriving the semanti
s of ellipti
al senten
es.7.6.1 Modeling EllipsisJigsaw parallelism literals are a very 
exible tool for modeling the semanti
s of ellipti
alsenten
es. However, I believe that with a further extension it 
an be made even moreuseful: Group parallelism and jigsaw parallelism 
ould be 
ombined by allowing groupparallelism literals to in
orporate jigsaw segment terms as well as normal segment terms.This yields literals (A1; : : : ; An) � (B1; : : : ; Bn)where the Ai and Bi are jigsaw segment terms. Again, this does not raise the expressivityof the formalism. These new extended group parallelism literals 
an be used, for example,to model senten
es like the following:(7.12) Every man kissed his wife before John did.The point about this senten
e is that there is a s
ope ambiguity between \every man"and \before". The senten
e has three readings, whi
h 
an be sket
hed as follows:(7.13) (every man)(�x:x kissed x's wife, then J kissed J's wife).(7.14) (every man)(�x:x kissed x's wife), then (every man)(�x: J kissed x's wife)(7.15) (every man)(�x:x kissed x's wife, then J kissed x's wife)The reading (7.13) is sloppy, while (7.14) is stri
t. The third reading, (7.15), is stri
t too.It di�ers from the se
ond reading in that it has \every man" outs
ope \before". That is,while in (7.14) John waits until all men have �nished kissing their wives before he startskissing them, (7.15) is an \interleaved" reading.It is this third reading that makes it impossible to model this ellipti
al senten
e withnormal parallelism, be
ause here the semanti
 
ontribution of the sour
e 
ontrastingelement, \every man", outs
opes the root of the sour
e senten
e semanti
s.The analysis of (7.12) is shown in Fig. 7.14. We �rst take a qui
k look at the \simpler"stri
t reading (7.14). In this 
ase, X2 is dominated by X0, whi
h makes the jigsaw literalbehave exa
tly like the ordinary parallelism literal X0=X1�Y0=Y1.The most interesting reading, however, is (7.15), where \every man" outs
opes \before",i.e. X3/�X0. As the denotation of X1= is not part of the alpha-gamma tree of the left-hand jigsaw segment, Y1 
annot be below Y0 either. That means that the two gamma



Modeling Ellipsis with Group Parallelism and Jigsaw Parallelism 195� � X2� � X1ev � man � lam �� X3 � � Y2john � Y1 lam �� Y3before �� X0� �� �wife of � ana � lam �� � Y0
� �� �kiss � var �var � X4�(X0= = X1=);X2=(X1;X3)� � �(Y0= = Y1=); Y2=(Y1; Y3)�Figure 7.14: Constraint for senten
e (7.12): \Every man kissed his wife before John did."segments X1= and Y1= do not overlap with X0= and Y0= at all, so the �rst pair of (jigsaw)segment terms in our extended group parallelism literal for
e the two subtrees below X0and Y0 to be 
ompletely parallel. The se
ond pair of segment terms ensures the 
orre
tlambda binding: the 
orrespondent of X4 must be bound at the right 
hild of Y2. Thisbinding also for
es Y3 to dominate the 
orrespondent of X4. The group parallelism rulesfor anaphori
 binding further ensure that the stri
t/sloppy ambiguity in our senten
e(7.12) is modeled 
orre
tly.7.6.2 Pro
essing Jigsaw Parallelism LiteralsHow 
an jigsaw parallelism literals be pro
essed? Jigsaw parallelism 
an be expressed bygroup parallelism. So one possible approa
h is to disambiguate the position of the gammasegment terms and then to solve a jigsaw parallelism literal by solving the appropriategroup parallelism literal, using the pro
edure Pgr of the previous 
hapter.But a mu
h more appealing solution would be to pro
eed in a similar way as the pro
edureP� for underspe
i�ed beta redu
tion steps: to devise a jigsaw parallelism 
onstraintpro
edure that 
opies a variable as soon as it is known that it 
annot be inside any of thegamma segment terms, and likewise 
opies dominan
e, inequality, and labeling literalswhenever it 
an safely do so. This pro
edure 
ould again make use of the underspe
i�ed
orresponden
e literals that we have introdu
ed in the previous 
hapter. The reason whyI think su
h a pro
edure would be suÆ
ient is that in the linguisti
 appli
ation, gammasegment terms are usually fragments.7.6.3 Deriving the Semanti
s of Ellipti
al Senten
esFor the language CLLS, there exists a syntax/semanti
s interfa
e [41℄. Based on thesynta
ti
 stru
ture of a senten
e, it 
onstru
ts a CLLS 
onstraint that represents the
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s of that senten
e. For ellipti
al senten
es, it generates the appropriate par-allelism 
onstraint linking the sour
e and target senten
e semanti
s (provided that thesour
e and target senten
es are known, as well as the 
ontrasting elements). Can thisapproa
h be extended to generating jigsaw parallelism 
onstraints? As the 
ontrastingelements are known, it is not hard to generate the appropriate gamma segment terms.The only problem is to 
onstrain the position of gamma segment terms, in the way thatwe did with the singleton gamma segment term X2=X2 in Fig. 7.13. One possibility is toimpose less 
onstraints on the position of the gamma segment terms { in the example inFig. 7.13, this 
ould be done by omitting the dominan
e X2/�U { and to infer the properposition later.7.7 SummaryIn this 
hapter we have extended the de�nition of parallelism, turning it into a very 
ex-ible tool for repla
ing tree parts by other tree parts, within a fully de
larative formalism.We have pointed out that the semanti
s of a sour
e or target senten
e may 
onsist notof a single segment but of a group of segments. This may be the 
ase for example whennegation or adjun
ts are involved. Su
h 
ases 
an be handled using group parallelisminstead of normal parallelism for modeling the ellipsis. Group parallelism is an extensionto parallelism that we have introdu
ed in the previous 
hapter.Furthermore an ellipsis may possess 
ontrasting elements partaking in s
ope ambigui-ties. In some 
ases this means that the senten
e semanti
s 
annot be des
ribed by asingle group parallelism, only by a disjun
tion of group parallelism literals. To addressthis problem we have introdu
ed jigsaw parallelism. In jigsaw parallelism, the ex
ludedsegments are expli
itly stated, along with a maximal in
luded segment. The jigsaw par-allelism relation is stri
tly less expressive than the group parallelism relation. Howeverin a jigsaw parallelism literal, the position of an ex
luded segment term may be moreunderspe
i�ed than is possible in a group parallelism literal, su
h that a single jigsawparallelism literal 
an des
ribe the semanti
s of ellipti
al senten
es that would require adisjun
tion of group paralellism literals.



Chapter 8Modeling Ellipsis: A Comparison of Approa
hes
The 
entral topi
 of this thesis is parallelism, espe
ially the pro
essing of parallelism
onstraints. But while we 
on
entrate on the formal aspe
ts of parallelism, we also haveto address the question of how it fares as a model.In this 
hapter, we attempt an assessment of the CLLS approa
h to modeling ellipsis.First we need to 
larify what exa
tly it is that we mean by \modeling ellipsis". We dothis by asking three questions: First, what is the nature of ellipsis phenomena? Se
ond,what problems need to be solved in 
onne
tion with ellipsis phenomena? Third, whi
his the level of linguisti
 stru
ture on whi
h a formalism for modeling ellipsis should a
t?We will use the third question to stru
ture and group di�erent ellipsis formalisms. We
ompare the analyses they propose and the 
lasses of examples that they 
over. Onthe basis of this 
omparison, we rea
h a tentative assessment of the CLLS approa
h tomodeling ellipsis.8.1 What is the Nature of Ellipsis?Perhaps the earliest theory of the nature of ellipsis was to see it as deletion within theframework of generative syntax, as Sag [105℄ does. In this tradition, the surfa
e formof a senten
e is generated by a sequen
e of transformations on several underlying levelsof representation. Ellipsis then arises from a removal of whole synta
ti
 
onstituents, orjust of their phonologi
al features.Another widely held view regards ellipsis as re
onstru
tion: Some material is 
opiedor generated into the pla
e of an empty element. This element has been left emptythroughout the synta
ti
 analysis, up to the point at whi
h re
onstru
tion takes pla
e.A 
omparison of these two views on ellipsis 
an be found in a paper by Williams [117℄.A third possibility is to regard ellipses as a kind of anaphora, and thus to handle them inan anaphora resolution framework [59, 5℄. This approa
h is similar to the re
onstru
tionview, but the kind of identity that holds between the target senten
e and its ante
edentis a di�erent one here: It is referential identity.197
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hes8.2 What Problems Need to be Solved in Conne
tion with Ellipsis?Johnson [63℄ asks three questions in 
onne
tion with ellipsis (spe
i�
ally VP ellipsis, thekind of ellipsis that we have mostly been 
onsidering throughout this thesis):1. In whi
h synta
ti
 environments is VP ellipsis li
ensed?2. What stru
tural relation may a VP ellipsis and its ante
edent have?3. How is the meaning of the ellipsis re
overed from its ante
edent?The �rst question is: Suppose we have a senten
e (or a sequen
e of senten
es) in whi
helements of similar meaning o

ur twi
e, but in one instan
e these elements are notexpressed on the surfa
e, under whi
h 
ir
umstan
es do we get a well-formed senten
e?An espe
ially interesting question in this 
ontext is: Are there other phenomena with thesame, or similar, li
ensing 
onditions? There is a large body of work on this, reviewede.g. in Johnson's overview arti
le [63℄.The se
ond question asks how, given an ellipti
al target senten
e, we 
an determine themat
hing sour
e senten
e. There are only few papers on this topi
; Gregory and Lappin[57, 81℄, Hardt and Romero [60, 61℄, Ginzburg and Cooper [53℄ have worked on it, aswell as Egg and Erk [39℄ for the CLLS approa
h. The most 
omprehensive a

ount is theone by Hardt [60℄, who uses heuristi
s to �nd the most suitable ante
edent 
andidate.He stresses the need to take many di�erent fa
tors into a

ount. The analysis by Eggand Erk, whi
h uses the CLLS framework, determines sour
e senten
e 
andidates fromstri
t synta
ti
 
onditions and then generates the appropriate parallelism 
onstraint. Butwhile this approa
h at the moment uses solely synta
ti
 information, and only se
ureknowledge, it has been designed to be extensible to other sour
es of information and toan integration of preferen
es with se
ure knowledge.The third question is the one that we have been 
on
erned with in this thesis: Givenboth the sour
e and the target of an ellipsis, how 
an the meaning of the target senten
ebe determined? It is with respe
t to this question that we will 
ompare di�erent ellipsisapproa
hes in Se
. 8.4.8.3 At Whi
h Level of Linguisti
 Stru
ture should an Ellipsis Theorybe Situated?Ellipsis theories 
an be distinguished by the types of linguisti
 stru
ture that they a

ess.In this se
tion we �rst brie
y list di�erent types of linguisti
 stru
ture that 
an bedistinguished, then we re
ount arguments for why an a

ount of ellipsis should havere
ourse to one type of stru
ture or another.There are several levels of linguisti
 stru
ture, dimensions of linguisti
 information. Theyrelate the surfa
e form of an expression to the meaning that it 
onveys. For example,
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hes 199\near the surfa
e" one normally distinguishes at least prosody, morphology, and somekind of (surfa
e) synta
ti
 stru
ture. The level of linguisti
 stru
ture 
losest to the \mean-ing" side is taken up by the proposition that an expression 
onveys. Some theories add alevel of deep synta
ti
 stru
ture between surfa
e synta
ti
 stru
ture and the propositionlevel [17℄. The di�eren
e between the two synta
ti
 stru
tures is that in deep synta
ti
stru
ture, arguments are 
loser to the positions they o

upy in the semanti
 stru
turethan they are in surfa
e synta
ti
 stru
ture. Another intermediate level posited in sometheories is the level of logi
al form [19, 88℄, at whi
h in parti
ular s
ope is representedand disambiguated. The rules for deriving logi
al form from surfa
e stru
ture are subje
tto synta
ti
 
onstraints, hen
e logi
al form, like deep and surfa
e synta
ti
 stru
ture, isseen as a synta
ti
 level of representation.Basi
ally, there are two ways in whi
h these levels 
an intera
t. A traditional, Chomskyanperspe
tive is that ea
h level lives on a separate stratum of representation. In su
h atheory, ea
h stratum 
an intera
t only with its immediate neighbors. An example of su
ha theory is Government & Binding [19℄. The other possibility is to 
ombine several levelsinto a single, multidimensional representation. That is, even though we still distinguishthe di�erent levels of linguisti
 stru
ture, we only have a single stratum of representation.In su
h a monostratal approa
h, all levels 
an (in prin
iple) intera
t. An example of su
ha theory is HPSG [97℄.Before we get ba
k to the subje
t of ellipsis, there is one further remark to be made aboutthe notions of \syntax" and \semanti
s": We use the term syntax to talk about levelsof linguisti
 stru
ture that des
ribe how surfa
e form 
an be organized; by semanti
s wemean those levels of stru
ture that des
ribe how meaning is stru
tured { where this isjust meant to be a loose distin
tion, not an exa
t 
lassi�
ation.Now, 
oming ba
k to the subje
t of ellipsis, there has been a long-standing dispute onwhether ellipsis should be analyzed on a synta
ti
 or a semanti
 level. Both sides 
anshow examples to bolster their 
laim { on the one side senten
es that point to synta
ti

onstraints on the li
ensing of ellipsis, and on the other side senten
es where (semanti
)inferen
es are required to �nd the ellipsis ante
edent. We brie
y present a few examplesfor ea
h of the two sides.Senten
es (8.1) through (8.3) have been used to argue that syntax must play a role inthe resolution of ellipsis.1 The point is that the una

eptability of these senten
es ispredi
ted by synta
ti
 
onstraints, and that this only 
omes to bear if the treatment ofan ellipti
 
onstru
tion is tried within the synta
ti
 stru
ture and fails. For senten
es(8.1) and (8.2) the synta
ti
 
onstraints 
ome from Binding Theory [19℄, whi
h makespredi
tions on anaphori
 binding based on relative positions of nodes in a synta
ti
 tree:In (8.1) a pronoun gets bound in an inadmissible way, and in (8.2), a proper name getsbound, whi
h is not allowed. The di�eren
e in a

eptability between senten
es (8.4) and(8.3) 
an be explained using the subja
en
y prin
iple [18℄: In this theory, some word orderphenomena are explained by movement { elements are moved from the position they had1The \*" at the beginning of an example senten
e indi
ates that it is not well-formed.



200 Modeling Ellipsis: A Comparison of Approa
hesin an underlying level of representation to the position they have in surfa
e stru
ture{, and by the subja
en
y prin
iple movement is blo
ked if it 
rosses the boundaries oftwo or more designated 
lasses of 
onstituents. We only list the senten
e here to givean impression of the kind of arguments raised for a synta
ti
 analysis of ellipsis; see e.g.Kehler [70℄ for a detailed dis
ussion of examples like these.(8.1) * John1 blamed himself1, and Bill2 did too. [blamed him1℄ [73℄(8.2) * I hit Bill1, and he1 did, too. [hit Bill1℄ [47℄(8.3) * John read everything whi
h Bill believes the 
laim that he did. [58℄(8.4) John read everything whi
h Bill believes he did. [58℄On the other hand, it has been argued that senten
es (8.5) through (8.10) 
an only beproperly analyzed by taking re
ourse to some level of semanti
 stru
ture. The point isthat in all these 
ases, there is no sour
e senten
e of appropriate form in the synta
ti
stru
ture. In (8.5) the target senten
e means \but he 
an't speak anymore", so the noun\speaker" is the ante
edent. In (8.6) the target senten
e is in the a
tive voi
e, but we havea passive sour
e senten
e. Senten
es (8.7) and (8.8) are examples of split ante
edents: In(8.7) the target senten
e must mean something like \neither of them 
an do what he orshe wants to do", and in (8.8) the target senten
e means \Gerry 
an talk and 
hew gum".In senten
e (8.9) the preferred reading of the target senten
e is something like \just as[all s
hoolboys℄1 give their1 girlfriends their1 s
hool pi
tures." Kehler [71℄ suggests thatthis reading may be derived as part of an inferen
e pro
ess of generalization.(8.5) Harry used to be a great speaker, but he 
an't anymore, be
ause he lost his voi
e.[59℄(8.6) This problem was to have been looked into, but obviously nobody did. [70℄(8.7) Wendy is eager to sail around the world and Bru
e is eager to 
limb Kilimanjaro,but neither of them 
an be
ause money is too tight. [116℄(8.8) I 
an walk, and I 
an 
hew gum. Gerry 
an too, but not at the same time. [116℄(8.9) Mary's boyfriend gave her his s
hool pi
ture, just as all s
hoolboys do.[71℄(8.10) Every linguist attended a workshop. Every 
omputer s
ientist did, too.Also, quanti�er parallelism senten
es like (2.6), repeated here as (8.10), have been putforward as an argument for an analysis on a semanti
 level, sin
e they show an inter-a
tion of s
ope ambiguities with ellipsis. But this depends on where one would drawthe dividing line between syntax and semanti
s; phenomena like quanti�er s
ope andanaphori
 binding have been assigned to semanti
 stru
ture by some theories, by othersto synta
ti
 logi
al form.
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hes 2018.4 Approa
hes to Modeling EllipsisIn this se
tion we dis
uss di�erent theories of how the meaning of the ellipti
al targetsenten
e 
an be determined. We �rst dis
uss approa
hes that treat ellipsis solely on asynta
ti
 level, then approa
hes that analyze the phenomenon on a semanti
 level, �nallyapproa
hes that take multiple sour
es of information into a

ount.8.4.1 Synta
ti
 Approa
hesTheories like the ones by Sag, Williams, Fiengo and May, and Lappin and Shih [105, 117,47, 82℄ handle ellipsis at some level of synta
ti
 stru
ture, either at the surfa
e synta
ti
level or at the level of synta
ti
 logi
al form.To give an example of a treatment of ellipsis at a level of logi
al form, Fiengo and May[47℄ study VP ellipsis in the 
ontext of a dis
ussion of anaphori
 binding and thus fo
uson stri
t/sloppy ambiguities. They 
onsider the target senten
e VP as a 
opy of thesour
e senten
e VP, where the anaphori
 binding need not be the same (i.e. stri
t). Forthe sloppy reading, there is a parallelism 
ondition on anaphori
 binding: Index 
hange ispermitted between ante
edent and ellipsis if the indexed elements parti
ipate in paralleldependen
ies, where a dependen
y is a sequen
e of synta
ti
 
ategories 
onne
ting adependent 
ategory with its ante
edent. Furthermore Fiengo and May allow for vehi
le
hange: Some synta
ti
 properties may be di�erent between mat
hing sour
e and targetanaphora, for example \he" in the sour
e senten
e may 
hange to \she" in the target.Lappin and Shih [82℄, on the other hand, re
over the missing material in the targetsenten
e within the surfa
e synta
ti
 stru
ture. They take the head verb of the sour
esenten
e, 
opy it to the target senten
e and then �ll all argument positions: if an argumentof an appropriate type is present in the target senten
e, they use that, otherwise theargument o

upying the same slot in the sour
e senten
e is 
opied.8.4.2 Semanti
 Approa
hesNow we turn to theories that propose an analysis of ellipsis on some level of semanti
stru
ture. We have already dis
ussed a number of su
h theories in Se
. 2.5.2, wherewe have listed ellipsis approa
hes related to the CLLS analysis. So now we just brie
yre
uperate that previous dis
ussion.The \
lassi
al" semanti
 analysis of ellipsis is the one by Dalrymple, Shieber and Pereira[30℄ (DSP). In this theory, the same property is expressed of the sour
e 
ontrastingelements and the target 
ontrasting elements. For the senten
e \John sleeps, and Marydoes, too", for example, the meaning of the target would be P (mary) for some propertyP of whi
h we know (from the meaning of the sour
e) that P (john) = sleep(john). Bysolving this equation using higher-order uni�
ation (HOU), the meaning of the targetsenten
e is retrieved.
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hesCrou
h [28℄ follows the same idea basi
 as DSP, but restri
ts the formalism to substi-tution, a
hieving a 
lean distin
tion of the modeling and the enumeration of readings(while in the DSP analysis the order of dis
harge of s
ope bearers determines the s
opereading). S
hiehlen [106℄ treats ellipsis in an UDRT setting, using index sequen
es toensure the right intera
tion of s
ope and ellipsis. S
hiehlen also dis
usses 
ases whereinferen
e is required to 
onstru
t an adequate sour
e senten
e, like the split ante
edentsenten
e (8.7). However in this framework s
ope bearers have to be expli
itly in
ludedin the parallelism, while in DSP and the CLLS analysis any material inbetween the rootand the holes of a parallel segment is automati
ally in
luded in the parallelism.The approa
h of Hardt [59℄ fo
uses on the similarities of anaphora and ellipsis. Using aDRT setting, this analysis pla
es possible sour
e senten
es as referents into the universe.The target senten
e 
an then refer to the appropriate sour
e referent. In this theoryexamples where the sour
e senten
e 
an only be found by inferen
e, like e.g. (8.5) or(8.7), play an important role. Asher [5℄ puts up a hierar
hy of abstra
t entities thatanaphora 
an refer to and dis
usses the kinds of abstra
t entities that 
an serve asellipsis ante
edents. He proposes an operation of Con
ept Abstra
tion within the DRTframework; this operation extra
ts abstra
t entities that are suitable ante
edents.8.4.3 Hybrid Approa
hesIn Se
. 8.3 we have seen a list of examples that seem to indi
ate that in determining themeaning of an ellipsis, a

ess to some level of synta
ti
 stru
ture is needed, and likewisesenten
es that have been used to argue that a

ess to semanti
 stru
ture is ne
essary.Some theories suggested that this eviden
e means that multiple sour
es of informationhave to be taken into a

ount.Lappin [80℄ proposes to use 
ompletely di�erent me
hanisms for di�erent types of ellip-sis: a treatment within surfa
e synta
ti
 stru
ture, a semanti
 HOU approa
h, and a`'quanti�er storing" approa
h similar to Cooper storage [25℄.But a uniform analysis for all kinds of ellipsis is aestheti
ally more pleasing; indeed, ifellipsis is per
eived as a single phenomenon, there should be a uniform treatment for allits forms. In Kehler's [70℄ analysis, dis
ourse stru
ture plays a 
entral role, in parti
ularthe 
oheren
e relation between sour
e and target senten
e. The question of whethersynta
ti
 or semanti
 information is needed for the treatment of an ellipsis be
omes aquestion of dis
ourse inferen
e: If re
ourse to synta
ti
 information is ne
essary duringdis
ourse inferen
e, then the missing elements have to be re
overed within the syntax,otherwise a semanti
 pro
ess of anaphora resolution suÆ
es.Kempson [72℄ takes a proof-theoreti
 approa
h to natural language interpretation. Theformalism she uses is Labelled Dedu
tive Systems [48℄. The approa
h 
ombines semanti
and pragmati
 aspe
ts and 
an also in
orporate synta
ti
 information. For handlingellipsis, a higher-order variable is used in a similar way as in the DSP approa
h, but thevariable is determined not by solving an equation but by inferen
e { whi
h should 
overexamples like (8.7).
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hes 2038.5 A Tentative Assessment of the CLLS Approa
h to ModelingEllipsisIn this se
tion we attempt an assessment of the CLLS approa
h to ellipsis. First weposition it with respe
t to the three questions we have raised in Se
. 8.1, 8.2, and 8.3.Then we re
e
t on the question whi
h other approa
hes the CLLS analysis is most similarto. Finally, we look at possible frameworks in whi
h this approa
h might be applied.In Se
. 8.1, 8.2, and 8.3 we have raised three questions: What is the nature of the ellipsisphenomenon? Whi
h problems need to be solved in 
onne
tion with ellipsis? At whi
hlevel of linguisti
 stru
ture should an ellipsis theory be situated? So whi
h positions doesthe CLLS approa
h take with respe
t to these questions?� Con
erning the nature of ellipsis, we have distinguished theories viewing it as eitherdeletion, re
onstru
tion, or referen
e. The CLLS approa
h is neutral with respe
tto this question. Even though the CLLS pro
edure of Chapters 3, 4 and 5 looks likeit were performing re
onstru
tion, this is not inherent in the modeling of ellipsis.� The main problem with respe
t to ellipsis that we have been dis
ussing here is: How
an the meaning of the ellipti
al target senten
e be determined? In the CLLS ap-proa
h, the meaning of the target is determined by relating the semanti
s of sour
eand target senten
e by a parallelism literal, ex
luding the semanti
 
ontributionsof the 
ontrasting elements.� CLLS, a formalism for underspe
i�ed semanti
s, models ellipsis within the seman-ti
 stru
ture. But while this approa
h re
overs the meaning of the target senten
ewithin the semanti
 stru
ture, it is 
lear that many fa
tors 
ontribute to determin-ing the ante
edent.How 
an we position CLLS analysis in relation to other approa
hes? The CLLS analysisis similar to DSP: They are both uni�
ation-like approa
hes that determine the mean-ing of an ellipsis within the semanti
 stru
ture. CLLS uses Kehler-style link 
hains tomodel the intera
tion of ellipsis and anaphora [69, 70℄. Used in 
ombination with domi-nan
e 
onstraints, it integrates an underspe
i�ed treatment of s
ope ambiguities with ananalysis of ellipsis, yielding the right results for quanti�er parallelism 
ases like (8.10).For a 
lear understanding of the formalism, we think the di�eren
es between DSP andthe CLLS analysis are espe
ially interesting. We repeat the most important di�eren
es(whi
h we have noted in passing in di�erent pla
es):� While DSP uses general higher-order variables to des
ribe the stru
turally identi
alareas, the CLLS analysis uses a less expressive fragment, parallelism 
onstraints,whi
h are equally expressive as 
ontext uni�
ation.� In DSP the integration of s
ope and ellipsis is pro
edural, depending on the orderin whi
h s
ope-bearers are dis
harged, in CLLS it is 
ompletely de
larative: There
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hesis a 
lean distin
tion between the des
ription of all readings of a senten
e in theform of a CLLS 
onstraint on the one hand, and the enumeration of the readingsusing a pro
edure like P on the other hand.� HOU and CLLS di�er in their perspe
tive on trees. HOU adopts the externalperspe
tive, talking about properties of trees, while CLLS takes the internal per-spe
tive, talking about relations between nodes of a single tree. This makes adi�eren
e in the way that the material ex
luded from parallelism is spe
i�ed. Forexample, the equation P (john) = see(john; john) 
an a�e
t none, either one,or both o

urren
es of the subtree john in see(john; john) (if we leave the is-sue of primary versus se
ondary o

urren
es aside for a moment). Parallelism�0=�1; : : : ; �n� 0= 1; : : : ;  n on the other hand spe
i�es that there are exa
tly nex
eptions and gives their exa
t positions in terms of the tree nodes at whi
h theystart.� Stri
t/sloppy ambiguities are handled di�erently: The me
hanism that DSP usesis uni�
ation (whi
h, as we have just said, 
an pi
k out all \john"-formed subtreesautomati
ally) together with the primary/se
ondary o

urren
e restri
tion. CLLS,on the other hand, uses link 
hains as �rst introdu
ed by Kehler [69℄ { see Se
.2.3.4.� Another di�eren
e is that in HOU, � and � 
onversions are built-in, but not so inCLLS. Underspe
i�ed beta redu
tion 
an be performed (we have shown a pro
edurein Chapter 6), but this does not happen automati
ally.In the previous se
tions, we have raised some interesting issues about modeling ellipsis,whi
h, however, go beyond the s
enario of the CLLS approa
h as we have presented itin this text.� In examples (8.5) through (8.9), some kind of inferen
e is needed for deriving thesour
e senten
e. Could su
h examples be analyzed using parallelism 
onstraints?In prin
iple, yes, by delaying the statement of the parallelism 
onstraint that mod-els the ellipsis: First derive just a dominan
e 
onstraint modeling the semanti
s ofthe senten
e ex
ept for the ellipsis; use some form of inferen
e to derive the sour
esenten
e (of 
ourse, this is the 
ru
ial point, just like in any other approa
h relyingon inferen
e within the semanti
 stru
ture, but with CLLS the situation is exa
er-bated be
ause we need to do dire
t dedu
tion on an underspe
i�ed stru
ture); thenstate a parallelism 
onstraint to model the ellipsis.� We have dis
ussed ellipsis approa
hes that argue that a

ess to multiple sour
es ofinformation is needed, notably the approa
hes by Kehler [70℄ and Kempson [72℄.Both approa
hes have at their 
ore a pro
ess operating on semanti
 stru
ture. So
ould the CLLS analysis form the 
ore of su
h a multi-level approa
h to ellipsis? Yes{ both Kempson and Kehler name HOU as one possible me
hanism for re
overingthe target senten
e semanti
s, and we have already dis
ussed the similarity betweenthe HOU approa
h and parallelism 
onstraints. However, this would again requireperforming dire
t dedu
tion on an underspe
i�ed semanti
 representation.
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hes 205But why use CLLS in su
h a multi-level analysis? One advantage is the underspe
-i�ed framework in whi
h the intera
tion of s
ope ambiguity and ellipsis is modeled.Another advantage lies in pro
essing: the parallelism 
onstraint pro
edure of Chap-ter 4 performs well on 
onstraints from the linguisti
 appli
ation, and there mayeven be a de
idable fragment of CLLS that suÆ
es for handling ellipsis { we takeup both these points in the following 
hapter.8.6 SummaryIn this 
hapter we have �rst dis
ussed issues 
onne
ted with modeling ellipsis, in the formof three questions: First, what is the nature of ellipsis? Is it a phenomenon of deletion,re
onstru
tion, or referen
e? Se
ond, what problems need to be solved in 
onne
tionwith ellipsis? The problem we fo
us on is to determine the meaning of the ellipti
altarget senten
e. Third, at whi
h level of linguisti
 stru
ture should an ellipsis theorybe situated? We have seen that there are arguments both for an analysis in synta
ti
stru
ture and an analysis within semanti
 stru
ture.We have given a brief overview of approa
hes to modeling ellipsis, stru
tured by whetherthey a

ess some level of synta
ti
 stru
ture, semanti
 stru
ture, or both, and we havestated a tentative assessment of the CLLS approa
h: It determines the meaning of theellipti
al target senten
e within the semanti
 stru
ture (while for determining the an-te
edent multiple levels of linguisti
 stru
ture have to be taken into a

ount), in a stylesimilar to DSP [30℄, but there are important di�eren
es in the perspe
tive on trees aswell as in the question of pro
essing. CLLS is neutral with respe
t to the question ofthe nature of ellipsis, and it 
ould in prin
iple form the 
ore of a multi-level analysis ofellipsis.
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Chapter 9Outlook
This 
hapter presents ideas for future work. We �rst brie
y list a number of openquestions, then we fo
us on the �rst two in the list.� In this thesis we have presented an abstra
t semi-de
ision pro
edure for CLLS. How
ould it be turned into a pra
ti
al pro
edure for CLLS?� The de
idability of CLLS is still an open problem. Can we �nd fragments of thelanguage with good properties?� We have presented two pro
edures for performing a single underspe
i�ed beta re-du
tion step. They both have drawba
ks: One pro
edure uses more distributionthan ne
essary for just performing a beta redu
tion step, the other pro
edure isin
omplete.One possibility would be to 
ombine the two pro
edures but pla
e strong restri
tionson the appli
ation of distribution rules. The idea is to solve a beta redu
tion formulawithout distribution whenever that is possible, and to resort to a strongly 
ontrolledappli
ation of distribution otherwise.Another possibility would be to extend the in
omplete pro
edure. The problemati

ases are those with nonlinear redexes. The problem 
ould maybe be solved byredu
ing groups of redexes at the same time, and requiring redexes generated as
opies of the same original redex to be redu
ed simultaneously, as sket
hed inChapter 6.� We have presented two appli
ations of the language CLLS. Whi
h other areas 
anCLLS be applied to? In parti
ular, are there other kinds of ambiguity for whi
hCLLS 
an furnish an underspe
i�ed des
ription?One possible appli
ation is an underspe
i�ed des
ription of dis
ourse stru
ture[107℄. Furthermore, a re
ent appli
ation to parsing with resour
e-sensitive 
atego-rial grammar [45℄ uses not CLLS itself, but a variant based on �nite set 
onstraintsthat has previously been used for an implementation of dominan
e 
onstraints [34℄.The variant was 
hosen be
ause it allows stronger statements about dominan
e.� Among the questions on ellipsis that we have raised in Chapter 8, one was: Givenan ellipsis, how do we determine its most likely ante
edent?207
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es of information have to be 
onsidered to determinethe most suitable ante
edent, and that 
ertain knowledge is involved as well aspreferen
es [60, 61℄. First steps towards an analysis within the CLLS frameworkhave been made [39℄, fo
using on a sub
lass of ellipsis phenomena.In the following two se
tions, we fo
us the �rst two questions in the list.9.1 A De
idable Fragment of CLLS � X0� Y0� X1� Y1X0=X1�Y0=Y1
Can we �nd de
idable fragments of CLLS with good pro
essing proper-ties? Intuitively, the 
ases that are problemati
 for the CLLS pro
edurethat we have presented are those with \self-overlapping" parallelism 
on-straints. The simplest su
h 
onstraint is shown in Fig. 4.7 (a), repeatedhere to the right. But self-overlap need not be as obvious as it is in that
ase. It 
an also o

ur in 
onstellations as the one sket
hed in Fig. 9.1.In this pi
ture, equal-
olored segments are parallel. A subsegment of �also belongs to � and is parallel to a subsegment of �0. A sub-subsegment of this alsobelongs to 
 and reappears in 
0, where it overlaps with �0.

’β

’γ

’α

α

β

γ

� � �0 ^ � � �0 ^ 
 � 
0Figure 9.1: Sket
h of a more 
omplex 
ase of \self-overlap"How 
an the idea of prohibiting \self-overlap" be exploited for a de
idable fragment? Weare 
urrently working on a fragment of CLLS in whi
h overlap is forbidden altogether:Any two tree segments involved in the parallelism relation (but not ne
essarily parallelto ea
h other) may not overlap unless one is properly nested in the other. Parallelism
onstraints are then interpreted not over the parallelism relation in general but over thisrestri
ted parallelism relation. This fragment of CLLS is de
idable, in fa
t satis�abilitytesting is only NP-
omplete, whi
h is the same as for dominan
e 
onstraints. Furthermoreit seems that for all CLLS 
onstraints that arise in modeling ellipsis, this restri
tedfragments suÆ
es.Can a bigger de
idable fragment be de�ned in the same vein? Is it possible to prohibitsolely \self-overlap", not overlap in general? The notion of \self-overlap", though intu-itively 
lear, is not easy to de�ne formally. One possibility 
ould be to make use of the
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orresponden
e fun
tions, employing the transitive 
losure of the 
orrespon-den
e relationship to dete
t \overlap 
y
les" like the one in Fig. 9.1.Normal dominan
e 
onstraints [76, 3℄ are a fragment of dominan
e 
onstraints for whi
hsatis�ability 
an be tested in polynomial time. Here the 
on
ept of fragments (see p.32) is 
entral: In normal dominan
e 
onstraints fragments 
annot overlap, and satis�a-bility be
omes a problem of arranging the fragments in su
h a way that all dominan
e
onstraints between them are satis�ed. Can this language fragment, whi
h is importantin the linguisti
 appli
ation, be extended by parallelism 
onstraints, or a de
idable frag-ment of parallelism 
onstraints? The answer is not obvious be
ause some parallelism
onstraints (whi
h also o

ur in the linguisti
 appli
ation) 
an
el normality.9.2 Pro
essing CLLS ConstraintsFor dominan
e 
onstraints, the �rst solver was a high-level saturation algorithm [78℄.Building on this, a solver based on 
onstraint programming te
hniques [34℄ was pro-posed, a solver that already shows good average-
ase behavior. Then normal dominan
e
onstraints were introdu
ed, along with a polynomial graph-based solver [3℄.For parallelism 
onstraints, and for CLLS in general, there now exists a high-level sat-uration pro
edure. So the next step is to develop pra
ti
al pro
edures for this largerlanguage.One possibility of doing this is to interleave a dominan
e 
onstraint solver with a 
opy-ing step that makes expli
it the stru
tural isomorphism of one pair of segment terms.Preferably the language used should be a de
idable fragment of parallelism 
onstraints,a fragment that yields a partial order on parallel segment term pairs, in su
h a way thatthe 
opying step only needs to be applied exa
tly on
e to ea
h segment term pair.
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Chapter 10Con
lusion
This 
hapter summarizes the main 
ontributions of this thesis. The main formalismthat we have studied in this thesis are parallelism 
onstraints, whi
h are part of theConstraint Language for Lambda Stru
tures. A parallelism 
onstraint states that twosegments of a lambda stru
ture are stru
turally isomorphi
 and have parallel bindings.The main result that we have presented is a pro
edure for parallelism 
onstraints, whi
hwe have extended to a pro
edure for all of CLLS. In the se
ond part of the thesis, we havestudied questions of the pra
ti
al appli
ability of the formalism as well as the pro
edure.We have 
onsidered two appli
ations: underspe
i�ed natural language semanti
s, andunderspe
i�ed beta redu
tion.10.1 A Pro
edure for CLLS ConstraintsWe have introdu
ed the semi-de
ision pro
edure P for CLLS 
onstraints. It is a high-level, rule-based saturation pro
edure, 
onsisting of saturation rules that add more andmore literals to a 
onstraint until a saturation is rea
hed. The pro
edure P has thefollowing properties:� It terminates for the linguisti
ally relevant 
onstraints. For these 
onstraints, it
omputes saturations that 
orrespond to the 
orre
t readings.� It in
ludes a solver for dominan
e 
onstraints. Given a dominan
e 
onstraint as aninput, the pro
edure behaves exa
tly like the dominan
e 
onstraint solver that iten
ompasses, whi
h is important for the linguisti
 appli
ation.� It is built in a modular fashion, su
h that di�erent dominan
e 
onstraint solvers
an be in
orporated.� It never has to guess labels.� It introdu
es 
orresponden
e formulas as a data stru
ture for handling parallelismwithin partial tree des
riptions.The pro
edure makes expli
it the information that is present only impli
itly in a 
on-straint. From the point of view of the linguisti
 appli
ation, whi
h uses dominan
e211
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onstraints for modeling s
ope ambiguity and parallelism 
onstraints for modeling ellip-sis, the pro
edure enumerates s
ope readings and re
overs the meaning of an ellipti
alsenten
e from its ante
edent.The notion of 
orresponden
e features both in the de�nition of the parallelism relation, inthe form of 
orresponden
e fun
tions, and in the CLLS pro
edure, in the form of 
orre-sponden
e formulas. A 
orresponden
e fun
tion maps ea
h node in one parallel segmentto the node at the same position in the other parallel segment. A 
orresponden
e formulastates that 
orresponden
e holds between the denotations of two variables. It is expressedin terms of path parallelism literals, whi
h state that two tree paths are isomorphi
. Theproperties of path parallelism literals, expressed as saturation rules, enfor
e the 
orre
tintera
tion between di�erent 
orresponden
e formulas. In using 
orresponden
e formu-las as the 
entral data stru
ture, the CLLS pro
edure bene�ts from the node-
enteredperspe
tive of the language.The CLLS pro
edure P is sound in the sense that all its rules are equivalen
e transfor-mations. The saturations that it 
omputes are satis�able: A model 
an be dire
tly reado� ea
h saturation. The pro
edure is 
omplete in the sense that it 
omputes all minimalsaturations for a given input 
onstraint, in fa
t it only 
omputes minimal saturations.We have de�ned minimality in terms of a family of partial orders �G, parametrized bya set G � Var of variables. This family of partial orders 
an be des
ribed as subsetin
lusion modulo �-renaming of variables introdu
ed during 
omputation with P (whereVar � G is the set of variables that may be renamed).10.2 Applying Parallelism ConstraintsWe have dis
ussed two appli
ations of CLLS: underspe
i�ed natural language semanti
s,and underspe
i�ed beta redu
tion. In natural language semanti
s, parallelism 
onstraints
an be used to model ellipsis. In underspe
i�ed beta redu
tion, parallelism 
an be usedfor a de
larative des
ription of the result of a single underspe
i�ed beta redu
tion step.For these appli
ations, we have added the following extensions to the formalism and thepro
edure.Group parallelism. Group parallelism relates two groups of parallel segments insteadof just two segments. It di�ers from \normal" parallelism in its weaker 
onditions onlambda and anaphori
 binding. This extension to parallelism is needed both in theappli
ation to modeling ellipsis and in the appli
ation to modeling underspe
i�ed betaredu
tion steps.Jigsaw parallelism. Ordinary parallelism relates pairs of segments, subtrees from whi
hone or more subtrees have been 
ut out. Jigsaw parallelism relates pairs of jigsaw seg-ments, segments from whi
h one or more segments have been 
ut out. The position ofthe in
luded as well as the ex
luded segments is spe
i�ed in terms of an extended notionof 
orresponden
e. Jigsaw parallelism is needed in the appli
ation to modeling ellipsis.It is subsumed by group parallelism, however it allows for a more 
exible and elegant
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lusion 213modeling of ellipsis: Some 
ases of ellipsis require partial disambiguation of s
ope beforethey 
an be modeled using group parallelism; with jigsaw parallelism, the ellipsis 
an bedes
ribed without any pre
eding disambiguation.A pro
edure for CLLS plus group parallelism 
onstraints. We have extendedthe CLLS pro
edure P to handle group parallelism 
onstraints as well as more expressive
onstraints for lambda binding, whi
h are ne
essary for the appli
ation to underspe
i�edbeta redu
tion.A pro
edure for 
omputing the result of an underspe
i�ed beta redu
tionstep. In 
omputing the result of an underspe
i�ed beta redu
tion step it is desirable tokeep the des
ription of the lambda termas underspe
i�ed as it was before beta redu
-tion. In parti
ular, the pro
edure should not disambiguate quanti�er s
ope. We havepresented a pro
edure that 
an perform an underspe
i�ed beta redu
tion step withoutany disambiguation for many examples from underspe
i�ed semanti
s. The pro
edure,whi
h is a modi�
ation of the CLLS plus group parallelism pro
edure, relies 
ru
iallyon the spe
i�
 layout of the segment terms in a redu
ing tree, along with underspe
i�ed
orresponden
e literals.
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