A constraint-programming approach to parsing with
resource-sensitive categorial grammar

Katrin Erk & Geert-Jan M. Kruijff

Computational Linguistics
Saarland University
Saarbucken, Germany
{erk, gj }@ol i . uni-sbh. de

Abstract. Parsing with resource-sensitive categorial grammars (up to the Lambek-
Van Benthem calculukP) is an NP-complete problem. The traditional approach

to parsing with such grammars is based generate & test and cannot avoid

this high worst-case complexity. This paper proposes an alternative approach,
based orconstraint programming: Given a grammar, constraints formulated on

an abstract interpretation of the grammar’s logical structure are used to prune the
search space during parsing. The approach is provably sound and complete, and
reduces the search space in steps that are mostly linear or low-polynomial.

1 Introduction

The problem we are concerned with here is the efficient parsimgsofirce-sensitive
categorial grammars. Resource-sensitive categorial grammar [Mor94,Hep95,M0097]
(ResCG) overcomes the linguistic inadequacy of classical categorial grammar (CG).
However, parsing with ResCGs up to the Lambek-Van Benthem caltius NP-
complete, and undecidable in the case of unrestricted ResCG [Car95]. The proof search
algorithm used for parsing with ResCGs (upLt®) [Moo02] does not avoid this NP-
complete worst-case complexity. We use constraint programming to formulate a parsing
algorithm for ResCG that shows a better average case complexity, pruning the search
space using linear or low-polynomial computations while maintaining soundness. Like
Moot we consider ResCG up td°.

In CG, we only have inference over types that indicate how expressions can be used
to form larger expressions. The languages we can thus generate are at most context-free.
Consequently, we cannot e.g. handle discontinuity or represent generalizations about
word order flexibility. The basic idea behind ResCG is to enable additional inference
over the trees that expressions form as a reflection of type inference. This additional in-
ference, ostructural reasoning, takes the form dfree rewriting. Besides a lexicon and a
logic describing type inference, a ResCG contains a s&twdtural rulesthat describe
how to rewrite one tree into another tree. In this paper we concentrate on structural rules
that can regroup trees (associativity, or 'flexible constituency’) or reorder them (com-
mutativity). ResCGs with suchlike rules are commonly known as the Lambek calculi
[M0097], with which detailed accounts of phenomena beyond context-freeness can be
given, e.g. [Kru01].

Classical CG can be modelled using the Lambek calcllfilsam58], which is
weakly equivalent to context-freeness [Pen97]. Eawe have various efficient pars-
ing algorithms. [Kbn90] and [Hep92] present early versions of chart-based approaches,
which e.g. [Mor96] and [dG99] improve upon. For ResCG, it is more difficult to find
efficient parsing algorithms.

Commonly, the proof search algorithm described in [Moo02] is used to parse with
ResCGs. However, because that algorithm \geeerate & test, it cannot avoid the
high worst-case complexity. We propose an alternative approach basemhsbraint
programming, cf. [JL87,MS98]. Constraint programming is typically applied to solving
NP-hard combinatoric problems that would traditionally be tackled wijbrerate &
test strategy. The idea of constraint programming is to ugeopagate & distribute
strategy instead: We put offstribution steps that constitute search as long as possible,
and first applypropagators, deterministic inferences that prune the search space. Good
propagation can reduce the size of the search space considerably. Although the worst-
case complexity remains the same, we usually obtain a better average-case complexity.

For parsing ResCGs, we propose two types of propagators, which are constructed on
an analysis of the grammar. These propagators operate on (compact) tree descriptions
that are abstract representations of the possible results of rewtaigpnary terms
indicate structures that, once composed, the grammar leaves invariant under rewriting.
Transit terms state how structural rules license subtrees to move. We use these two types
of information to prune the search space. The idea is to allow only movements that are
licensed on the grammar.

This approach can be seen asbstract interpretation of computations in a ResCG.
Abstract interpretation is a theory for approximating the semantics of discrete dynamic
systems, e.g. computations of programming languages. With stationary terms and tran-
sit terms we create an abstraction from the actual grammar itself, and show that one
can compute on this abstraction more efficiently than with the actual grammar while
maintaining soundness and completeness.

Overview. In §2 we introduce ResCG and a running example we use throughout the
paper, and briefly sketch ResCG parsing algorith§Bsand§4 form the core of the
paper, introducing the basic concepts of our approach, and discussing the constraint-
based algorithm in detail. 15 we discuss soundness and completeness results for our
approachg6 deals with complexity. We end with conclusions.

Assumptions We focus in this paper on eliminative and structural reasoning in ResCG.
We do not consider hypothetical reasoning here: This can be modeled usidgrike

nance constraints we discuss §#, or avoided altogether [Hep98]. For the purposes of
this paper we also assume that there is no categorial ambiguity, in order to present the
key intuitions of our approach as clearly as possible.

Acknowledgements We would like to thank Denys Duchier, Alexander Koller and

the reviewers of NLULP for many helpful comments. Geert-Jan Kruijff’s work is sup-
ported by the DFG Sonderforschungsbereich B&ource-Sensitive Cognitive Pro-
cessesProject NEGRA EM6.

! Note that even in the case bP we can reduce the search space in steps that are linear or
low-polynomial, not exponential.
2 Note that we employ movement as a metaphor, not as a theoretical construct in CG.

2 Reasoning with trees

The purpose of the current section is to introduce resource-sensitive categorial gram-
mars and a running example we use throughout the pgget)(and, to discuss the
algorithm of [Mo002] and present the intuitions behind the constraint-based approach
we proposey2.2).

2.1 Resource-sensitive categorial grammar (ResCG)

Like a classical categorial grammar (CG), a resource-sensitive categorial grammar (ResCG)
assigns types to expressions, and has a calculus defining inference over these types.
What sets ResCG apart from CG is that we can have additional inference over the trees
that expressions form as a reflection of the type inference.

Lexicon: Structural rules:

(dassrelc/reiscon) (einennp/anp) [1] A ocon (B oge C) — Boge (Aocon C)
(maria ’I'Lp> <r0man ’flp> [2] Aoge (B Ocon C) - (A Osc B) ocon C'
(zu-schreibemnp\ac (np\sczuin f)) [3] Aocon (Boge C) — (Boge C) ocon A
(verspricht (np\scscon)/con (np\sczuinf))

Fig. 1. A small fragment for scrambling phenomena in German

[B\] (&1, A) & (&2, A\uB) — ((€1 04 E2), B)
[E/] (&2, B/ A) & (€1, A) — ((&204 &1), B)
[N [(&1, A)] & ((E1 04 E2), B) — (€2, A\ B)
(/1 ((&20u &), B) & [(E1,A)] — (&2, B/uA)

Fig. 2. Base logic for resource-sensitive categorial grammar

Consider the lexicon in Figure 1. Lexical entries take the fdamrd, type). The
basic behavior of the type-forming operatéks,, /,.} is defined by the base logic, given
in Figure 2. Rather than reasoning just over types, the base logic reasons with tuples
(T'ree, Type). For example(einen np/;np) can combine wit{roman np) using E/]
to form the treg(einen o4 roman) of typenp, with o, reflecting themode d of the
slash/; in the type ofeinen.

In addition to the base logic we can defsteuctural rules that operate on trees. A
structural rule takes the forfin— O, rewriting an input tree of the forrhinto the output
treeQ. Important is that the applicability of a structural rule is conditioned by the shape
of the treel it operates on — that is, by the produots used in building that tree. As
we can introduce different modes[Hep95], we have a fine-grained means to control
the applicability of structural rules. That way we can avoid unrestricted applicability of
commutativity and associativity, like in the Lambek-Van Benthem calduRis

Figure 1 gives a few structural rules dealing with German scrambling, a phenomenon
that is best handled by a grammar stronger than context-freeness, e.g. [DDO1]. Variables
A, B, C stand for arbitrary substructures. The fragment is for illustrative purposes only
— see e.g. [DDO01] for a more comprehensive account. In (1) through (3) we provide
examples that can be analyzed; between brackets we list the structural rule(s) needed in
their derivation.

(1) dass Maria verspricht einen Roman zu-schreiben [base logic]
that Maria promises a novel to-write

“that Maria promises to write a novel.”
(2) dass Maria einen Roman verspricht zu-schreiben [1]
(3) dass einen Roman zu-schreiben Maria verspricht [2,3]

It is easy to verify that we get the following tree for (1), using tB&][[E/] rules
of the base logic, and the lexical entries for the words:

— (dasso,e; (Mariaos. (versprichto.o, ((€inenos roman o, zu-schreibe)))

Structural rule [1] can rewrite the subtree for “verspricht einen roman zu-schreiben”,
to yield sentence (2):

— (versprichtoc.r, ((einenoy romarn) og4. zu-schreibep)
(] ((einenog roman og. (versprichtoc,, zu-schreibej)

— (dasso,e; (Mariaos. ((einency romar) og4. (versprichtoc, zu-schreibeh)))

Structural rules are linear rewriting rules — they rearrange nodes in a tree. The notion of
id-mapping function helps us to talk about (and keep track of) what is being manipu-
lated, explicitly. Given two trees,, 72, an id-mapping is a bijection that maps each node

u of 71 to a nodev of 5 such thatu, v bear the same node label. Each structural rule
R =1 — O comes with an id-mapping functiddmap ;. We useidmapy(u) = v

to express that the nodeof 1 has been relocated to be nogdef O. When we apply

a structural ruleR to a treer to yield 7/, we can extend the functidelmap ; to an
id-mapping fromr to 7/, since the structural rule only rearranges the nodes in the sub-
structure ofr matchingl. The id-mapping shows whei® moves each node of in

T

2.2 Parsing with ResCGs

Structural rules like [1] and [3] (Figure 1) reorder nodes in a tree, taking the fragment
beyond context-freeness. [Moo02] describes an approach to parsing with ResCG that
covers the full range of Lambek calculi.

The parsing problem for an ResCG can be defined as follows: Given a grangnar
with lexicon £ and set of structural rule®, an input sentenc& = w;...w, and a goal
typets prove thatf can be assigned a tree of tyfre in G. We call&, t¢ aninputto G
if G's lexicon L contains entriegw,, ;) for all the words irf.

The generate & test approach to ResCG, basically as shown in Figure 3 (a), then
proceeds as follows. Given the types for the word< pft constructs all trees with

Given a grammag, an input sentencé€ = w;...w, and a goal types prove thatf can be

assigned a tree of type: in G.

@

1. Construct a set of starting trees, combining the lexical typesithasigns to the words; in
£ in all possible ways (ignoring the word orderéi to formtg;

2. Take a starting tree, try to rewrite it into a tree that faas its yield, using any applicable
structural rules of.

3. If rewriting is successful, we have an analysis §oin G. Otherwise, repeat 2 for another
starting tree.

(b)

1. Compute the set of starting trees &that are licensed by stationary terms.

2. For each such starting tree: Compute a description of its set of destination trees that are
licensed by stationary and transit terms.

3. If s has licensed destination trees, validate whether some such tree constitutes a groof in

Fig. 3.Parsing algorithms for ResCG: (@nerate & test approach, (b) constraint-based
approach

root typet that match functions with arguments. For this, the algorithm uses a more
powerful logic than the base logic in Figure 2: It usésto combine the function- and
argument-types of words in every possible way, irrespective of the linear order in which
these words occur i&. In this paper, we call these graphs combining function- and
argument-types thetarting trees, as illustrated in Figure 4. We denote the set of all
starting trees fof andt¢ asstarting, . (£).

tarting tree destination tree
I N/ A\ \
w2 w3 assemble rewrite
i w4 E—— —_—

. . w4 w2 wl w3 wl w2 w3 w4
lexical entries

.
= (more starting trees)
.

Fig. 4. Obtaining starting trees and destination trees from lexical entries

Suppose we choogkto be sentence (2), artd; to berelc. Then, for this example
there are four different starting trees, shown in Figure 5. The nonterminal node labels
are the modes of the slashes in the types. (We simplify megés . in all figures.)

In the second phase of tigenerate & test computation, each starting tree is rewrit-
ten using the structural rules. If rewriting can produce a tree in which the leaves read
from left to right (theyield of the tree) are’, the parse is successful.

We propose to replace tigenerate & test strategy by the constraint-based approach
shown in Figure 3 (b). It restricts the search space by restricting the number of starting
trees: Some starting trees that could never lead to a successful parse are never generated

dass
maria
verspricht

rel
dass
Ji coT
... einen roman verspricht d
(Il) maria zuschreiben

rel

rel dass
dass roman
d CO verspricht
... einen maria verspricht a .
(III) roman zuschreiben (IV) einen

zuschreiben

Fig. 5. All starting trees for sentence (2) (same for (1) and (3))

in the first place (step 1 of the algorithm); others are eliminated before any rewriting
is applied (step 2). Additionally, the information we gather can be used to guide and
restrict the validation phase in step 3.

In step 2 of the algorithm, we work with a description of dtestination trees for
a starting tree, as illustrated in Figure 4. The set of destination trees for a starting tree
75 and an expressiafy, destinationg (7g), is the set of all trees with yield £ such that
there exists an id-mapping fromy to 7.

In a destination tree, the nodes of the starting treenay be rearranged, and it has
the sentencé as its yield, i.e. the words are in the right order. Intuitively, a destination
tree is a possible outcome of rewritimg. We use a tree description language to give a
single, compact description of the set of all destination treesdoand we usatation-
ary terms andtransit terms that describe restrictions on possible outcomes of rewriting
to constrain this description. If a starting tree is left with an inconsistent description (i.e.
there is no destination tree givén, then we can eliminate it.

In step 3, if we have not discarded, we reuse information we have gathered during
the computation of transit terms to verify (by rewriting) whether any g6 destination
trees forms a proof ig.

3 Stationary and transit terms

In this section we discuss the two main concepts of our approach in more detail: sta-
tionary and transit terms. I§¢ we show how to use these concepts to prune the search
space.
Stationary terms. Consider the modéc in Figure 1: In all rules in which it occurs
(rules [1] and [3]), its left childB stays constant from the input to the output side of
the rule. If a tree contains a node labelled, that node ideft stationary: Rewriting
can work inside its left subtree, but it will never move a node out of the left subtree, or
into it from outside. A node labelled,; will be both left andright stationary, since no
structural rule in our fragment involves 3

A stationary term for,, describes whether some other node remains in the same
position relative t®,, ({}), moves above,, (1}), or changes position undey, (<) in R.

% Note that we can derive this information offline from the grammar’s lexicon and structural
rules.

Given a node: of a treer, we write L. (u) andR () for the subtrees starting at
u's left and right child, an®ub - (u) for the subtree with roat.

Definition 1 (Stationary terms, stationary nodes)Given a set R of structural rules
andarueR =1 — O fromR. Let v; be a node of I labelled by some algebraic
product o,,, and let v, = idmap(v;). Then o, (cr, cr) IS a stationary ternfor R if
the following condition holds:

— ¢ = | (eg =) iff exactly the variables from { A, B, C'} that occur in Ly(v;)
also occur in Lo(v,) (iff exactly the variables that occur in Ry(v;) also occur in
R@(UO)).

— Otherwise, ¢, = < (cp = <) iff exactly thosevariablesfrom { A, B, C'} that occur
in Suby(v;) still occur in Subg(v,).

— Otherwise ¢, = 1. (Otherwise cg = 1)

Let 7 be a tree with a nonterminal node u labelled by an algebraic product o .
Let statterms(o,,) be the set of all stationary terms for R with root node o,. Then
u is stationaryiff for all ¢ € statterms(o,) no child is {; left stationaryiff for all
t € statterms(o,,) theleft child is |}; and right stationaryiff for all ¢ € statterms(o,,)
theright childis . O

The transit relation, transit terms. Whereas rewriting leaves some structures intact,
it changes others. Thieansit relation charts how structures may travel, and the trees
such travel gives rise to. We describe these changes in terpettefns. A pattern is

a parent/child pair of nhodes where one node travels (the “transit nlodgand the
other node provides the context in whiizh is allowed to move. We have the following
schemata of patterns:

i 1L trn trn
trn c/\ /% JZ /\ '/‘ﬂ\

We also write the first pattern #8n) ., and analogously for the other three. We use
the letterP to denote patterns. A pattefhoccurs in a treat the nodeu if u is in the
position of the transit nodin in P. In that caselP also occurgor the label of the node
u. For example, the pattern.,,, (trn) describes a transit node that is the right child of a
ocon-labelled node. This pattern occurs in the starting tree (i) of Figure 5 for the label
Ode- ocon(odc)-

To construct the transit relation, we look at each structural rule in the grammar to
chart the patterns that change. For example, by rule [1] the right child gf-éabelled
node can become the right child ofoa,,-labelled node. We record this change as

trns

o4e(trn) — og,, (trn). Similarly, focusing now on the parent of the node at which the
rule is applied, the parent hag@: node as child before rule application, andcanode
afterwards. We formalize this latter point as ffeeent extension.

Definition 2 (Transit relation). For a tree 7, we define the left parent extension of
asthetree - ™\ and the right parent extensioas the tree O
Let R be a set of structural rules. The transit relation” is defined as follows:

trns

P-—zrPiff R=1— Qisarulein R and P, P’ are patterns such that > occurs
in a parent extension of I at a node u, P’ occurs in the same parent extension of O at
idmapp(u), andP # P’. O

The transit relation for our example fragment is charted in Figure 6. The edges are
annotated with the structural rules they stem from, and with conditions that we explain
below.

2
%_ _dex| tm /tm\
ton|
/ Tl 1
_col dc Lon | . _con_ trn.
o 7N T |7 Nl I e
Tl
2
se | on | tm PN
trn| 2 SC 2 con

Fig. 6. The transit relation for Figure 1

Definition 3 (Transit term). Combining a pattern P with a node label ¢, we get a
transit tern?(¢). We use that termto express that the pattern P occursfor the nodelabel
¢. The inverseof a transit term consisting of pattern o, (trn) and label o,, is the term
consisting of the pattern trn(o,) and the label o,,. Likewise, the transit term consisting
of pattern (trn)o,, and label o, istheinverse of the pattern (o,)trnwith label o,,. O

Inverse transit terms describe the same parent/child pair, but the focused transit node
is different.
The logical roadmap.We combine the transit relation with a starting treeto form a

logical roadmap.

Definition 4 (Log. roadmap).Givenaninput £, ¢, alogical roadmapior a grammar
G and a starting tree 75 € starting, . (€) isa tuple rmap = <7’s, %) of 79 and the

trns
transit relation — of G. O
dc zuschreiber],
sc, verspncht do [.
_co m m
{trn = “eon| = 7 Dese
/ cxx]h
PAAN ‘/ o AN / N
lrn dc
Verspricht, zuschrelben
\ = :
°\ R PPN AN

— —
- ’ : ’ =
verspnchl

Fig. 7. Saturated logical roadmap for tree (i)

Using the logical roadmap we compute an approximation of possible transit terms
that we can obtain by rewritings. This computation is done tgaturating the logical

roadmap (Definition 5). We start by annotating the transit relation with all labels for
which a pattern occurs ing, and then we propagate these labels through the graph. A
pattern annotated with a label is a transit term. A saturated logical roadmap for starting
tree (i) is given in Figure 7. In the figure, the labels read off frognare shaded. Ac-
cording to the following definition (Definition 5), the labels are propagated along the
edges of the graphtransit, and whenever we attach a label to a pattern, we also get
the inverse transit terfr.par/ch).* This simple algorithm can be restricted by further
conditions to rule out pattern propagations that can never model an actual rewriting se-
quence. We present two possible such conditions: First, if an edge is annotated with a
mode, only this mode can traverse the edge. In our example, the right child,otan
become the left child of .,,, by rule [3], but only if this child is labelled 4. (c.label).
Second, we do not propagate a labglto a pattern(trn)o,, since in our starting tree
each label occurs only on¢e.resource)

trns

Definition 5 (Computing the transit set).Given alogical roadmap rmap = (75, —),
aset S of transit terms, and a set C' of conditions. Then the algorithmwalk(rmap, C, S)
consists of thefollowing rules that add pattern sto a set of transit termstransset(rmap).

(rtransit) P(¢) — P'(0) if P 2255 P’ and C.
(r.par/ich) P(v)—P'(n) if P(v) andP’'(u) areinversetransit terms.

The algorithm stops as soon as no rule can add a new node label anymore to
transset(rmap) (i.e. transset(rmap) is saturated).

The set C of conditions that we are going to use in this paper is C = {(c.label),
(c.resource} with

(c.label) P occursin a parent extension of I either for ¢, where ¢ is an algebraic prod-
uct, or it occurs, but not for any algebraic product.
(c.resource) either £ does not occur in P/, or ¢ occursin 7 at least twice.

Let G beagrammar withinput £,t¢, let 75 € starting, . (€) beastarting tree, and
let rmap bethe logical roadmap for G and 7g. Let Sy := {P(¢) | P isatransit pattern
that occursin s for thelabel ¢}. Thenthe set of transit terms fatmap, transset(rmap),
istheresult of walk(rmap, C, Sp). O

Saturation explores all possible rewriting sequences frorat the same time with-
out having to perform actual rewriting, and such that for common subsequences of two
rewriting sequences the computation is done only once. We sh@® fhat the time
complexity of constructing a saturated logical roadmap is linear in the lendth of

4 A constraint-based algorithm
In the previous section, we have introductationary terms andtransit terms. In this
section we show how these terms fit into the constraint-based algorithm for parsing

4 We need to be able to change focus between parent and child. Adding the inverse means we
can recognize changes to the context node of a pattern.

with resource-sensitive CG given in Figure 3 (b): We use stationary and transit terms
to eliminate starting trees that can never lead to a successful parse. Again, we illustrate
our approach with the fragment §2.1 and sentence (2).

Step 1.We construct the set of starting trees thatlézensed by stationary terms: If a
nodeu of a starting treeg is stationary, then no node can travel out from ungeand

no node can travel below by rewriting. Thus, it must be possible to order the leaves
in Sub-, (u) such that they form an infix &, as any successful parse has to héas

its yield. If u is left stationary, then the same must hold ffor, (), and similarly for
right stationary products. if is both left and right stationary, then it must be possible to
order the leaves of boti's left and right subtrees such that they form adjacent infixes
of £. This condition rules out starting trees (iii) and (iv) of Figure 5 because they both
have a subtreginenosmaria), and theo s-node is left as well as right stationary. This
leaves us with two starting trees licensed by stationary nodes: (i) and (ii). We explain
the remaining two steps of the algorithm using starting tree (i).

Step 2.In §3 we have defined destination tree 7 for a given starting trees as a possi-

ble result of rewriting performed org. It consists of the same nodes and node labels as
Ts, but they may be composed differently, and the yiela aiust be€. In step 2 of the
algorithm we construct a single, underspecified description of all possible destination
trees for a given starting treg. This description is constrained by stationary and transit
terms. If the description becomes inconsistent, thercan never lead to a successful
parse, and we can eliminate.

We use stationary nodes to constrain the way in which the nodes of a destination
tree may be composed, and we use the logical roadmap to constrain the patterns that
may occur in a destination tree: Each pattern occurring in a destination tree must either
be presenting, or it has been created by rewriting, in which case we must be able to
read it off the logical roadmap.

To describe the set of all destination trees for a startingrtte@e make statements
about the nodes afs and the new positions they may occupy in a destination tree. We
need three constructsabelling gives a node’s label and its childrgarecedence (some
node is left of another in the tree) encodes the requirement that the yield of a destination
tree bef, anddominance (some node is above another in the tree) encodes licensing by
stationary nodes: In any destination tree, a stationary node must dominate exactly the
same nodes that it dominatesrig.

Tree description languages of this kind are studied e.g. in [DT99,KMNOQ]. We use
the set-based language of [DT99]. The advantage is that we can exploit an existing
constraint solver to draw inferences on our destination tree descriptions. This solver
already enforces tree-shapedness.

Variables stand for nodes of the tree we describe. Each variaideassociated
with five sets of variablesip(x), dn(z), eq(x), left(z), andright(x). The setup(x)
contains all variables abovein the tree, andin(z) contains all variables below.
eq(z) is the set of variables that describe the same nodelagt(x) andright(x) are
the variables precedingand preceded by, respectively.

Figure 8 illustrates the five sets. They form a partition of the set of variables —
every variable must stand in one of these five relations toitially, these sets are only

(c1) label(zw) = p(Tuieft, Turight) Ty € Vnont, u labelledy in 75
(c2) label(zy) = w Zu € Vieas, u labelledw in 75
(c3) eq(z) = {z} U filler(z), |filler(z)| = 1, © € Vhote
(c4) filler(z) € Vrg T € Vhole
(€5) zu € left(wy), To € Tight(zy) Zu, Ty € Vieas, u labelledw;, v labelledw; in 75,7 < j
(c6) egdn(zy) = {xv € Vrg | vin Subrg(u)} U{@vicst, Toright | T» € eqdn(zy)}
ZTu € Vnont, u Stationary
(€7) eqdn(zuest) = {zv € Vrg | viNLrg (u)} U{Zvicst, Toright | T € eqdn(Tuicst)} U {Tuiest}
ZTu € Vnont, u left stationary
(08) eqdn(mum’ght) = {xv [S VTS ‘ vin RTS (u)} u {xvlefhxvm'ght | Ty € eqdn(xum'ght)} u {xurigh,t}
ZTu € Vnont, u right stationary
(€9) filler(zuiert) C lefttransit(xy) Tu € Vnont
(c10) filler(zuright) C righttransit(z.) Tu € Vnont

Fig. 9. Describing destination trees, given starting tree@nd expressiof = wy ... wn,

partially determined. The solver then ugespagation anddistribution to narrow the
sets down until they are fully determined, and describe a destination tree.

Apart from these sets, we usgdn(z) = eq(x) U dn(z). Fur-

thermorefabel(z) = ¢(x1,. .. ,z,) states that stands for a node
labelled? with childrenz 4, ... , x,, in that order.
Now to describe all destination trees for a given starting tree . R

Tg, We use a variable sét consisting of a set of tree variables @)

Vrs = Vnont W Viear, WhereVy, oy = {2, | u nonterminal node
of 7s} andVie.r = {z. | u leaf node ofrg}, and a set of hole

Variablesvhole = {xulefta Turight | Ty € Vnont}-

The constraints we use in propagation are given in Figure 9FHg. 8. Five vari-

destination tree has exactly the same nodes and node lahgjs aable sets

the constraints (c1) and (c2) contribute these labels. The variables

Tuleft @ANAx,ign: arehole variables. Each hole variable needs to

be identified withexactly one V. -variable, itsfiller, (c3) and (c4). When we have iden-
tified each hole with a filler (and checked tree-shapedness with the constraint solver),
then we have arranged the nodeg gfinto a new tree. Furthermore, we know that the
yield of a destination tree must i8g(c5).

The constraints (c6) through (c10) are the most interesting ones: They involve sta-

tionary and transit terms. Stationary terms impose strong restrictions on the possible

structure of a destination tree: A stationary node will dominate exactly the same nodes

in any destination tree that it dominatedrif (c6). Likewise, if a node is left stationary,

then its left child will dominate exactly the same nodes in any destination tree that it

dominated inrg (c7), and if it is right stationary, the same holds for its right child (c8).
The constraints (c9) and (c10) use transit terms: We defind spts-ansit(x),

righttransit(x,) for each variabler,, € V,,0n:. Suppose the node is labelled? in

Ts, and the node is labelled/’. Then the setefttransit(x,) containse, iff the set

of transit terms for the logical roadmap (i.e. fgrand rg) contains the transit term

consisting of the patterftrn)¢ and the label’. (This can be the case either because the

label ¢’ is attached to the patteftrn)¢ in the saturated logical roadmap, or the pattern
(trn)¢ is not in the roadmap but it occursin with ¢’ taking the role of the transit node

trn.) Therighttransit set is defined accordingly, using the pattéftrn) instead. So

the constraints (c9, c10) state that whenever we fill a hole, we must do it such that we
obtain a pattern licensed by the logical roadmap, i.e. a pattern of which we predict that
it may arise by rewriting.

dass s maria einen & roman verspricht e zuschreiben

Fig. 10. Initial constraint describing all destination trees for starting tree (i) and sentence (2)
(before inferences)

When we create a destination tree description for starting tree (i) in this way, we
arrive at Figure 10: The edges from a labelled node to its children are drawn as solid
lines. If we just know that dominategy, this is drawn as a dotted line fromto y. The
dotted lines in Figure 10 all stem from stationary nodes: The nodes labglledndo,
are both left and right stationary, white. ando,,. are left stationary.

Now the constraint solver can draw inferences to narrow down the destination tree
description. We say ;. for short if we mean the variable labelled., and analogously
for the other labels.

We know thatz,.ci e dominates just gqss, but z,.ciep¢ Must be identified with a
filler that it dominates, so we must identify..j. r¢ With 244.,. Likewise, the left child
of x5, must ber,,,qriq, the children oft ; must berg;pen, aNAZ - 0man, and the left child
of 4. must ber,.

Now considerz,ciright: SINCET cies: IS €QUAl t02 4455, the next leaf to its right
must bex,,qaria, SOTrearighe CaN oNly be identified with either,. or z..,, any other
choice would violate this condition. By the same argument from precedence, we get the
following restrictions:

filleT(xrclright) - {xs(za xcon}
fille"ﬂ(xscright) C {xdm xcon}
filleT(deT‘ig}Lt) - {xcona xverspricht}

However, by constraint (c10Yiller(z geright) S {Zcon, Tzuschreiven } (Cf. Figure 7)

so the right child ofr 4. must bez.,,. Hence the right child of ;. must bez,. and

the right child ofx,.., must bez,.. So by using stationary and transit terms, we have
narrowed down the description of destination trees+fgrto a single tree, shown in
Figure 11.

Step 3.Using stationary nodes and the logical roadmap we can efficiently prune the
search space. However, the logical roadmap is onlgmgmoximation: the conditions

rel
dass SC
maria
g o)
einen roman verspricht zuschreiben

Fig. 11. The only destination tree for starting tree (i) and sentence (2)

on traversing an edge in the logical roadmap are less strict than the conditions on actu-
ally applying a structural rule — the saturated roadmap may contain patterns that cannot
be obtained using just the grammar. Thus, the approximation comes with a definite com-
putational gain (cf. als§6) but also at a formal cost: Although we can prove that the
first two steps of the algorithm in Figure 3 a@ind, they are not complete. Therefore,

we need an additional step adlidation, checking whether a destination tree can be
obtained from a starting tree, using the grammar’s structural fulesvalidate a desti-
nation treer against a starting tree;, we create &alidationtablein a chart parsing-like
fashion. However, rather than words the validation table coniaiesariesread off the

logical roadmap. An itinerary is a sequence of structural rule-applications changing
into 7. Suppose we have a starting tragfor which the destination tree description is
satisfiable, and is one of the destination trees described. Then we put upranary

for each transit terniP(¢) that occurs in the destination tree An itinerary forP(¢) is

a sequenc®, (o) RoP1(¢1) ... R,—1P,,(¢,,) that starts with some transit teriy (¢y)
occurring ints and ends with the transit tery, (¢,,) = P(¢). Inbetween there must be

a “path” of transit terms and structural rules read off the logical roadmap:fof < n,

— eitherP;(£;) — Piy1(Liy1) by (rtransit), andP 225, P,
— orP;(¢;) = Piy1(4iy1) by (rpar/ch), andR; = A — A.

All the itineraries forrg andr are placed into a validation table, and are then used in

a chart-like fashion. Initially, we place @ before the first structural rul& in each
itinerary. Now, to rewriterg into 7, the next structural rule we choose must always
be one directly to the right of some Applying a structural ruleR movese’s on to

the next rule occurring in the itinerary: At least osmehat occurs to the left oR in

some itinerary must be moved; but a single rule application may change more than one
pattern.

We obtain all possible itineraries already as a side product when saturating the logi-
cal roadmap. (Thus, we now simply reuse this information, rather than letting validation
be agenerate & test step in disguise.) If we can use the itineraries to rewriento 7,
thenr is valid on the grammar.

Finally, how much validation we need to do depends on the strength of the condi-
tions on traversing an edge of the transit relation. Stronger conditions than those used
here are possible, and would move computation on the logical roadmap closer to logical
completeness with respect to the grammar.

5 We can prove that, if there exists a validation for a destination tree, then we find it — thus, the
overall computatiors complete.

5 Licensing, soundness and completeness

The core of our constraint-based inferences is formed by the licensing steps. In this sec-
tion we give a formal definition of the licensing steps that we have used in the previous
section, and prove theorems about the soundness of licensing. We also state a theorem
about the obtainability of a validation and the resulting completeness.

To make the definitions given below more readable, we use the following notation:
Given a grammag with input&, ¢, we call a pair of tree¢rg, 7) a start/destination
pair iff 75 € starting, . (€) andr € destinationg (7s).

We have usedicensing by stationary terms in steps 1 and 2 of the algorithm in
Figure 3 (b). Licensing by stationary terms means that we can eliminate starting trees
by comparing subtrees with stationary roots against the expregsémml we can restrict
the form of destination trees by inferring dominance information from stationary nodes.
Formally, licensing by stationary terms can be defined as follows.

Definition 6 (Licensing by stationary terms).Let G be a grammar with input £, ¢
and start/destination pair (s, 7). Let S be the set of stationary, |eft stationary, or right
stationary nonterminal nodesin 7¢. For eachnodeu € S, let
U for u stationary
v, = w'sleftchild for w left stationary
w’sright child for « right stationary
Then the starting treerg is licensed by stationary termiff two conditions hold:
Firgt, for each node u € S, some permutation of the yield of Sub - (v,,) isaninfix of £.
Second, for each node u that is both left and right stationary, some permutations of the
yieldsof L, (u) and R, (u) are adjacent infixes of £.
The destination tree is licensed by stationary ternif§ there exists an id-mapping
function idmap from 75 to 7 such that for each nodeu € S, and all nodesw in7g, w
liesin Sub, 4 (v,,) iff idmap(w) liesin Sub, (idmap(v,,)). O

We have useticensing by transit terms in step 2 of the algorithm: A hole variable
must choose a filler that will form a valid transit term together with the hole’s parent,
i.e. a term that either occurs in the starting tree or in the saturated logical roadmap.

Definition 7 (Licensing by transit terms). Let G be a grammar with input £, ¢t and
start/destination pair (rs, 7). Let rmap be the logical roadmap for G and 7s. Then the
destination tree 7 is licensed by transitff for all patterns P occuring in = for some
product o, thetermP(o,,) isin transset(rmap). d

Licensing by stationary and transit terms is sound: If a destination tree is not li-
censed, it cannot be reached by rewriting using the grammar itself.

For the two following theorems, 1€t be a grammar with lexicons, structural rules
R, a base logic as in Figure 2, and an ingut ;.

Theorem 1 (Licensing by stationary terms is sound)Let 75 € starting, ,(£) bea
starting tree that can be rewritten to 7 € destinationg (7g). Then both 7 and = are
licensed by stationary terms.

. - licensing (stat/transit trms)— —
lic'd starting treeg 9(’| lic'd destination tree#
sound by Thm. 2

licensing (Sta’[.tl’m%)sound by Thm. 1 complete by Thm. Blvalidation

‘ starting trees ih.P ‘ — | destination trees ig |
generate & testewriting

inputé&, tGT
‘ G = (L, R,base logic) ‘

Fig. 12. Abstract interpretation, soundness & completeness

Proof. It can easily be shown that when a structural rRlés used to rewrite a treg,
to 7, andu is a stationary node ofy, then a node is in Sub,,(u) iff idmap(v)
lies in Sub,, (idmap(u)), and similarly for left and right stationary nodes. Sa
or 7 were not licensed by stationary terms, there could not be a successful rewriting
sequence. 0

Theorem 2 (Licensing by transit is sound)Let 75 € starting, . (€) bea starting tree
that can berewritten to 7 € destinationg(7s). Then 7 islicensed by transit.

Proof. Let rmap be the logical roadmap f@ andrs. LetP be a pattern occurring in
T for the labell. We show thalP(¢) € transset(rmap), proceeding by induction on the
length of the rewriting sequence startingrin= 75 and ending inr,, = 7.

If P occurs inTy for a label?, thenP(¢) is in the setS, of Def. 5 and hence in
transset(rmap).

Now suppose that for some > 1, 7,1 gets rewritten ta-, by the structural rule
R =1 — Q. If P(¢) occurs inT,,_; already, we are done. So suppose otherwise, and
supposd occurs int,,_; at some node that is the child ofo’. ThenP occurs int,,
within the parent extension @5 starting atidmap (v').

Supposé occurs aidmap (v'). Then the label ofdmap (v) in 7, is different
from the label ofv in 7,,_;. W.l.0.g. letv be labelledu, idmap (v) labelledr, and

trns

P = trn(v). Then by Def. 2, the transit relation contaims(i) — trn(v). By the
inductive hypothesistrn(u:) (¢) € transset(rmap). Condition(c.label)is fulfilled: The
patternP occurs in a parent extensionlpbut not for any label that is an algebraic prod-
uct. Now we check conditiofc.resource) If the label? occurs intrn(v), then? = v.
Thenr,, contains at least two nodes labelledand since structural rules only rearrange
nodes, the same holds feg. So in either case, whethér= v or ¢ # v, condition
(c.resource)holds. Hence by the rulg.transit) , trn(v) (¢) € transset(rmap), and by
(rpar/ch), £(trn) (v) € transset(rmap) as well.

For the other possible positions Bf the argument is analogous. Note that if a
patternP’ occurs inl for some algebraic produgt thenP’ occurs inr,,_; for the same

trns

labely becausd@ matches the tree,_; atv. Hence the edg@’ (i) — r P(u) can still
be traversed by conditide.label). O

Construction of stationary - Computed offline

terms forG
Licensing starting trees by| O(|&%|) For every nodev of 7g that is (left, right)
stationary terms stationary, mark each word i occuring in

the subtree with root; then check if marked
nodes form an infix of

Construction of compact de{ O(|€7])
scription of dest. trees
Construction of a saturated O(|€]) The number of node labels on each node of the
logical roadmap transit relation graph is bounded by the num-
ber of nodes irrs.

Checking satisfiability of | O(]€?]) [KMNOO]

dominance, precedence

Checking satisfiability againstf O(|€]) The destination tree description contains

logical roadmap O(|€)) transit patterns that need to be checked
against the saturated roadmap for licensing by
transit.

Fig. 13.Complexity results for individual steps of Figure 3

So licensing by stationary and transit terms is sound — we eliminate only starting
trees that do not lead to a successful parse. Together with the validation step that we
have sketched if4, we gain a complete algorithm for ResCG parsing:

Theorem 3 (Validation is complete).Let 75 < starting, ,(£) be a starting tree that
can berewrittento 7 € destinationg (7s). Then thereis avalidation for 7 from 7g.

The computation of stationary and transit terms formabstract interpretation of
a computation with the grammar: Using sound and complete operations, we compute
on licensed descriptions rather than with the grammar itself. Figure 12 recapitulates the
interrelation between the abstract interpretation, the licensing steps, and the soundness
and completeness results with respect to a granginar

6 Complexity

In this section we mention some complexity results for the algorithm we propose in
Figure 3 (b). The baseline is formed by the abstract complexity results for ResCG:
Without the restriction to linear structural rules, ResCG is Turing Complete; limited to
at mostLP) it is NP-complete, cf. [Mo002].

Figure 13 gives the (time) complexity of various computation steps our algorithm
performs. One point to note is that stationary terms, which account for a lot of pruning,
are computed offline since they rely just gn Furthermore, most construction and
satisfaction steps in Figure 3 are either linear or low-polynomial. Thus, while the worst-
case complexity of proof search using itineraries is the same as that of proof search in
LP, we can reduce the search space in steps of low complexity — and potentially obtain
significant reductions.

7 Conclusions

We presented a constraint-based approach to parsing with resource-sensitive CG that
uses propagators derived from the logical formulation of a grangmtar prune the

(proof) search space. Although tgenerate & test approach to parsing with resource-
sensitive CGs and our approach have the same worst-case complexity, our approach
has a (potentially) better average-case complexity since we reduce the search space
using steps that are mostly linear or low-polynomial in the length of the sentence, not
exponential as irgenerate & test. We plan to extend the approach to include unary
modalities¢) andd! (available in [Mo002], but not in [Hep95]) and to obtain practical
results using treebank-grammars and an implementation of our algorithm. (Parsing with
treebank grammars leads to exponential explosion ingémerate & test approach,
(Moot,p.c.)).

References

[Car95] Bob Carpenter. The Turing-completeness of multimodal categorial grammar. Unpub-
lished manuscript. Carnegie Mellon University, 1995.

[DD01] Denys Duchier and Ralph Debusmann. Topological dependency trees: A constraint-
based account of linear precedencePtaceedings ACL' 01, France, 2001.

[dG99] Philippe de Groote. A dynamic programming approach to categorial deduction. In
Proceedings of CADE’99, 1999.

[DT99] Denys Duchier and Stefan Thater. Parsing with tree descriptions: a constraint-based
approach. IrProceedings NLULP’99, New Mexico, 1999.

[Hep92] Mark Hepple. Chart parsing lambek grammars: Modal extensions and incrementality.
In Proceedings COLING' 92, France, 1992.

[Hep95] Mark Hepple. Mixing modes of linguistic description in categorial grammaPrtn
ceedings EACL’ 95, Ireland, 1995.

[Hep98] Mark Hepple. Memoisation for glue language deduction and categorial parsing. In
Proceedings COLING-ACL' 98, Canada, 1998.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmingCNhSym-
posium on Principles of Programming Languages, pages 111-119. The ACM Press,
1987.

[KMNOO] Alexander Koller, Kurt Mehlhorn, and Joachim Niehren. A polynomial-time fragment
of dominance constraints. Proceedings ACL’ 00, Hong Kong, 2000.

[K6n90] Esther Khig. The complexity of parsing with extended categorial grammarBrdn
ceedings COLING’ 90, Finland, 1990.

[Kru0l1] Geert-Jan M. Kruijff. A Categorial-Modal Logical Architecture of Informativity: De-
pendency Grammar Logic & Information Structure. PhD thesis, Faculty of Mathemat-
ics and Physics, Charles University, Prague, Czech Republic, April 2001.

[Lam58] Joachim Lambek. The mathematics of sentence strucumerican Mathematical
Monthly, 65:154-169, 1958.

[Mo097] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors,Handbook of Logic and Language. Elsevier Science, 1997.

[Moo02] Richard Moot. Proofnets for linguistic analysis. PhD thesis, University of Utrecht,
The Netherlands, 2002.

[Mor94] Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Sgns. Kluwer Academic
Publishers, 1994.

[Mor96] Glyn V. Morrill. Memoisation of categorial proof nets: parallelism in categorial pro-
cessing. IrProceedings of the 1996 Roma Workshop, Italy, 1996.

[MS98] Kim Marriott and Peter J. Stuckelprogramming with Constraints. Kluwer Academic
Publisher, 1998.

[Pen97] Mati Pentus. Product-free Lambek calculus and context-free gramierdournal
of Symboalic Logic, 62(2):648-660, June 1997.

