
A constraint-programming approach to parsing with
resource-sensitive categorial grammar

Katrin Erk & Geert-Jan M. Kruijff

Computational Linguistics
Saarland University

Saarbr¨ucken, Germany
{erk,gj}@coli.uni-sb.de

Abstract. Parsing with resource-sensitive categorial grammars (up to the Lambek-
Van Benthem calculusLP) is an NP-complete problem. The traditional approach
to parsing with such grammars is based ongenerate & test and cannot avoid
this high worst-case complexity. This paper proposes an alternative approach,
based onconstraint programming: Given a grammar, constraints formulated on
an abstract interpretation of the grammar’s logical structure are used to prune the
search space during parsing. The approach is provably sound and complete, and
reduces the search space in steps that are mostly linear or low-polynomial.

1 Introduction

The problem we are concerned with here is the efficient parsing ofresource-sensitive
categorial grammars. Resource-sensitive categorial grammar [Mor94,Hep95,Moo97]
(ResCG) overcomes the linguistic inadequacy of classical categorial grammar (CG).
However, parsing with ResCGs up to the Lambek-Van Benthem calculusLP is NP-
complete, and undecidable in the case of unrestricted ResCG [Car95]. The proof search
algorithm used for parsing with ResCGs (up toLP) [Moo02] does not avoid this NP-
complete worst-case complexity. We use constraint programming to formulate a parsing
algorithm for ResCG that shows a better average case complexity, pruning the search
space using linear or low-polynomial computations while maintaining soundness. Like
Moot we consider ResCG up toLP.

In CG, we only have inference over types that indicate how expressions can be used
to form larger expressions. The languages we can thus generate are at most context-free.
Consequently, we cannot e.g. handle discontinuity or represent generalizations about
word order flexibility. The basic idea behind ResCG is to enable additional inference
over the trees that expressions form as a reflection of type inference. This additional in-
ference, orstructural reasoning, takes the form oftree rewriting. Besides a lexicon and a
logic describing type inference, a ResCG contains a set ofstructural rules that describe
how to rewrite one tree into another tree. In this paper we concentrate on structural rules
that can regroup trees (associativity, or ’flexible constituency’) or reorder them (com-
mutativity). ResCGs with suchlike rules are commonly known as the Lambek calculi
[Moo97], with which detailed accounts of phenomena beyond context-freeness can be
given, e.g. [Kru01].

Classical CG can be modelled using the Lambek calculusL [Lam58], which is
weakly equivalent to context-freeness [Pen97]. ForL we have various efficient pars-
ing algorithms. [Kön90] and [Hep92] present early versions of chart-based approaches,
which e.g. [Mor96] and [dG99] improve upon. For ResCG, it is more difficult to find
efficient parsing algorithms.

Commonly, the proof search algorithm described in [Moo02] is used to parse with
ResCGs. However, because that algorithm usesgenerate & test, it cannot avoid the
high worst-case complexity. We propose an alternative approach based onconstraint
programming, cf. [JL87,MS98]. Constraint programming is typically applied to solving
NP-hard combinatoric problems that would traditionally be tackled with agenerate &
test strategy. The idea of constraint programming is to use apropagate & distribute
strategy instead: We put offdistribution steps that constitute search as long as possible,
and first applypropagators, deterministic inferences that prune the search space. Good
propagation can reduce the size of the search space considerably. Although the worst-
case complexity remains the same, we usually obtain a better average-case complexity.1

For parsing ResCGs, we propose two types of propagators, which are constructed on
an analysis of the grammar. These propagators operate on (compact) tree descriptions
that are abstract representations of the possible results of rewriting.Stationary terms
indicate structures that, once composed, the grammar leaves invariant under rewriting.
Transit terms state how structural rules license subtrees to move. We use these two types
of information to prune the search space. The idea is to allow only movements that are
licensed on the grammar.2

This approach can be seen as anabstract interpretation of computations in a ResCG.
Abstract interpretation is a theory for approximating the semantics of discrete dynamic
systems, e.g. computations of programming languages. With stationary terms and tran-
sit terms we create an abstraction from the actual grammar itself, and show that one
can compute on this abstraction more efficiently than with the actual grammar while
maintaining soundness and completeness.
Overview. In §2 we introduce ResCG and a running example we use throughout the
paper, and briefly sketch ResCG parsing algorithms.§3 and§4 form the core of the
paper, introducing the basic concepts of our approach, and discussing the constraint-
based algorithm in detail. In§5 we discuss soundness and completeness results for our
approach.§6 deals with complexity. We end with conclusions.
Assumptions. We focus in this paper on eliminative and structural reasoning in ResCG.
We do not consider hypothetical reasoning here: This can be modeled using thedomi-
nance constraints we discuss in§4, or avoided altogether [Hep98]. For the purposes of
this paper we also assume that there is no categorial ambiguity, in order to present the
key intuitions of our approach as clearly as possible.
Acknowledgements. We would like to thank Denys Duchier, Alexander Koller and
the reviewers of NLULP for many helpful comments. Geert-Jan Kruijff’s work is sup-
ported by the DFG Sonderforschungsbereich 378Resource-Sensitive Cognitive Pro-
cesses, Project NEGRA EM6.

1 Note that even in the case ofLP we can reduce the search space in steps that are linear or
low-polynomial, not exponential.

2 Note that we employ movement as a metaphor, not as a theoretical construct in CG.

2 Reasoning with trees

The purpose of the current section is to introduce resource-sensitive categorial gram-
mars and a running example we use throughout the paper (§2.1); and, to discuss the
algorithm of [Moo02] and present the intuitions behind the constraint-based approach
we propose (§2.2).

2.1 Resource-sensitive categorial grammar (ResCG)

Like a classical categorial grammar (CG), a resource-sensitive categorial grammar (ResCG)
assigns types to expressions, and has a calculus defining inference over these types.
What sets ResCG apart from CG is that we can have additional inference over the trees
that expressions form as a reflection of the type inference.

Lexicon:
〈dass, relc/relscon〉 〈einen, np/dnp〉
〈maria, np〉 〈roman, np〉
〈zu-schreiben, np\dc(np\sczuinf)〉
〈verspricht, (np\scscon)/con(np\sczuinf)〉

Structural rules :
[1] A ◦con (B ◦dc C) → B ◦dc (A ◦con C)
[2] A ◦sc (B ◦con C) → (A ◦sc B) ◦con C
[3] A ◦con (B ◦dc C) → (B ◦dc C) ◦con A

Fig. 1. A small fragment for scrambling phenomena in German

[E\] 〈E1, A〉 & 〈E2, A\µB〉 → 〈(E1 ◦µ E2), B〉
[E/] 〈E2, B/µA〉 & 〈E1, A〉 → 〈(E2 ◦µ E1), B〉
[I\] [〈E1, A〉] & 〈(E1 ◦µ E2), B〉 → 〈E2, A\µB〉
[I/] 〈(E2 ◦µ E1), B〉 & [〈E1, A〉] → 〈E2, B/µA〉

Fig. 2.Base logic for resource-sensitive categorial grammar

Consider the lexicon in Figure 1. Lexical entries take the form〈word, type〉. The
basic behavior of the type-forming operators{\µ, /µ} is defined by the base logic, given
in Figure 2. Rather than reasoning just over types, the base logic reasons with tuples
〈Tree, T ype〉. For example,〈einen, np/dnp〉 can combine with〈roman, np〉 using [E/]
to form the tree(einen ◦d roman) of typenp, with ◦d reflecting themode d of the
slash/d in the type ofeinen.

In addition to the base logic we can definestructural rules that operate on trees. A
structural rule takes the formI → O, rewriting an input tree of the formI into the output
treeO. Important is that the applicability of a structural rule is conditioned by the shape
of the treeI it operates on – that is, by the products◦µ used in building that tree. As
we can introduce different modesµ [Hep95], we have a fine-grained means to control
the applicability of structural rules. That way we can avoid unrestricted applicability of
commutativity and associativity, like in the Lambek-Van Benthem calculusLP.

Figure 1 gives a few structural rules dealing with German scrambling, a phenomenon
that is best handled by a grammar stronger than context-freeness, e.g. [DD01]. Variables
A, B, C stand for arbitrary substructures. The fragment is for illustrative purposes only
– see e.g. [DD01] for a more comprehensive account. In (1) through (3) we provide
examples that can be analyzed; between brackets we list the structural rule(s) needed in
their derivation.

(1) dass
that

Maria
Maria

verspricht
promises

einen
a

Roman
novel

zu-schreiben
to-write

[base logic]

“that Maria promises to write a novel.”
(2) dass Maria einen Roman verspricht zu-schreiben [1]
(3) dass einen Roman zu-schreiben Maria verspricht [2,3]

It is easy to verify that we get the following tree for (1), using the [E\], [E/] rules
of the base logic, and the lexical entries for the words:

– (dass◦rel (maria◦sc (verspricht◦con ((einen◦d roman) ◦dc zu-schreiben))))

Structural rule [1] can rewrite the subtree for “verspricht einen roman zu-schreiben”,
to yield sentence (2):

– (verspricht◦con ((einen◦d roman) ◦dc zu-schreiben))
[1]→ ((einen◦d roman) ◦dc (verspricht◦con zu-schreiben))

– (dass◦rel (maria◦sc ((einen◦d roman) ◦dc (verspricht◦con zu-schreiben))))

Structural rules are linear rewriting rules – they rearrange nodes in a tree. The notion of
id-mapping function helps us to talk about (and keep track of) what is being manipu-
lated, explicitly. Given two treesτ1, τ2, an id-mapping is a bijection that maps each node
u of τ1 to a nodev of τ2 such thatu, v bear the same node label. Each structural rule
R = I → O comes with an id-mapping functionidmapR. We useidmapR(u) = v
to express that the nodeu of I has been relocated to be nodev of O. When we apply
a structural ruleR to a treeτ to yield τ ′, we can extend the functionidmapR to an
id-mapping fromτ to τ ′, since the structural rule only rearranges the nodes in the sub-
structure ofτ matchingI. The id-mapping shows whereR moves each node ofτ in
τ ′.

2.2 Parsing with ResCGs

Structural rules like [1] and [3] (Figure 1) reorder nodes in a tree, taking the fragment
beyond context-freeness. [Moo02] describes an approach to parsing with ResCG that
covers the full range of Lambek calculi.

Theparsing problem for an ResCG can be defined as follows: Given a grammarG
with lexiconL and set of structural rulesR, an input sentenceE = w1...wn and a goal
typetG prove thatE can be assigned a tree of typetG in G. We callE , tG aninput to G
if G’s lexiconL contains entries〈wi, ϕi〉 for all the words inE .

The generate & test approach to ResCG, basically as shown in Figure 3 (a), then
proceeds as follows. Given the types for the words ofE , it constructs all trees with

Given a grammarG, an input sentenceE = w1...wn and a goal typetG prove thatE can be
assigned a tree of typetG in G.
(a)
1. Construct a set of starting trees, combining the lexical types thatG assigns to the wordswi in

E in all possible ways (ignoring the word order inE) to form tG;
2. Take a starting tree, try to rewrite it into a tree that hasE as its yield, using any applicable

structural rules ofG.
3. If rewriting is successful, we have an analysis forE in G. Otherwise, repeat 2 for another

starting tree.
(b)
1. Compute the set of starting trees forE that are licensed by stationary terms.
2. For each such starting treeτS : Compute a description of its set of destination trees that are

licensed by stationary and transit terms.
3. If τS has licensed destination trees, validate whether some such tree constitutes a proof inG.

Fig. 3.Parsing algorithms for ResCG: (a)generate & test approach, (b) constraint-based
approach

root typetG that match functions with arguments. For this, the algorithm uses a more
powerful logic than the base logic in Figure 2: It usesLP to combine the function- and
argument-types of words in every possible way, irrespective of the linear order in which
these words occur inE . In this paper, we call these graphs combining function- and
argument-types thestarting trees, as illustrated in Figure 4. We denote the set of all
starting trees forE andtG asstartingtG

(E).

t G t G

w1

w2 w3
w4

assemble

w4 w2 w1 w3

starting tree

... (more starting trees)

rewrite

w1 w2 w3 w4

destination tree

lexical entries

Fig. 4. Obtaining starting trees and destination trees from lexical entries

Suppose we chooseE to be sentence (2), andtG to berelc. Then, for this example
there are four different starting trees, shown in Figure 5. The nonterminal node labels
are the modes of the slashes in the types. (We simplify modes◦µ to µ in all figures.)

In the second phase of thegenerate & test computation, each starting tree is rewrit-
ten using the structural rules. If rewriting can produce a tree in which the leaves read
from left to right (theyield of the tree) areE , the parse is successful.

We propose to replace thegenerate & test strategy by the constraint-based approach
shown in Figure 3 (b). It restricts the search space by restricting the number of starting
trees: Some starting trees that could never lead to a successful parse are never generated

(i)

��� �

���� � �� �

����� � ��� �

����	��
�� � �� �

� �

��
�
 � ����
 �

���
������
 �

(ii)

��� �

���� � �� �

� �

����� � ��	�� �

��� �

�������
� � �� �

	���� � ����
������ �

(iii)

��� �

���� � �� �

� �

����� � ����� �

��� �

	���
����
 � �� �

����� � ����������� � (iv)

��� �

���� � �� �

����� � ��� �

�	��
���
� � �� �

� �

	��	� � ����� �

����
�	��	� �

Fig. 5.All starting trees for sentence (2) (same for (1) and (3))

in the first place (step 1 of the algorithm); others are eliminated before any rewriting
is applied (step 2). Additionally, the information we gather can be used to guide and
restrict the validation phase in step 3.

In step 2 of the algorithm, we work with a description of thedestination trees for
a starting tree, as illustrated in Figure 4. The set of destination trees for a starting tree
τS and an expressionE , destinationE(τS), is the set of all treesτ with yield E such that
there exists an id-mapping fromτS to τ .

In a destination tree, the nodes of the starting treeτS may be rearranged, and it has
the sentenceE as its yield, i.e. the words are in the right order. Intuitively, a destination
tree is a possible outcome of rewritingτS . We use a tree description language to give a
single, compact description of the set of all destination trees forτS , and we usestation-
ary terms andtransit terms that describe restrictions on possible outcomes of rewriting
to constrain this description. If a starting tree is left with an inconsistent description (i.e.
there is no destination tree givenG), then we can eliminate it.

In step 3, if we have not discardedτS , we reuse information we have gathered during
the computation of transit terms to verify (by rewriting) whether any ofτ S ’s destination
trees forms a proof inG.

3 Stationary and transit terms

In this section we discuss the two main concepts of our approach in more detail: sta-
tionary and transit terms. In§4 we show how to use these concepts to prune the search
space.
Stationary terms. Consider the modedc in Figure 1: In all rules in which it occurs
(rules [1] and [3]), its left childB stays constant from the input to the output side of
the rule. If a tree contains a node labelled◦dc, that node isleft stationary: Rewriting
can work inside its left subtree, but it will never move a node out of the left subtree, or
into it from outside. A node labelled◦d will be both left andright stationary, since no
structural rule in our fragment involvesd. 3

A stationary term for◦µ describes whether some other node remains in the same
position relative to◦µ (⇓), moves above◦µ (⇑), or changes position under◦µ (⇔) in R.

3 Note that we can derive this information offline from the grammar’s lexicon and structural
rules.

Given a nodeu of a treeτ , we writeLτ (u) andRτ (u) for the subtrees starting at
u’s left and right child, andSubτ(u) for the subtree with rootu.

Definition 1 (Stationary terms, stationary nodes).Given a set R of structural rules
and a rule R = I → O from R. Let vi be a node of I labelled by some algebraic
product ◦µ, and let vo = idmapR(vi). Then ◦µ(cL, cR) is a stationary termfor R if
the following condition holds:

– cL = ⇓ (cR = ⇓) iff exactly the variables from {A, B, C} that occur in LI(vi)
also occur in LO(vo) (iff exactly the variables that occur in RI(vi) also occur in
RO(vo)).

– Otherwise, cL = ⇔ (cR = ⇔) iff exactly those variables from {A, B, C} that occur
in SubI(vi) still occur in SubO(vo).

– Otherwise cL = ⇑. (Otherwise cR = ⇑.)

Let τ be a tree with a nonterminal node u labelled by an algebraic product ◦ µ.
Let statterms(◦µ) be the set of all stationary terms for R with root node ◦µ. Then
u is stationaryiff for all t ∈ statterms(◦µ) no child is ⇑; left stationaryiff for all
t ∈ statterms(◦µ) the left child is ⇓; and right stationaryiff for all t ∈ statterms(◦µ)
the right child is ⇓. �

The transit relation, transit terms. Whereas rewriting leaves some structures intact,
it changes others. Thetransit relation charts how structures may travel, and the trees
such travel gives rise to. We describe these changes in terms ofpatterns. A pattern is
a parent/child pair of nodes where one node travels (the “transit node”trn) and the
other node provides the context in whichtrn is allowed to move. We have the following
schemata of patterns:

� �

��� � �

� �

� ��� �

��� �

� � �

��� �

� � �

We also write the first pattern as(trn)µ, and analogously for the other three. We use
the letterP to denote patterns. A patternP occurs in a treeat the nodeu if u is in the
position of the transit nodetrn in P. In that case,P also occursfor the label of the node
u. For example, the pattern◦con(trn) describes a transit node that is the right child of a
◦con-labelled node. This pattern occurs in the starting tree (i) of Figure 5 for the label
◦dc: ◦con(◦dc).

To construct the transit relation, we look at each structural rule in the grammar to
chart the patterns that change. For example, by rule [1] the right child of a◦ dc-labelled
node can become the right child of a◦con-labelled node. We record this change as

◦dc(trn) trns−→ ◦con(trn). Similarly, focusing now on the parent of the node at which the
rule is applied, the parent has acon node as child before rule application, and adc node
afterwards. We formalize this latter point as theparent extension.

Definition 2 (Transit relation). For a tree τ , we define the left parent extension ofτ

as the tree
�

� � � and the right parent extensionas the tree
�

� � � .

Let R be a set of structural rules. The transit relation
trns−→ is defined as follows:

P
trns−→R P′ iff R = I → O is a rule in R and P, P′ are patterns such that P occurs

in a parent extension of I at a node u, P ′ occurs in the same parent extension of O at
idmapR(u), and P 	= P′. �

The transit relation for our example fragment is charted in Figure 6. The edges are
annotated with the structural rules they stem from, and with conditions that we explain
below.

sc
2

dc

2

dc
1 2

2

3

3

con
2

3
concon

1
con

trn

con
trn

con
trn

dc

sc

trn
con

trn
sc

trn
con

trn
dc

trn
sc

trn
trn

trn

1

1

1

dc

Fig. 6. The transit relation for Figure 1

Definition 3 (Transit term). Combining a pattern P with a node label �, we get a
transit termP(�). We use that term to express that the pattern P occurs for the node label
�. The inverseof a transit term consisting of pattern ◦µ(trn) and label ◦ν is the term
consisting of the pattern trn(◦ν) and the label ◦µ. Likewise, the transit term consisting
of pattern (trn)◦µ and label ◦ν is the inverse of the pattern (◦ν)trn with label ◦µ. �

Inverse transit terms describe the same parent/child pair, but the focused transit node
is different.
The logical roadmap.We combine the transit relation with a starting treeτS to form a
logical roadmap.

Definition 4 (Log. roadmap).Given an input E , tG, a logical roadmapfor a grammar

G and a starting tree τS ∈ startingtG
(E) is a tuple rmap = 〈τS ,

trns−→〉 of τS and the

transit relation
trns−→ of G. �

sc

2

2

3

3
dc

con
trn

con
trn

con
trn

dc
trn

sc
trn

sc, dc
verspricht,

con

con

verspricht
con, dc,

trn
dc

trn
con

trn
con

trn
sc

trn
dc

con, sc, rcl

trn
sc

rcl, con

con

2

con

1

sc, verspricht
dc, zuschreiben,

1

1

2

2

sc, dc, rcl
1

con
zuschreiben,

dc

1

con

3

Fig. 7. Saturated logical roadmap for tree (i)

Using the logical roadmap we compute an approximation of possible transit terms
that we can obtain by rewritingτS . This computation is done bysaturating the logical

roadmap (Definition 5). We start by annotating the transit relation with all labels for
which a pattern occurs inτS , and then we propagate these labels through the graph. A
pattern annotated with a label is a transit term. A saturated logical roadmap for starting
tree (i) is given in Figure 7. In the figure, the labels read off fromτ S are shaded. Ac-
cording to the following definition (Definition 5), the labels are propagated along the
edges of the graphr.transit , and whenever we attach a label to a pattern, we also get
the inverse transit term(r.par/ch).4 This simple algorithm can be restricted by further
conditions to rule out pattern propagations that can never model an actual rewriting se-
quence. We present two possible such conditions: First, if an edge is annotated with a
mode, only this mode can traverse the edge. In our example, the right child of◦ con can
become the left child of◦con by rule [3], but only if this child is labelled◦dc (c.label).
Second, we do not propagate a label◦µ to a pattern(trn)◦µ since in our starting tree
each label occurs only once(c.resource).

Definition 5 (Computing the transit set).Given a logical roadmap rmap = 〈τS ,
trns−→〉,

a set S of transit terms, and a set C of conditions. Then the algorithm walk(rmap, C, S)
consists of the following rules that add pattern s to a set of transit terms transset(rmap).

(r.transit) P(�) → P′(�) if P
trns−→R P′ and C.

(r.par/ch) P(ν)→P′(µ) if P(ν) and P′(µ) are inverse transit terms.

The algorithm stops as soon as no rule can add a new node label anymore to
transset(rmap) (i.e. transset(rmap) is saturated).

The set C of conditions that we are going to use in this paper is C = {(c.label),
(c.resource)} with

(c.label) P occurs in a parent extension of I either for �, where � is an algebraic prod-
uct, or it occurs, but not for any algebraic product.

(c.resource) either � does not occur in P′, or � occurs in τS at least twice.

Let G be a grammar with input E , tG, let τS ∈ startingtG
(E) be a starting tree, and

let rmap be the logical roadmap for G and τS . Let S0 := {P(�) | P is a transit pattern
that occurs in τS for the label �}. Then the set of transit terms forrmap, transset(rmap),
is the result of walk(rmap, C, S0). �

Saturation explores all possible rewriting sequences fromτS at the same time with-
out having to perform actual rewriting, and such that for common subsequences of two
rewriting sequences the computation is done only once. We show in§6 that the time
complexity of constructing a saturated logical roadmap is linear in the length ofE .

4 A constraint-based algorithm

In the previous section, we have introducedstationary terms andtransit terms. In this
section we show how these terms fit into the constraint-based algorithm for parsing

4 We need to be able to change focus between parent and child. Adding the inverse means we
can recognize changes to the context node of a pattern.

with resource-sensitive CG given in Figure 3 (b): We use stationary and transit terms
to eliminate starting trees that can never lead to a successful parse. Again, we illustrate
our approach with the fragment of§2.1 and sentence (2).

Step 1.We construct the set of starting trees that arelicensed by stationary terms: If a
nodeu of a starting treeτS is stationary, then no node can travel out from underu, and
no node can travel belowu by rewriting. Thus, it must be possible to order the leaves
in SubτS(u) such that they form an infix ofE , as any successful parse has to haveE as
its yield. If u is left stationary, then the same must hold forLτS (u), and similarly for
right stationary products. Ifu is both left and right stationary, then it must be possible to
order the leaves of bothu’s left and right subtrees such that they form adjacent infixes
of E . This condition rules out starting trees (iii) and (iv) of Figure 5 because they both
have a subtree(einen◦dmaria), and the◦d-node is left as well as right stationary. This
leaves us with two starting trees licensed by stationary nodes: (i) and (ii). We explain
the remaining two steps of the algorithm using starting tree (i).

Step 2.In §3 we have defined adestination tree τ for a given starting treeτS as a possi-
ble result of rewriting performed onτS . It consists of the same nodes and node labels as
τS , but they may be composed differently, and the yield ofτ must beE . In step 2 of the
algorithm we construct a single, underspecified description of all possible destination
trees for a given starting treeτS . This description is constrained by stationary and transit
terms. If the description becomes inconsistent, thenτS can never lead to a successful
parse, and we can eliminateτS .

We use stationary nodes to constrain the way in which the nodes of a destination
tree may be composed, and we use the logical roadmap to constrain the patterns that
may occur in a destination tree: Each pattern occurring in a destination tree must either
be present inτS , or it has been created by rewriting, in which case we must be able to
read it off the logical roadmap.

To describe the set of all destination trees for a starting treeτS , we make statements
about the nodes ofτS and the new positions they may occupy in a destination tree. We
need three constructs.Labelling gives a node’s label and its children,precedence (some
node is left of another in the tree) encodes the requirement that the yield of a destination
tree beE , anddominance (some node is above another in the tree) encodes licensing by
stationary nodes: In any destination tree, a stationary node must dominate exactly the
same nodes that it dominates inτS .

Tree description languages of this kind are studied e.g. in [DT99,KMN00]. We use
the set-based language of [DT99]. The advantage is that we can exploit an existing
constraint solver to draw inferences on our destination tree descriptions. This solver
already enforces tree-shapedness.

Variables stand for nodes of the tree we describe. Each variablex is associated
with five sets of variables:up(x), dn(x), eq(x), left(x), andright(x). The setup(x)
contains all variables abovex in the tree, anddn(x) contains all variables belowx.
eq(x) is the set of variables that describe the same node asx. left(x) andright(x) are
the variables precedingx and preceded byx, respectively.

Figure 8 illustrates the five sets. They form a partition of the set of variables –
every variable must stand in one of these five relations tox. Initially, these sets are only

(c1) label(xu) = µ(xuleft, xuright) xu ∈ Vnont, u labelledµ in τS

(c2) label(xu) = w xu ∈ Vleaf , u labelledw in τS

(c3) eq(x) = {x} ∪ filler(x), |filler(x)| = 1, x ∈ Vhole

(c4) filler(x) ∈ VτS x ∈ Vhole

(c5) xu ∈ left(xv), xv ∈ right(xu) xu, xv ∈ Vleaf , u labelledwi, v labelledwj in τS , i < j
(c6) eqdn(xu) = {xv ∈ VτS | v in SubτS (u)} ∪ {xvleft, xvright | xv ∈ eqdn(xu)}

xu ∈ Vnont, u stationary
(c7) eqdn(xuleft) = {xv ∈ VτS | v in LτS (u)} ∪ {xvleft, xvright | xv ∈ eqdn(xuleft)} ∪ {xuleft}

xu ∈ Vnont, u left stationary
(c8) eqdn(xuright) = {xv ∈ VτS | v in RτS (u)} ∪ {xvleft, xvright | xv ∈ eqdn(xuright)} ∪ {xuright}

xu ∈ Vnont, u right stationary
(c9) filler(xuleft) ⊆ lefttransit(xu) xu ∈ Vnont

(c10) filler(xuright) ⊆ righttransit(xu) xu ∈ Vnont

Fig. 9. Describing destination trees, given starting treeτS and expressionE = w1 . . . wn

partially determined. The solver then usespropagation anddistribution to narrow the
sets down until they are fully determined, and describe a destination tree.

eq

up

dnleft
right

Fig. 8. Five vari-
able sets

Apart from these sets, we useeqdn(x) = eq(x) ∪ dn(x). Fur-
thermore,label(x) = �(x1, . . . , xn) states thatx stands for a node
labelled� with childrenx1, . . . , xn in that order.

Now to describe all destination trees for a given starting tree
τS , we use a variable setV consisting of a set of tree variables
VτS = Vnont � Vleaf , whereVnont = {xu | u nonterminal node
of τS} andVleaf = {xu | u leaf node ofτS}, and a set of hole
variablesVhole = {xuleft, xuright | xu ∈ Vnont}.

The constraints we use in propagation are given in Figure 9. A
destination tree has exactly the same nodes and node labels asτS ;
the constraints (c1) and (c2) contribute these labels. The variables
xuleft andxuright arehole variables. Each hole variable needs to
be identified withexactly one VτS -variable, itsfiller, (c3) and (c4). When we have iden-
tified each hole with a filler (and checked tree-shapedness with the constraint solver),
then we have arranged the nodes ofτS into a new tree. Furthermore, we know that the
yield of a destination tree must beE (c5).

The constraints (c6) through (c10) are the most interesting ones: They involve sta-
tionary and transit terms. Stationary terms impose strong restrictions on the possible
structure of a destination tree: A stationary node will dominate exactly the same nodes
in any destination tree that it dominated inτS (c6). Likewise, if a node is left stationary,
then its left child will dominate exactly the same nodes in any destination tree that it
dominated inτS (c7), and if it is right stationary, the same holds for its right child (c8).

The constraints (c9) and (c10) use transit terms: We define setslefttransit(xu),
righttransit(xu) for each variablexu ∈ Vnont. Suppose the nodeu is labelled� in
τS , and the nodev is labelled�′. Then the setlefttransit(xu) containsxv iff the set
of transit terms for the logical roadmap (i.e. forG andτS) contains the transit term
consisting of the pattern(trn)� and the label� ′. (This can be the case either because the

label�′ is attached to the pattern(trn)� in the saturated logical roadmap, or the pattern
(trn)� is not in the roadmap but it occurs inτS with �′ taking the role of the transit node
trn.) Therighttransit set is defined accordingly, using the pattern�(trn) instead. So
the constraints (c9, c10) state that whenever we fill a hole, we must do it such that we
obtain a pattern licensed by the logical roadmap, i.e. a pattern of which we predict that
it may arise by rewriting.

��� �

� �

�� �

� �

�� �

�

� �

� �

�

��� �

� �

���� � ����� � ����� � �	��� �
�������
� � ����
������ �

Fig. 10. Initial constraint describing all destination trees for starting tree (i) and sentence (2)
(before inferences)

When we create a destination tree description for starting tree (i) in this way, we
arrive at Figure 10: The edges from a labelled node to its children are drawn as solid
lines. If we just know thatx dominatesy, this is drawn as a dotted line fromx to y. The
dotted lines in Figure 10 all stem from stationary nodes: The nodes labelled◦ rcl and◦d

are both left and right stationary, while◦sc and◦dc are left stationary.
Now the constraint solver can draw inferences to narrow down the destination tree

description. We sayxsc for short if we mean the variable labelled◦sc, and analogously
for the other labels.

We know thatxrclleft dominates justxdass, but xrclleft must be identified with a
filler that it dominates, so we must identifyxrclleft with xdass. Likewise, the left child
of xsc must bexmaria, the children ofxd must bexeinen andxroman, and the left child
of xdc must bexd.

Now considerxrclright: Sincexrclleft is equal toxdass, the next leaf to its right
must bexmaria, soxrclright can only be identified with eitherxsc or xcon, any other
choice would violate this condition. By the same argument from precedence, we get the
following restrictions:

filler(xrclright) ⊆ {xsc, xcon}
filler(xscright) ⊆ {xdc, xcon}
filler(xdcright) ⊆ {xcon, xverspricht}

However, by constraint (c10),filler(xdcright) ⊆ {xcon, xzuschreiben} (cf. Figure 7)
so the right child ofxdc must bexcon. Hence the right child ofxsc must bexdc and
the right child ofxrcl must bexsc. So by using stationary and transit terms, we have
narrowed down the description of destination trees forτS to a single tree, shown in
Figure 11.
Step 3.Using stationary nodes and the logical roadmap we can efficiently prune the
search space. However, the logical roadmap is only anapproximation: the conditions

��� �

���� � �� �

����� � �� �

� �

����� � �	��� �

��� �

�������
� � ����
������ �

Fig. 11.The only destination tree for starting tree (i) and sentence (2)

on traversing an edge in the logical roadmap are less strict than the conditions on actu-
ally applying a structural rule – the saturated roadmap may contain patterns that cannot
be obtained using just the grammar. Thus, the approximation comes with a definite com-
putational gain (cf. also§6) but also at a formal cost: Although we can prove that the
first two steps of the algorithm in Figure 3 aresound, they are not complete. Therefore,
we need an additional step ofvalidation, checking whether a destination tree can be
obtained from a starting tree, using the grammar’s structural rules.5 To validate a desti-
nation treeτ against a starting treeτS , we create avalidation table in a chart parsing-like
fashion. However, rather than words the validation table containsitineraries read off the
logical roadmap. An itinerary is a sequence of structural rule-applications changingτ S

into τ . Suppose we have a starting treeτS for which the destination tree description is
satisfiable, andτ is one of the destination trees described. Then we put up anitinerary
for each transit termP(�) that occurs in the destination treeτ : An itinerary forP(�) is
a sequenceP0(�0)R0P1(�1) . . . Rn−1Pn(�n) that starts with some transit termP0(�0)
occurring inτS and ends with the transit termPn(�n) = P(�). Inbetween there must be
a “path” of transit terms and structural rules read off the logical roadmap: for0 ≤ i < n,

– eitherPi(�i) → Pi+1(�i+1) by (r.transit) , andP
trns−→Ri P′,

– or Pi(�i) → Pi+1(�i+1) by (r.par/ch), andRi = A → A.

All the itineraries forτS andτ are placed into a validation table, and are then used in
a chart-like fashion. Initially, we place a• before the first structural ruleR 0 in each
itinerary. Now, to rewriteτS into τ , the next structural rule we choose must always
be one directly to the right of some•. Applying a structural ruleR moves•’s on to
the next rule occurring in the itinerary: At least one• that occurs to the left ofR in
some itinerary must be moved; but a single rule application may change more than one
pattern.

We obtain all possible itineraries already as a side product when saturating the logi-
cal roadmap. (Thus, we now simply reuse this information, rather than letting validation
be agenerate & test step in disguise.) If we can use the itineraries to rewriteτS into τ ,
thenτ is valid on the grammar.

Finally, how much validation we need to do depends on the strength of the condi-
tions on traversing an edge of the transit relation. Stronger conditions than those used
here are possible, and would move computation on the logical roadmap closer to logical
completeness with respect to the grammar.

5 We can prove that, if there exists a validation for a destination tree, then we find it – thus, the
overall computationis complete.

5 Licensing, soundness and completeness

The core of our constraint-based inferences is formed by the licensing steps. In this sec-
tion we give a formal definition of the licensing steps that we have used in the previous
section, and prove theorems about the soundness of licensing. We also state a theorem
about the obtainability of a validation and the resulting completeness.

To make the definitions given below more readable, we use the following notation:
Given a grammarG with input E , tG, we call a pair of trees〈τS , τ〉 a start/destination
pair iff τS ∈ startingtG

(E) andτ ∈ destinationE(τS).
We have usedlicensing by stationary terms in steps 1 and 2 of the algorithm in

Figure 3 (b). Licensing by stationary terms means that we can eliminate starting trees
by comparing subtrees with stationary roots against the expressionE , and we can restrict
the form of destination trees by inferring dominance information from stationary nodes.
Formally, licensing by stationary terms can be defined as follows.

Definition 6 (Licensing by stationary terms).Let G be a grammar with input E , tG

and start/destination pair 〈τS , τ〉. Let S be the set of stationary, left stationary, or right
stationary nonterminal nodes in τS . For each node u ∈ S, let

vu =




u for u stationary
u’s left child for u left stationary
u’s right child for u right stationary

Then the starting treeτS is licensed by stationary termsiff two conditions hold:
First, for each node u ∈ S, some permutation of the yield of SubτS(vu) is an infix of E .
Second, for each node u that is both left and right stationary, some permutations of the
yields of LτS (u) and RτS(u) are adjacent infixes of E .

The destination treeτ is licensed by stationary termsiff there exists an id-mapping
function idmap from τS to τ such that for each node u ∈ S, and all nodes w in τS , w
lies in SubτS(vu) iff idmap(w) lies in Subτ (idmap(vu)). �

We have usedlicensing by transit terms in step 2 of the algorithm: A hole variable
must choose a filler that will form a valid transit term together with the hole’s parent,
i.e. a term that either occurs in the starting tree or in the saturated logical roadmap.

Definition 7 (Licensing by transit terms). Let G be a grammar with input E , tG and
start/destination pair 〈τS , τ〉. Let rmap be the logical roadmap for G and τS . Then the
destination tree τ is licensed by transitiff for all patterns P occuring in τ for some
product ◦µ, the term P(◦µ) is in transset(rmap). �

Licensing by stationary and transit terms is sound: If a destination tree is not li-
censed, it cannot be reached by rewriting using the grammar itself.

For the two following theorems, letG be a grammar with lexiconL, structural rules
R, a base logic as in Figure 2, and an inputE , tG.

Theorem 1 (Licensing by stationary terms is sound).Let τS ∈ startingtG
(E) be a

starting tree that can be rewritten to τ ∈ destinationE(τS). Then both τS and τ are
licensed by stationary terms.

lic’d starting trees
licensing (stat/transit trms)−−−−−−−−−−−−−−−−−−−→

sound by Thm. 2
lic’d destination trees

licensing (stat.trms)
�sound by Thm. 1 complete by Thm. 3

�validation

starting trees inLP −−−−−−−−−−−−−−−−−→
generate & testrewriting

destination trees inG

inputE , tG

�
G = (L,R, base logic)

Fig. 12.Abstract interpretation, soundness & completeness

Proof. It can easily be shown that when a structural ruleR is used to rewrite a treeτ 0

to τ1, andu is a stationary node ofτ0, then a nodev is in Subτ0(u) iff idmapR(v)
lies in Subτ1(idmapR(u)), and similarly for left and right stationary nodes. So ifτS

or τ were not licensed by stationary terms, there could not be a successful rewriting
sequence. ��

Theorem 2 (Licensing by transit is sound).Let τS ∈ startingtG
(E) be a starting tree

that can be rewritten to τ ∈ destinationE(τS). Then τ is licensed by transit.

Proof. Let rmap be the logical roadmap forG andτS . Let P be a pattern occurring in
τ for the label�. We show thatP(�) ∈ transset(rmap), proceeding by induction on the
length of the rewriting sequence starting inτ0 = τS and ending inτn = τ .

If P occurs inτ0 for a label�, thenP(�) is in the setS0 of Def. 5 and hence in
transset(rmap).

Now suppose that for somen ≥ 1, τn−1 gets rewritten toτn by the structural rule
R = I → O. If P(�) occurs inτn−1 already, we are done. So suppose otherwise, and
supposeI occurs inτn−1 at some nodev that is the child ofv ′. ThenP occurs inτn

within the parent extension ofO starting atidmapR(v′).
SupposeP occurs atidmapR(v′). Then the label ofidmapR(v) in τn is different

from the label ofv in τn−1. W.l.o.g. letv be labelledµ, idmapR(v) labelledν, and

P = trn(ν). Then by Def. 2, the transit relation containstrn(µ) trns−→R trn(ν). By the
inductive hypothesis,trn(µ)

(
�
) ∈ transset(rmap). Condition(c.label) is fulfilled: The

patternP occurs in a parent extension ofI, but not for any label that is an algebraic prod-
uct. Now we check condition(c.resource). If the label� occurs intrn(ν), then� = ν.
Thenτn contains at least two nodes labelledν, and since structural rules only rearrange
nodes, the same holds forτS . So in either case, whether� = ν or � 	= ν, condition
(c.resource)holds. Hence by the rule(r.transit) , trn(ν)

(
�
) ∈ transset(rmap), and by

(r.par/ch), �(trn)
(
ν
) ∈ transset(rmap) as well.

For the other possible positions ofP, the argument is analogous. Note that if a
patternP′ occurs inI for some algebraic productµ, thenP ′ occurs inτn−1 for the same

labelµ becauseI matches the treeτn−1 atv. Hence the edgeP′(µ) trns−→R P(µ) can still
be traversed by condition(c.label). ��

Construction of stationary
terms forG

– Computed offline

Licensing starting trees by
stationary terms

O(|E3|) For every nodev of τS that is (left, right)
stationary, mark each word inE occuring in
the subtree with rootv; then check if marked
nodes form an infix ofE

Construction of compact de-
scription of dest. trees

O(|E2|)

Construction of a saturated
logical roadmap

O(|E|) The number of node labels on each node of the
transit relation graph is bounded by the num-
ber of nodes inτS .

Checking satisfiability of
dominance, precedence

O(|E2|) [KMN00]

Checking satisfiability against
logical roadmap

O(|E|) The destination tree description contains
O(|E|) transit patterns that need to be checked
against the saturated roadmap for licensing by
transit.

Fig. 13.Complexity results for individual steps of Figure 3

So licensing by stationary and transit terms is sound – we eliminate only starting
trees that do not lead to a successful parse. Together with the validation step that we
have sketched in§4, we gain a complete algorithm for ResCG parsing:

Theorem 3 (Validation is complete).Let τS ∈ startingtG
(E) be a starting tree that

can be rewritten to τ ∈ destinationE(τS). Then there is a validation for τ from τS .

The computation of stationary and transit terms form anabstract interpretation of
a computation with the grammar: Using sound and complete operations, we compute
on licensed descriptions rather than with the grammar itself. Figure 12 recapitulates the
interrelation between the abstract interpretation, the licensing steps, and the soundness
and completeness results with respect to a grammarG.

6 Complexity

In this section we mention some complexity results for the algorithm we propose in
Figure 3 (b). The baseline is formed by the abstract complexity results for ResCG:
Without the restriction to linear structural rules, ResCG is Turing Complete; limited to
at mostLP) it is NP-complete, cf. [Moo02].

Figure 13 gives the (time) complexity of various computation steps our algorithm
performs. One point to note is that stationary terms, which account for a lot of pruning,
are computed offline since they rely just onG. Furthermore, most construction and
satisfaction steps in Figure 3 are either linear or low-polynomial. Thus, while the worst-
case complexity of proof search using itineraries is the same as that of proof search in
LP, we can reduce the search space in steps of low complexity – and potentially obtain
significant reductions.

7 Conclusions

We presented a constraint-based approach to parsing with resource-sensitive CG that
uses propagators derived from the logical formulation of a grammarG to prune the
(proof) search space. Although thegenerate & test approach to parsing with resource-
sensitive CGs and our approach have the same worst-case complexity, our approach
has a (potentially) better average-case complexity since we reduce the search space
using steps that are mostly linear or low-polynomial in the length of the sentence, not
exponential as ingenerate & test. We plan to extend the approach to include unary
modalities♦ and�↓ (available in [Moo02], but not in [Hep95]) and to obtain practical
results using treebank-grammars and an implementation of our algorithm. (Parsing with
treebank grammars leads to exponential explosion in thegenerate & test approach,
(Moot,p.c.)).

References

[Car95] Bob Carpenter. The Turing-completeness of multimodal categorial grammar. Unpub-
lished manuscript. Carnegie Mellon University, 1995.

[DD01] Denys Duchier and Ralph Debusmann. Topological dependency trees: A constraint-
based account of linear precedence. InProceedings ACL’01, France, 2001.

[dG99] Philippe de Groote. A dynamic programming approach to categorial deduction. In
Proceedings of CADE’99, 1999.

[DT99] Denys Duchier and Stefan Thater. Parsing with tree descriptions: a constraint-based
approach. InProceedings NLULP’99, New Mexico, 1999.

[Hep92] Mark Hepple. Chart parsing lambek grammars: Modal extensions and incrementality.
In Proceedings COLING’92, France, 1992.

[Hep95] Mark Hepple. Mixing modes of linguistic description in categorial grammar. InPro-
ceedings EACL’95, Ireland, 1995.

[Hep98] Mark Hepple. Memoisation for glue language deduction and categorial parsing. In
Proceedings COLING-ACL’98, Canada, 1998.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InACM Sym-
posium on Principles of Programming Languages, pages 111–119. The ACM Press,
1987.

[KMN00] Alexander Koller, Kurt Mehlhorn, and Joachim Niehren. A polynomial-time fragment
of dominance constraints. InProceedings ACL’00, Hong Kong, 2000.

[Kön90] Esther K¨onig. The complexity of parsing with extended categorial grammars. InPro-
ceedings COLING’90, Finland, 1990.

[Kru01] Geert-Jan M. Kruijff.A Categorial-Modal Logical Architecture of Informativity: De-
pendency Grammar Logic & Information Structure. PhD thesis, Faculty of Mathemat-
ics and Physics, Charles University, Prague, Czech Republic, April 2001.

[Lam58] Joachim Lambek. The mathematics of sentence structure.American Mathematical
Monthly, 65:154–169, 1958.

[Moo97] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors,Handbook of Logic and Language. Elsevier Science, 1997.

[Moo02] Richard Moot. Proofnets for linguistic analysis. PhD thesis, University of Utrecht,
The Netherlands, 2002.

[Mor94] Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, 1994.

[Mor96] Glyn V. Morrill. Memoisation of categorial proof nets: parallelism in categorial pro-
cessing. InProceedings of the 1996 Roma Workshop, Italy, 1996.

[MS98] Kim Marriott and Peter J. Stuckey.Programming with Constraints. Kluwer Academic
Publisher, 1998.

[Pen97] Mati Pentus. Product-free Lambek calculus and context-free grammars.The Journal
of Symbolic Logic, 62(2):648–660, June 1997.

