{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook continues on the topic of regression and covers: multiple predictors, categorial predictors, and interactions.\n",
"\n",
"# Multiple predictors\n",
"\n",
"Up to now, we have had one predictor for the dependent variable: To what extent does study time correlate with, and predict exam score? But often we have multiple predictors that we suspect to play a role. Hinton's example is: Both the student's intelligence and the time they spent studying sound like reasonable predictors for their exam scores (where intelligence is quantified as an IQ score). How to quantify this? The problem is that in order to get good predictions of the correlation, we need to know how study time influences exam score once intelligence is taken out of the picture. \n",
"\n",
"Here is how to work through this in Python. First, here is the data."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
participant
\n",
"
studytime
\n",
"
examscore
\n",
"
iq
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
40
\n",
"
58
\n",
"
118
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
43
\n",
"
73
\n",
"
128
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
18
\n",
"
56
\n",
"
110
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
10
\n",
"
47
\n",
"
114
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
25
\n",
"
58
\n",
"
138
\n",
"
\n",
"
\n",
"
5
\n",
"
6
\n",
"
33
\n",
"
54
\n",
"
120
\n",
"
\n",
"
\n",
"
6
\n",
"
7
\n",
"
27
\n",
"
45
\n",
"
106
\n",
"
\n",
"
\n",
"
7
\n",
"
8
\n",
"
17
\n",
"
32
\n",
"
124
\n",
"
\n",
"
\n",
"
8
\n",
"
9
\n",
"
30
\n",
"
68
\n",
"
132
\n",
"
\n",
"
\n",
"
9
\n",
"
10
\n",
"
47
\n",
"
69
\n",
"
130
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" participant studytime examscore iq\n",
"0 1 40 58 118\n",
"1 2 43 73 128\n",
"2 3 18 56 110\n",
"3 4 10 47 114\n",
"4 5 25 58 138\n",
"5 6 33 54 120\n",
"6 7 27 45 106\n",
"7 8 17 32 124\n",
"8 9 30 68 132\n",
"9 10 47 69 130"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"studytime_df = pd.DataFrame({\"participant\":[1,2,3,4,5,6,7,8,9,10],\n",
" \"studytime\": [40,43,18,10,25,33,27,17,30,47],\n",
" \"examscore\": [58,73,56,47,58,54,45,32,68,69],\n",
" \"iq\":[118,128,110,114,138,120,106,124,132,130]})\n",
"\n",
"studytime_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First step: Are the different predictors correlated with each other? And with the dependent variable? We already know that study time in this dataset correlates with exam score. So to what extent does intelligence correlate with study time, and with exam performance? "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Correlation of study time and IQ:\n",
"(0.37314321429686065, 0.28822074809763004)\n",
"Correlation of IQ and exam performance:\n",
"(0.4832859281320025, 0.1570552699191584)\n"
]
}
],
"source": [
"from scipy import stats\n",
"\n",
"print(\"Correlation of study time and IQ:\")\n",
"print(stats.pearsonr(studytime_df.studytime, studytime_df.iq))\n",
"print(\"Correlation of IQ and exam performance:\")\n",
"print(stats.pearsonr(studytime_df.iq, studytime_df.examscore))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The correlation is sizeable in both cases, though not statistically significant (as we have little data). \n",
"\n",
"We would like to determine the amount of variance in exam score that is predicted by study time after IQ has been taken out of the picture. To do that, we first take IQ out of the picture by predicting both study time and eam score from IQ and using the residuals, that is, the variance in study time and in exam score that is not explained by IQ."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.6652977419205109, 0.0357812018420546)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.formula.api as smf\n",
"\n",
"# predicting study time from IQ\n",
"ols_studytime = smf.ols(\"studytime ~ iq\", data= studytime_df).fit()\n",
"# predicting exam score from IQ\n",
"ols_examscore = smf.ols(\"examscore ~ iq\", data= studytime_df).fit()\n",
"\n",
"# computing the residuals\n",
"residual_studytime = ols_studytime.resid\n",
"residual_examscore = ols_examscore.resid\n",
"\n",
"# are they correlated?\n",
"stats.pearsonr(residual_studytime, residual_examscore)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yes, there is a strong correlation between the variance in study time not explained by IQ, and the variance in exam score not explained by IQ. \n",
"\n",
"The formula for multiple linear regression for two predictors has the form\n",
"\n",
"$Y = \\beta_0 + \\beta_1 x_1 + \\beta_2 x_2$\n",
"\n",
"and so on for more predictors.\n",
"\n",
"The linear regression implementation in ```statsmodels``` can deal with multiple predictors. Here is how to put multiple predictors into the \"formula\" format that ```ols()``` takes as input:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/scipy/stats/stats.py:1450: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=10\n",
" \"anyway, n=%i\" % int(n))\n"
]
},
{
"data": {
"text/html": [
"
\n",
"
OLS Regression Results
\n",
"
\n",
"
Dep. Variable:
examscore
R-squared:
0.573
\n",
"
\n",
"
\n",
"
Model:
OLS
Adj. R-squared:
0.451
\n",
"
\n",
"
\n",
"
Method:
Least Squares
F-statistic:
4.693
\n",
"
\n",
"
\n",
"
Date:
Thu, 15 Apr 2021
Prob (F-statistic):
0.0510
\n",
"
\n",
"
\n",
"
Time:
11:33:05
Log-Likelihood:
-34.616
\n",
"
\n",
"
\n",
"
No. Observations:
10
AIC:
75.23
\n",
"
\n",
"
\n",
"
Df Residuals:
7
BIC:
76.14
\n",
"
\n",
"
\n",
"
Df Model:
2
\n",
"
\n",
"
\n",
"
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
t
P>|t|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
0.2966
37.328
0.008
0.994
-87.969
88.562
\n",
"
\n",
"
\n",
"
studytime
0.6486
0.275
2.358
0.051
-0.002
1.299
\n",
"
\n",
"
\n",
"
iq
0.3024
0.323
0.935
0.381
-0.462
1.067
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
Omnibus:
1.671
Durbin-Watson:
1.786
\n",
"
\n",
"
\n",
"
Prob(Omnibus):
0.434
Jarque-Bera (JB):
0.609
\n",
"
\n",
"
\n",
"
Skew:
-0.602
Prob(JB):
0.737
\n",
"
\n",
"
\n",
"
Kurtosis:
2.880
Cond. No.
1.61e+03
\n",
"
\n",
"
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.61e+03. This might indicate that there are strong multicollinearity or other numerical problems."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: examscore R-squared: 0.573\n",
"Model: OLS Adj. R-squared: 0.451\n",
"Method: Least Squares F-statistic: 4.693\n",
"Date: Thu, 15 Apr 2021 Prob (F-statistic): 0.0510\n",
"Time: 11:33:05 Log-Likelihood: -34.616\n",
"No. Observations: 10 AIC: 75.23\n",
"Df Residuals: 7 BIC: 76.14\n",
"Df Model: 2 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 0.2966 37.328 0.008 0.994 -87.969 88.562\n",
"studytime 0.6486 0.275 2.358 0.051 -0.002 1.299\n",
"iq 0.3024 0.323 0.935 0.381 -0.462 1.067\n",
"==============================================================================\n",
"Omnibus: 1.671 Durbin-Watson: 1.786\n",
"Prob(Omnibus): 0.434 Jarque-Bera (JB): 0.609\n",
"Skew: -0.602 Prob(JB): 0.737\n",
"Kurtosis: 2.880 Cond. No. 1.61e+03\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"[2] The condition number is large, 1.61e+03. This might indicate that there are\n",
"strong multicollinearity or other numerical problems.\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ols_twopredictors = smf.ols(\"examscore ~ studytime + iq\", data= studytime_df).fit()\n",
"ols_twopredictors.summary()"
]
},
{
"attachments": {
"Screen%20Shot%202021-04-15%20at%206.07.25%20PM.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAHMCAYAAAAatyvNAAAK4WlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU8kagOfe9JAQICEUKaE3QToBpITQAihIB1EJSSChhJgQFOzI4gquCiIiWMFVEQVXV0DWgliwImDBviCLgrIuFmyo7AUeYXffee+d998zd77z55+/zJnJ+S8A5BCuRJIOqwCQIc6Shgf4MGLj4hm4foAGFEBGBoXLk0lYYWEhAJGp+e/y/i6Axudb1uO+/v33/ypqfIGMBwCUgHASX8bLQLgFGa94EmkWAKijiN5oSZZknG8jTJMiCSI8MM4pk/xlnJMmGK0yYRMZzkbYGAA8icuVpgBAskX0jGxeCuKHFIawrZgvEiO8GmFPnpDLRxiJC2ZmZGSO8xDC5oi9BAAyDWFm0l98pvzNf5LCP5ebouDJuiYE7yuSSdK5Of/n1vxvyUiXT8UwRQZJKA0MR2Y6sn/30jKDFSxOmhs6xSL+hP0EC+WBUVPMk7Hjp5jP9Q1WrE2fGzLFySJ/jsJPFidyigUyv4gplmaGK2IlS9msKeZKp+PK06IUeqGAo/CfK4yMmeJsUfTcKZalRQRP27AVeqk8XJG/QBzgMx3XX1F7huwv9Yo4irVZwshARe3c6fwFYta0T1msIje+wNdv2iZKYS/J8lHEkqSHKewF6QEKvSw7QrE2Czmc02vDFHuYyg0Km2LgC/xACPIwQASIBPbAEdgB5FRlCZZmjRfDzpTkSEUpwiwGC7lxAgZHzLOZybC3tbcDYPz+Th6Jt+ET9xKin5nWZe5DjvJ75M4UT+uSSgFoLABA88G0zngXAJR8ABpaeXJp9qQOPf7CACLyr0ADWkAPGAFzYI1k5wzcgTeScRAIRbKNAwsBDwhBBpCCJWA5WAMKQBHYDLaCCrAbVIOD4Ag4BhrBKXAOXALXQAe4Ax6CHtAPXoJh8B6MQhCEg8gQFdKC9CETyAqyh5iQJ+QHhUDhUByUCKVAYkgOLYfWQkVQCVQB7YVqoJ+gk9A56ArUCd2HeqFB6A30GUbBJJgG68Km8CyYCbPgYDgSXgCnwIvhXDgf3giXw1XwYbgBPgdfg+/APfBLeAQFUEooOsoAZY1iotioUFQ8KhklRa1EFaLKUFWoOlQzqg11C9WDGkJ9QmPRVDQDbY12Rweio9A89GL0SvQGdAX6ILoBfQF9C92LHkZ/w5AxOhgrjBuGg4nFpGCWYAowZZj9mBOYi5g7mH7MeywWS8eaYV2wgdg4bCp2GXYDdie2HtuC7cT2YUdwOJwWzgrngQvFcXFZuALcdtxh3FlcF64f9xGvhNfH2+P98fF4MT4PX4Y/hD+D78I/x48SVAgmBDdCKIFPyCFsIuwjNBNuEvoJo0RVohnRgxhJTCWuIZYT64gXiY+Ib5WUlAyVXJXmKYmUViuVKx1VuqzUq/SJpEayJLFJCSQ5aSPpAKmFdJ/0lkwmm5K9yfHkLPJGcg35PPkJ+aMyVdlGmaPMV16lXKncoNyl/IpCoJhQWJSFlFxKGeU45SZlSIWgYqrCVuGqrFSpVDmp0q0yokpVtVMNVc1Q3aB6SPWK6oAaTs1UzU+Nr5avVq12Xq2PiqIaUdlUHnUtdR/1IrWfhqWZ0Ti0VFoR7QitnTasrqbuqB6tvlS9Uv20eg8dRTelc+jp9E30Y/S79M8auhosDYHGeo06jS6ND5ozNL01BZqFmvWadzQ/azG0/LTStIq1GrUea6O1LbXnaS/R3qV9UXtoBm2G+wzejMIZx2Y80IF1LHXCdZbpVOtc1xnR1dMN0JXobtc9rzukR9fz1kvVK9U7ozeoT9X31Bfpl+qf1X/BUGewGOmMcsYFxrCBjkGggdxgr0G7waihmWGUYZ5hveFjI6IR0yjZqNSo1WjYWN94jvFy41rjByYEE6aJ0GSbSZvJB1Mz0xjTdaaNpgNmmmYcs1yzWrNH5mRzL/PF5lXmty2wFkyLNIudFh2WsKWTpdCy0vKmFWzlbCWy2mnVORMz03WmeGbVzG5rkjXLOtu61rrXhm4TYpNn02jzapbxrPhZxbPaZn2zdbJNt91n+9BOzS7ILs+u2e6NvaU9z77S/rYD2cHfYZVDk8NrRytHgeMux3tOVKc5TuucWp2+Ors4S53rnAddjF0SXXa4dDNpzDDmBuZlV4yrj+sq11Oun9yc3bLcjrn94W7tnuZ+yH1gttlswex9s/s8DD24Hns9ejwZnomeezx7vAy8uF5VXk+9jbz53vu9n7MsWKmsw6xXPrY+Up8TPh/YbuwV7BZflG+Ab6Fvu5+aX5Rfhd8Tf0P/FP9a/+EAp4BlAS2BmMDgwOLAbo4uh8ep4QwHuQStCLoQTAqOCK4IfhpiGSINaZ4Dzwmas2XOo7kmc8VzG0NBKCd0S+jjMLOwxWG/zMPOC5tXOe9ZuF348vC2CGrEoohDEe8jfSI3RT6MMo+SR7VGU6ITomuiP8T4xpTE9MTOil0Rey1OO04U1xSPi4+O3x8/Mt9v/tb5/QlOCQUJdxeYLVi64MpC7YXpC08voiziLjqeiEmMSTyU+IUbyq3ijiRxknYkDfPYvG28l3xvfil/UOAhKBE8T/ZILkkeSPFI2ZIyKPQSlgmHRGxRheh1amDq7tQPaaFpB9LG0mPS6zPwGYkZJ8Vq4jTxhUy9zKWZnRIrSYGkZ7Hb4q2Lh6XB0v0ySLZA1pRFQxql63Jz+Xfy3mzP7Mrsj0uilxxfqrpUvPR6jmXO+pznuf65Py5DL+Mta11usHzN8t4VrBV7V0Irk1a2rjJalb+qf3XA6oNriGvS1tzIs80ryXu3NmZtc75u/ur8vu8CvqstUC6QFnSvc1+3+3v096Lv29c7rN++/lshv/BqkW1RWdGXDbwNV3+w+6H8h7GNyRvbNzlv2rUZu1m8+W6xV/HBEtWS3JK+LXO2NJQySgtL321dtPVKmWPZ7m3EbfJtPeUh5U3bjbdv3v6lQlhxp9Knsn6Hzo71Oz7s5O/s2uW9q2637u6i3Z/3iPbc2xuwt6HKtKqsGludXf1sX/S+th+ZP9bs195ftP/rAfGBnoPhBy/UuNTUHNI5tKkWrpXXDh5OONxxxPdIU5113d56en3RUXBUfvTFT4k/3T0WfKz1OPN43c8mP+84QT1R2AA15DQMNwobe5rimjpPBp1sbXZvPvGLzS8HThmcqjytfnrTGeKZ/DNjZ3PPjrRIWobOpZzra13U+vB87PnbF+ZdaL8YfPHyJf9L59tYbWcve1w+dcXtysmrzKuN15yvNVx3un7ihtONE+3O7Q03XW42dbh2NHfO7jzT5dV17pbvrUu3Obev3Zl7p/Nu1N173QndPff49wbup99//SD7wejD1Y8wjwofqzwue6LzpOpXi1/re5x7Tvf69l5/GvH0YR+v7+Vvst++9Oc/Iz8re67/vGbAfuDUoP9gx4v5L/pfSl6ODhX8rvr7jlfmr37+w/uP68Oxw/2vpa/H3mx4q/X2wDvHd60jYSNP3me8H/1Q+FHr48FPzE9tn2M+Px9d8gX3pfyrxdfmb8HfHo1ljI1JuFLuRCuAQgacnAzAmwNIfxwHALUDAOL8yf56QqDJb4IJAv+JJ3vwCXEGoLobgMhlAITcAGB7BdLSIv4pyHdBGAXRuwPYwUEx/iWyZAf7SV8kL6Q1eTw29tYcAFwxAF+Lx8ZGq8fGvlYjyT4EoCVnsq8fF5XDAOyZbxfpG9WmcQn8UyZ7/r/U+M8ZjGfgCP45/wmYeBvP7VeL+gAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAEq6ADAAQAAAABAAABzAAAAABBU0NJSQAAAFNjcmVlbnNob3QCbFmiAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTk1PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQ2MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgpgRXv9AABAAElEQVR4AeydB5gUVdaGz5CzBAERVBRRwATmsCpmMf4GzGnXsOa4hlXXnNec85rjmtacMAdMqAgoKEmCgEqQHKb/+17mljVFd09P7pn+zjw1VV3x1lvV1fd+dc65RSlnJhOBKiAwd+7cKtiLdiECIiACIiACIlBbBFq0aFFbh9ZxRUAEREAEREAERCAi0CCa0oQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1DIBiVW1fAF0eBEQAREQAREQAREQAREQAREQAREQAREQgT8JSKz6k4WmREAEREAEREAEREAEREAEREAEREAEREAEaplAo1o+vg4vAiIgAiJQoAQWL15sM2fOzHj27du3t6KioozLtUAE8pVAee9tvgc//fSTrbvuutaoUe5Vsy+++MK6du1qXbp0yYhi9uzZNmTIENtwww2tefPmGdfTAhEQAREQAREQARHIJwJFSrCeT5ejbpelLiVY/+233+yDDz4oBZxG8UorrWRrrLGGtWrVqtSy8OGPP/6wjz76yJZbbjnbbLPNwmw/pq+CF154odS88IH11157bevYsWOYVSXj0aNH27fffmtNmza1AQMGZNznO++840WB1Vdf3Zcj44rlXEBDacKECbbiiivaxhtvXM6ttXqhE3j77bdtjz32yIhhypQpGb+LGTfSgrwikOm5iCCz/PLLW79+/fzzi0LH111llVX8svjJjB071j7//HP/zEN06dWrl+26667R9vF1a3s613sbkeqQQw6xQYMG+SLz23PSSSfZ+eefX+Yp8Oxdc8017a677vL7yLTB8ccfbw8++KB99913tuqqq2ZaLZqvBOsRCk2IgAiIgAiIgAjUIoHcX9/VYiF1aBGoagIjR460gw8+OONuaSicdtpp1qxZs2idK664wi6//HL/GWEGAShuNLSy7ZN1b775ZjvyyCPjm1Vq+r333rMTTzzR72POnDkZ93XOOef4hgrndNlll2Vcr7wLbrvtNnvqqadst912syeffLK8m2v9AieAgJu8bxYtWmTHHnusb4Sr0Vz3b5CynouIM4j8m266qRerwjP0qKOOisSq4uJiu+WWW+zcc89dBgheRY899pj3GlpmYS3OyPXe3n///b3XE2IS4ts999xjV155pQ0cONB/B9KdwpdffmkjRoywq666Kt3iUvNefPFFL1SVmqkPIiACIiACIiACIlAHCEisqgMXSUWsXgI0lvB8mjhxYnQgBJ0xY8bY3Xff7efhURWEql122cW/zY9WTjOBB9UGG2zgl+AN8P333/vpk08+2bbcckvvvZVms3LP6tGjh3+j3rhx43Jvqw1EoLYJdO7c2Qud8XL861//8qFKTzzxhDVooLSKcTZ1fTr+XCTkbdSoUUaI2llnnWXvv/9+xtO7+uqrI5Gd5/VWW23lPUXxcuW5jXfV119/nTUULuPOq2lBLvf2N9984z18Ear23XdfXxKEql9++cULWHhNpTPOPxdjP4h+Bx54oD3++OO5bKJ1REAEREAEREAERCBvCEisyptLoYLUFoFbb73Vv8VesmSJb/Dg+UQj6tFHH7UjjjjCVlhhBXvjjTei4u211162/vrrR5/TTey555520003RYvuuOMO+8c//uE/Dx48OBKr8BgglG7o0KHWrl07H0rXrVu3aDsmeIPOOoSL0NjbZpttrFOnTn4dQhYJIUnmOCHcg3AZRDjWT9qnn35qeLD07NnTnx/LCSmk4demTRtbb731ok1oUNEQnDVrlg/bIfyxe/fu0fLkBOGg7777ro0fP96XC2+BzTff3AsP5HGZPHmy34SycSyZCAQChE5df/319swzz/jQ0jBf4/pBIPlc3Geffey1114zPIUy2c8//xwJVXgrvfzyy/45xPp45f3tb3/zgtezzz5rJ5xwgn++8JzBK7aqw64zlTGX+enu7VdeecVvygsQnr0IeIQ/Jr0Nk/ufNm2an8W4T58+ycX+Mx5txx13nG2//fZ26KGHSqxKS0kzRUAEREAEREAE8pmAxKp8vjoqW40SaNiwofeGwpsqCDw0MAivIwQl2NFHH2377bef/ec//wmzyhzH84SEBhT5eP76178aoXxx41g0wLBLLrnE8CpIGo0ZQu9effXVZcIA8UyhwR+MMJlkEuvtttvOL47nOkFcu/fee22LLbbw4tz8+fN9+f73v/+FXUXj+HbRTDeBNxrsQmMqLMObjMYkucIQr7BLL73UTj/99LCKxgVOAPH0jDPO8PffzjvvXOA06v/p83wh5xKGoJLJgqDD8muuuSYSqvhMCB2eqwjpiN/Y1ltv7YUf9pkph6BfsQb/Zbq3EeJ4YUDYKwJtMEIAb7/9dssUBhvmh3HYLj7mWf7xxx/78G9eeMhEQAREQAREQAREoK4RUIxFXbtiKm+1EyAfFaEm2PDhw70wFbyimEeYBqEV2QyvIoQuhkceecQLM2F9crNghAQiVNFYQVwiVAMjue5XX31lhB4GoYocWngrIVBhmUQe8mgFoYp1b7zxRt9TFKE25bWXXnrJglB1ww03+DAdRCfs2muvTbs7wlkQqhDIKC+fMZLZh32l3VAzC54A3xM8Gi+++OKCZ1FfARDauckmm/ihQ4cOXkhBvA/PrHTnHUKoWYaQnrSzzz7bh2jjYZqvlune5lnJPf/DDz/4ZyRj8gs+/fTThsdvRY2cjKeeeqp/+RBejlR0X9pOBERABERABERABGqLgDyraou8jpvXBKjgI/DgCUTI34IFCyKBhlAWQjWyGWGD8dDBsC4hL23btvXhHohBGJ5UvXv3NkJiCPej8UKS3XgyYcQeQvPwRkLMIpcPIYRJC3lJEMBIOoy3GF5g9NZXXqPnwPvuu8/3tEXo44wZM6KwmhDKl9wnvDBCWj788EPbdtttvSCHF8XKK6/szz00TNV7YJJeYX/GEwQPxGQvm4VNpX6dPc9UQpTjhmCDqH3RRRfFZ0fTkyZN8tO8QEiGO0crxSYuuOAC7w2bDKeOrVLjk5nu7dCBB8JUCC3HM5bfBjytyOVVXsOLC49dXn7svvvu5d1c64uACIiACIiACIhA3hCQZ1XeXAoVJF8IkLuKcDYsHr5XnvKxHaF8DCHROtvjocX+eYMejJAnxC8GhCqM3CUrrbSSHX744f4zHliEhtDNO54E8+bNS5t8OmxPmB9CFUZ4TLwMfmYO/8gPg3fX/fffbyQLxluKUL5shsdZ8ErDG4xcVSQ/fu6556x9+/bWunVr+/vf/+4HzkUmAhAYNmyYz4uWz94xulKVJ4CIQkgyAx5T4Xpfd911Rm68dIbwjiF0pfMQRaCnl1W8kTD2yTOG504+WLZ7O557MF5W8lAR3lgRI7SQHINwadmypR8GDBjgd8UznVBbmQiIgAiIgAiIgAjUBQLyrKoLV0llrFECcUFmrbXWqtCxEYviCdYRbgilw6uAZOrNmzeP9ks4IGJQ3MJn8paceOKJ9tZbb/mQQsY0RPbYYw/78ccf45v46SAUITLFDc+wdEY+rmDJxhGhfnhyYYhQG264oT/2nXfeGTZZZoz3F4naBw0a5AeSIeNlxTZ4RYSwxmU21IyCJsD9gilXVf2+DRDQg3cUYvzxxx/vw6Q5azwx4x07BBIILMHI1UcHGMHGjRsXhWQjhCHo55tlu7fp1Y9n45AhQ6x///6+6CSHp3OMTInTyzo/BDA8ueL27bffekHviiuusI022ii+SNMiIAIiIAIiIAIikLcE5FmVt5dGBaspAuT3+Oyzz3zOkH//+992xBFH+EMj/Bx22GFVUgzC6IKRVDgkGWceXljkF2EgvA8xirC5Tz75xHfRjpiFpwDJgsl9Eow36Enr27evn8W6IVQPgSwZehNELRqIhBMSvocQFrfwGU8FhDd6lEoXehjfBlGLt/iEDAZxLjQ24YxHBTlZGMivJRMBCIQE0PRuKau/BPAI5VnDgND00EMPRSeL52Y6I+w6eLjyLMRjiO0JjUbIDxaETpKw83whlDofLNu9zUsNzo3fHLxP6aWVDjzw7EXIw/gdoPdVwgNzMZ7thADGh+BZxUsOvF1lIiACIiACIiACIlAXCMizqi5cJZWxWgnwtpkhaXfccYfPsZScX5HP8YYYDa0uXbr4hha5Sk477TSfG4r9BlGJRhmNmNClOw02Ghx4KgVDBCLEJG54HZATinAZhCsaJvQIlTTmk1MLL7LBgwd776fkOpQRe/75561Hjx6GOEZIIJYuHIf55KWiMUm5CUlEfAvn9Je//MX32hV6VsQDIPS6yLaywiVAg577PVvvZoVLp/6c+aOPPmoMSePahx5Kk8vwQuWZETqXSNe5xd577x0tx6sIb056A0T4qW3Ldm8jLL344ot23HHHRSGRzOPlQPASwyuWvF70eJg0nq9YGCeXh89FRUV+sqz1wvoai4AIiIAIiIAIiEA+EJBYlQ9XQWWocQKh8p48MPlRSPyNWBQ8glgn0/rJ7cPnZKOAsD4aIYg8iEPkorrkkkv8vKuuuioSdOjt6pRTTomS7ZKQHY8rvAgYMMqYqVtz3sCzDV5QNHAQpOjKndCSjz76KDoPwvsQumjUMZDTigS/cW8E3uQTnsJbfnpoo/x4WQXvLrZLGh4N06dPt7vvvtvIQxOMBiZMf/nllzCrzAZWtKIm6j0BednV+0uc9gQR8fH2IY8SufXinpvxZyiiNh6nPBvJ3xc3Qqx5RiYtvn1yWU1+LuveRqjjmT137lzveRpeEoQyEh4YD9cO8xnTo2KmZfH16MU1l/Xi22haBERABERABERABGqbQFHKWW0XQsevHwSobMvKT4CE64TE0AMhCcjT2ZQpU7wIRIMu2ZhJtz7z8ITCK2H55ZdPuwrHJU8V3iyZ9onIxX5o+NGwDPlm0u4wNpN7IYQhsm95zMTgaFIERKDCBBYuXOi9NulJj04pcn0mVfiABbihntcFeNF1yiIgAiIgAiKQhwQkVuXhRamrRZJYVVevnMotAiIgAiIgAksJSKzSnSACIiACIiACIpAPBJRgPR+ugsogAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLgCUis0o0gAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQNwQkVuXNpVBBREAEREAEREAEREAEREAEREAEREAEREAEJFbpHhABERABERABERABERABERABERABERABEcgbAhKr8uZSqCAiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAISq3QPiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5A0BiVV5cylUEBEQAREQAREQAREQAREQAREQAREQAREQAYlVugdEQAREQAREQAREQAREQAREQAREQAREQATyhoDEqry5FCqICIiACIiACIiACIiACIiACIiACIiACIiAxCrdAyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnlDoCjlLG9Ko4KIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgUNAF5VhX05dfJi4AIiIAIiIAIiIAIiIAIiIAIiIAIiEB+EZBYlV/XQ6URAREQAREQAREQAREQAREQAREQAREQgYImILGqoC+/Tl4EREAEREAEREAEREAEREAEREAEREAE8ouAxKr8uh4qjQiIgAiIgAiIgAiIgAiIgAiIgAiIgAgUNAGJVQV9+XXyIiACIiACIiACIiACIiACIiACIiACIpBfBCRW5df1UGlEQAREQAREQAREQAREQAREQAREQAREoKAJSKwq6MuvkxcBERABERABERABERABERABERABERCB/CIgsSq/rodKIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIFTUBiVUFffp28CIiACIiACIiACIiACIiACIiACIiACOQXAYlV+XU9VBoREAEREAEREAEREAEREAEREAEREAERKGgCjQr67HXyIiACIiACtU6guLjYxowZY9OmTbPVV1/dll9++VovkwogAiIgAiIgAiIgAiIgAiJQewQkVtUeex25QAiMGDHChg8fXupsmzRpYj169PANc6bT2cSJE+2LL76wXr162ZprrllqlV9//dXee++9aN56663n9xXNcBMffvihTZkyxc9q1KiR7bnnnvHF5Z5euHChvfjii367zTbbzFZcccUy9zF79mx7/fXX/XrbbbedtW3btsxttEJhEfj2229t4MCBNnLkyOjETzzxRLvxxhutYcOG0TxNiIAIiIAIiIAIiIAIiIAIFA6BopSzwjldnakI1DyBK6+80s4999y0B27durXdc889tv/++0fL8TLZZZddIpHn/PPPt0svvTRazsRHH31kf/nLX6J5hx56qD300EPR58WLF1v79u3tjz/+iOZV9qs+ffp0v092+NJLL9muu+4a7TvTBEJdnz59/OIvv/zS1l9//Uyran4BEkAA7d27tyFqPvbYY7bKKqvYTTfdZLfeeqvdcssthmglEwEREAEREAEREAEREAERKDwCyllVeNdcZ1yLBDp16mTdunWLSoCYdMABB9gDDzwQzcNjKngjnXTSSbb11ltHyzJNPPzwwzZ37txoMV5VcaEqWqAJEcgjAp988omNHj3abrvtNsPzjhBAxCq+I6+88koelVRFEQEREAEREAEREAEREAERqEkCCgOsSdo6VsETwLuIhvj8+fN9SN1+++3nmZx88sk+TI+8PY8++qifh9fVPvvsYz179syJ22uvvWZ77723X/e5557Lus2CBQvs448/Njyf8MDq16/fMqGGeGchJhCmRchi37590+5zzpw5fr0ffvjBr7fJJptYu3bt0q7LPidNmuSXLbfccsYgK1wC3IfrrruubbrpphGEBg0aGKGxeBjKREAEREAEREAEREAEREAECpOAPKsK87rrrGuZQLNmzXyenquvvtqXBC8ohCzC+e67775oXv/+/XP2MHnyySf9djTyn3jiiYxnOGzYMB+Ot+2229oJJ5xgBx54oM+Ldfrpp9uSJUv8drNmzfKhiFtttZUPxRowYIDtsccey+zzs88+89vusMMO0XqEcn366afLrMsMhCqWM9x5551p19HMwiGw44472jfffFPK2xChFW+rbbbZpnBA6ExFQAREQAREQAREQAREQARKEZBYVQqHPohAzRIgN1UwPJOuueYa22uvvfwsPKsI79tyyy3DKmnHBx10kJ//1FNP+dA/BKSpU6f6eYcffnipbcgRhDcXCd/x8Lr55puNUEPshhtuiISya6+91t58800//7TTTvPJrseNG+c/h38IWrvvvrtNmDDB568iz9AWW2zhy4AIEQ9LDNtoLAKZCCCy3n777d47cKONNoruy0zra74IiIAIiIAIiIAIiIAIiED9JaAwwPp7bXVmdYBAPFzut99+855OhN3hXUKI3CGHHFLmWZCcneTUGHl+hgwZ4qcRjgjfixuhf6FnQpKk04sghrCERxf5go455hi76667/Pzjjz/err/+ej+9zjrr+LxC/oP79+yzz3pRDFHt7rvvtsaNGxveWiRUx1PsmWeesQ033DCs7sf0BoiohcVDv/wM/StYAj/++KMdffTR9u6779qRRx7pxdEWLVoULA+duAiIgAiIgAiIgAiIgAgUOgGJVYV+B+j8a5UAXknBunfvHibLNcZDijA8PKEef/xxH07IDhC6pk2bVmpfI0eOjD4HoYoZhBsiViFkzZgxI/LMYn6wpLj03Xff+UUIU127dg2rRWPybyXFqjZt2nhBLlpJEwVPgM4A8B5cbbXV7J133vH3YsFDEQAREAEREAEREAEREAERKHACEqsK/AbQ6dcugXgvgL17965wYQgFRKx64YUXon0QTojHU9zIlRWM/FQNGzb0H0n4Hizu0ULy9GDxdZjXsmXLsMiHL0YfSiYI5ZKJQDYCCKOEwiKKvvjii9aqVatsq2uZCIiACIiACIiACIiACIhAgRCQWFUgF1qnmR8EyCeFNxWNdMLo7rnnHl8wGuuVEXf23HPPUie40047WefOnUvN4wOhfME4/sCBA23RokX20EMP+dl4uNAT2/rrr29fffWV3XvvvYYQxryQwD1sTy9uwTgenxG0SNQ+ffp023zzzcPiaMx5X3LJJf4zIsX2228fLdNE4REIedbwDHz99ddLAejSpUvae6jUSvogAiIgAiIgAiIgAiIgAiJQLwlIrKqXl1Unla8E9tlnn2WK1qlTJ7vllluWmV+eGeS+wpOKXFdYSLqe3Ee/fv28QPX000/7ROuITITrhfDAyy+/3G9y5pln+l4CP/roIy9wEWo4aNCgUrtDIEOgIscWIYUIboQRktydc0LoGj9+fKltSMpOIncMMU1iVSk8Bffhiy++8Od83nnnLXPu3M8IqjIREAEREAEREAEREAEREIHCI9Cg8E5ZZywCNUugQYP0XzM8qehpD4Fn7bXXjgqVaf1oBTdRVFQU/+inDzzwwGgevfTFjSTowchNFXoAxJsFoQoxioTroefBAw44IBKVWI5QhcdUMMrYqFEj7w2DdxZGcmyEKkQscg/FwwTDdvFxLucZX1/T9Y8AYaqpVCrtIKGq/l1vnZEIiIAIiIAIiIAIiIAI5EqgyDUUUrmurPVEQATqD4HFixfb2LFjfa+DHTt2THtiYR1CsrKJT4T//fzzz0aSeHoFlImACIiACIiACIiACIiACIiACIhARQlIrKooOW0nAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQ5QTSxydV+WG0QxEQAREQAREQAREQAREQAREQAREQAREQAREom4DEqrIZaQ0REAEREAEREAEREAEREAEREAEREAEREIEaIiCxqoZA6zAiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJlE5BYVTYjrSECIiACIiACIiACIiACIiACIiACIiACIlBDBCRW1RBoHUYEREAEREAEREAEREAEREAEREAEREAERKBsAhKrymakNURABERABERABERABERABERABERABERABGqIgMSqGgKtw4iACIiACIiACIiACIiACIiACIiACIiACJRNQGJV2Yy0hgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQA0RkFhVQ6B1GBEQAREQAREQAREQAREQAREQAREQAREQgbIJSKwqm5HWEAEREAEREAEREAEREAEREAEREAEREAERqCECjWroODpMARCYO3duAZylTlEEREAEREAE6i+BFi1a1N+T05mJgAiIgAiIgAjUGQLyrKozl0oFFQEREAEREAEREAEREAEREAEREAEREIH6T0BiVf2/xjpDERABERABERABERABERABERABERABEagzBCRW1ZlLpYKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIQP0nILGq/l9jnaEIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1BkCEqvqzKVSQUVABERABERABERABERABERABERABESg/hOQWFX/r7HOUAREQAREQAREQAREQAREQAREQAREQATqDAGJVXXmUqmgIiACIiACIiACIiACIiACIiACIiACIlD/CUisqv/XWGcoAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnWGgMSqOnOpVFAREAEREAEREAEREAEREAEREAEREAERqP8EJFbV/2usMxQBERABERABERABERABERABERABERCBOkNAYlWduVQqqAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUfwKN6v8p6gzrEoGvv/7aGL7//nvr3LmzbbDBBrbVVlvl1Sn88ccf9vbbb/sybbfddta6deu8Kl+yMOPHj7evvvoqObvU52bNmtnOO+9cap4+iEAgsGTJEnvxxRdtnXXWsR49eoTZGouACIiACIiACIiACIiACIhAtRAoSjmrlj1rpwVHYO7cuRU+ZwSg0047zR5//PFl9rHFFlv4+R06dFhmWW3M+OGHH2z99df3h/7oo4+sb9++tVGMnI/55JNP2t/+9res67dq1cqmTJmSdR0tLFwC8+bNs+WXX96uueYaO+GEE6oVxPnnn2+dOnWyk08+uVqPo52LgAikJ9CiRYv0CzRXBERABERABERABGqQgDyrahC2DpWeAHrpwIED7YMPPvArdO3a1TbZZBMbOnSojRo1yhCEDjzwQHv99detqKgo/U5qcG6bNm3skEMO8Uds27ZtDR65YodCiIJpsIkTJ4bJaH6+e4dFBdZEvSfwzjvvyHur3l9lnaAIiIAIiIAIiIAIiIAIZCcgsSo7Hy2tAQIvvPBCJFQhAt12223WqFEjI/To9NNPt3vvvdcLVt98800pLyZC24YNG2bFxcXWu3dv22ijjbyYNWfOnCjsjbClICiNHTvWfv75Z2vatKltvPHG/swmTJhgH374oU2bNs0QdfCSYkAUQ9QZPXq0337NNde0V1991WbOnOmFtSBWdezYMSKUbV+zZs0yys9+N910U38+3333nXXp0sWH3yXfZHNuLF+8eLGtvfbaUXnDwTjnL774wgt67dq188u7desWFpca77rrrsaAzZ8/34KH2oknnmhXX321/fjjjzZ58mT79NNPfdnCxrD9/ffffZhj48aN/fTKK69sixYt8uWnzIiKzIsb/D/77DMbOXKkrbbaav66hGvA+XAsbLnlljOEP5nZb7/9ZsOHD/c88dzj+sNm++23LxVmCj/CZEeMGOGvIx5+K6ywQoSQ7eDKNeZ6Tpo0yYfSrrfeen6dhQsX2uDBg304HzM+/vhjW2uttWyVVVax2bNn25dffmljxozx1419851I2k8//eTLx7284YYbWvfu3aNVOD73Ra9evaJ5v/zyixedN998c2vYsKH/XvOd475r2bKlvz8ILeTe/Pzzz/13bOrUqf6ZwL3P/S0TAREQAREQAREQAREQAREoLAISqwrreufl2RKmFowwI4QqjIbtv/71L99Yx/sKEQRDMDrmmGPspZde8p/Dv2233db+85//+O1D/qUrrrjCTjnlFL/KmWeeaa+88ortvffe9vDDD9t1111nF1xwQdg8Gh922GF2xx132NNPP23nnXeeF4togCPAIE4h0IT9hzDAsvZFDq6wzS677OLLEQ5Iw57Ge/PmzQ1R6+9//7v973//C4v9mHODE+UgXO+vf/2rvffee6XWueWWW8oM9yu1QckHPFlOPfVU/4lyrrTSSl4AROBCxCMci/lvvPGGFyGYjtt9991nBxxwgJ+FgHbQQQd5oS+sg+BBviMEQoSqIGRceumlXowM6xXyGGFpv/328x57jzzySIRi1VVX9YISwhXX/dBDD/VCYbSCm7jnnns8c+Ydd9xxXrxCGOXaBbvhhhv8d4Z9cB/yme8WAhX3GuLQwQcfXOq64Y33xBNPRCGv7Ov++++3s846K+zWj6+88sooZI/jIzBxTwR75pln/Da//vqrv6922203/13ivuD4GOVBzArfEQQzpvmOb7PNNmFXGouACIiACIiACIiACIiACBQIAfUGWCAXOp9Pk3A/DEEGr5C4kSfnsssus8svv9zIXYVdeOGFkVBFg/uSSy7x8wcNGmT/+Mc/vCcUDWLs+eef92MaxQhVGGIVXlNBqDrqqKPs/ffft5NOOskvf+ihh0rlb8LDCaEK4QChKmnl2RfbUo6jjz468pZC/CHEEeM8g1DFuXE+GOeGkIchHiFU9ezZ066//nofIsl8yo9nS3kNHsFefvllP4mHTRA7ghDFAsqK2Ia4EHJ1HXnkkZ4necf23XdfP43QQNk222wzL0jsvvvuVpmcZqF89X0cvOUQZOGHaBPuh7PPPtsLVQitsMbDaeutt/b3Et5Ywd566y0vArIPwmi5TxBt40Z+uD333NNYt1+/fl6oYjmeVojCiKd4YXHtFyxYEG3K9b/rrru8YIwnId+zf/7zn94jK1opywTCKN8lvCURzvC64hy419dYYw1/7yB2cY/xvcq3zhWynJoWiYAIiIAIiIAIiIAIiIAIVCEBeVZVIUztqmIEaJBjITwt215I9IwnCUZjHi8kDC8QRBO8ofByQjTBK4OGMQ1iRIBgO+ywg2/sB+8PPIjw5oqHU+EFEjdEpOB9FBcGWKdBgwaRJ0ku+7rxxhu9wDBjxowoZxQhioRB3Xrrrf6wcW8V8kkhTrEcgSJ4lOFJRfjjPvvs488PYQI2eIWVx+COYPXss8/af//7Xzv22GOjY+AFFULI2CfCB942eL3BGC8sDO+Z9u3bR+GUnAehg/379/eeOYiFhHsibnDdsBCK6T/onydw0UUX+RA8Phx++OFedCJ0dfr06f7exqMwiIvcr3feeae/B/DGwlMN45qF5OQrrriiFzMRdBGfgiH83n333f4j4inCECJYuNYIWIijwYNvyy239OvuscceUb42wvMI2eV+fOyxx3y4Ydh/pnEQo/HSI2x39dVX99+dcePG+e8g4aJ8F/EyDKGjmfal+SIgAiIgAiIgAiIgAiIgAvWXgMSq+ntt68yZ4aFDHh7yQyUNgSY0qmncxvPXkPspGB48wciVNGDAgPDR3nzzTe8xwgwSuRN+xIC48uCDD3oPKxrr2YzwpkxG3qny7Is8PxiNcUQ2jo0Ih2AVDG+TYHhXBQ+r4B3GshAyFdZjjJhVESN0D7Hqk08+8eVBfMKSvQhSLoQqjHOGO9sgOIZcVAhTiBBJ4/wQ3oLAmFyuz0vFwMChWbNmfpL8ZOHeSHr2kS+M0FTu+WDkaYsb9zpGDrhgeLoFC9+7DTbYIMzyY75vGPdUEKsI1Ysbno+IY+TQysW4XxDc+E4/9dRTvux8VxFIEX1lIiACIiACIiACIiACIiACIgABiVW6D2qdAN4ciFWEntHoxVsoGN44hBlh5Mvp3LlzWFTKUyQeqkReJxroeBwhuuAtRE4gjHkYPQ/utddefhrR54wzzvDJzwmPShpiAEnZM1l59sU+4knFmzRpEu02iEDMiJ8P4VaIQXgq4XESDO+ZOA/mJz+Hdcsab7fddp4ZQhNhl8HbLfAK24e8YeFz8NbBG4Zk2cHwREtaUgxJLtfnpXna0nEI90ngHV8HoZN7Plj8PgrzkuP4fRLu7eS+wz0YRDP2gXicNNaL35fJ5fFtuE8IISUXHKG3eAwSEkjoLc8APPdkIiACIiACIiACIiACIiACIqBX2boHap1ACFmiIOTRQfwhRA6RKYQ2sYz8NfRaFjxFCEcLFp8OXj2EqWHk5UGEwRBlsJCcHCEKQQtvH7xEKmJVtS9yYgULSedJLI8nCoIaPfeF5OSsx/qEJjLglUJjPy4MhH3lMkYMCV5UCAcYeYPioZHMI1F6yGWFsIjAiCEwkmsoGL3YUS48ZvAKomwIFeRROuecc/xA/iJZbgTCvfHcc8+V2gCvNu7tpDdVqZXSfKAnv2B9+vTxkyFfWZgfwk3j4jE54LgngxF6irAZ9oHwRUhf3Mh/FYz7ev/99/dehYQz3nTTTf57znJ6KZSJgAiIgAiIgAiIgAiIgAiIAATkWaX7oNYJIMBcdNFFfiAkLl14G3mOCLfDELDwgCJfDwnF8TiiVz6M5OvBwwfBJG4HHnhg5IESPEsQXhBPaGSzv2DBqyR8zjauqn0h5lx77bU+5C+cG+ULXk6IVjA48cQTfW4rGIS8WySBx+LCX7Yyp1tGKODNN98cLaJ3uKQhjBAeRk4jknFjiIeEV+Jdg2BFWQhXI3SMhNycA6Ig+Y1+//13I9cW1qlTJ/X05kmU/Q/PqfPPP997vZFIn2tDLit6uIR/EBrL3tOyaxDaRw4rvJ0QPQnVQ2Diu0TYJ+G2eG9hiI7k0qKDAJK8n3vuuX4+nzG8JPGA5Bpzn+AZSX6qYOSsQgTjHMgxx/GCALfWWmv51biP+F4Tlkq5wvcr7ENjERABERABERABERABERCB+k9AnlX1/xrXiTOk0U2jNRkGhMjxwAMPeO+icCL03odHBo10EqgjVDFNUvLTTz89rOaFqbjgEhJTswLzg5hFwxqR6NBDD422LU/up1z2lWs+Hjy8EObCuSFUMU0PbCEPF8myEdgwhCEGGvXkAFp//fWjcyjvBN45gT/H3GmnnZbZBeIFnmsIEAhXrI/nGrmoENvouS5wxkMOoYqk6q+99lokIoad5sokrF+fx7mw4DuCgMR1xkPwiCOO8N51hNNVJhk5Xlbsc7/99vMht/379/fCGOIuidOx4InFvGHDhnlBGYFy8eLF/vqTOwujjAiW3J+UkbJdfPHFfhn/EKIvcsI03nvcSwiaCFrc8wig2GGHHebvG76Pw4cP9/P0TwREQAREQAREQAREQAREoLAIFLmQjj9jOgrr3HW2VUxg7ty5VbJHRBDEIjxvgjdVuh1z606aNMlIQN2tW7eoQZ1u3UzzSArO8ejVLp6bJ9P62eZX5b44NzxnEAno0S1dHiISZhNyhaCHWFQZGzp0qA+9JHQSHoTv0atiMPJ7IVAdcsghXjibMmWK557p+hCOSK4twjbxfJNVHQHuDTwQ6WwgeBFW1d4XLVrkE+VzzyE+ZjK+d3gjZurBk/LhIUUS/nRGfizuIe5rvufZjpVue80TARGoPgLxHHjVdxTtWQREQAREQAREQASyE5BYlZ2PlpaDQFWJVeU4pFatIgLdu3ePclHhVUUuKgTAYEmxKszXWAREQAREoH4RkFhVv66nzkYEREAEREAE6iqBzK/O6+oZqdwiIALlJkCeIrxhCMUi1CsuVLEzxCzCu5Lzy30gbSACIiACIiACIiACIiACIiACIiACZRCQZ1UZgLQ4dwLyrMqdldYUAREQAREQgXwkIM+qfLwqKpMIiIAIiIAIFB4BJVgvvGuuMxYBERABERABERABERABERABERABERCBvCUgsSpvL40KJgIiIAIiIAIiIAIiIAIiIAIiIAIiIAKFR0BiVeFdc52xCIiACIiACIiACIiACIiACIiACIiACOQtAYlVeXtpVDAREAEREAEREAEREAEREAEREAEREAERKDwCEqsK75rrjEVABERABERABERABERABERABERABEQgbwk0ylayeQuLbdy0RTZjbrFfrW2LBrZKx8bWvIk0rmzctKx+EJg6q9imzi6y+QtT1qxJkXVslbLObXTv14+rq7PIRmD+opRNnJ6yPxYU+dVaN01Z13ZF1qzx0s/ZttUyERABERABERABERABERABEagsgYwt7zkLiu29EXNt0ZKUrdqpsa3qRKq5rtH+xrdzjGUyEajPBIZOLLbRv5qt0LaJ9enWzI+/nZCyr8cXWyqVqs+nrnMrcAI85wePcc/4Bo2sR+emfliUamQfjCr2vwEFjkenLwIiIAIiIAIiIAIiIAIiUAMEilzDe5mWNx5ViFJ9V2nqPKmalCrGuGkLbfjEhda/Twt5WJUiow9z586tFxBGTUnZ7+5UuMeLiv70JOGr8uJXs22V9g2sZ+c/59eLk9ZJiIAjgEcVolSmZ/+wCQts09UayMNKd4sI1GMCLVq0qMdnp1MTAREQAREQARGoKwTSilXfT1pgcxekbP1Vm6U9j6Hj51vjhkXWq2vTtMs1UwTqKgE8Cd8cOse2W6uFNW28rOPhgkXF9vawubbDOi39d6CunqfKLQLpCOjZn46K5omACIiACIiACIiACIiACNQ0gWVb464EM+YU24rtMqez6tSmkU2esXiZsn4/cYExJE3zlxIRh/znMHt+sbV0+anSCVWUnvnkbBv2s+5z3c/5fz8vLWHu5czl2R9yGMb3rWkREAEREAEREAEREAEREAERqEoCmRWpMo6yTOwg62eKjNL8pTTFoW5xWFratP9TluYboOtbt65vTV+vxe6ecZ555sKszXnw2WQneDLtQu/82Amlfv44F4Ma5jFu5t4pLHFo3/vNjH0w8LmzC9F2m9gz80rmMd8N3Zsvnf/97KXrMY9t+rQyl3DNbMgsN3bb+cH969dm6fSXbv5eK5h1XM4tzGI/zDG7aNTS5z0M/eD+MfavP9wE4/h8P808NxGmG7gJ56Hrh0Zh2q3DvOhzcnlsPdZhwAOSxO90/BEfMz85L/mZddiHTAREQAREQAREQAREQAREIK8IZAwDXOQaN+usnD4M8Ksx862F8z5RGGBeXUsVpgoIKAywCiDWh10g8Mx1itA8N8xxA0ISHUswDsOCkvnR5/gyphPbIQ7luX2/RTtbtNPytk4PJ3ilsa9GzrMWb/5qvT6enmZpHZ2FVoUg2NQNjJs1jE3H55csb+qW+/XC55JxSze/uRtauAHBTSYCIiACIiACIiACIiACIlBhAmnFKhKsvzdinvVesXHaBOtfj1tgO67bUgnWK4xdG+YzAUL8psxaYtv0ab5MgvV3hs+zzm0a2lorKV9bPl9D70mEyPSHC1dmjPAUDU5Iiqbd/HnuM+sEYYqxy9lX5YZ+kfTsKddnJ4rgCxu8keIeSBk9kUrWjy/Ho4my+CE27XY/z3lyvTd2ofXumsOzv9gxApMfSqYdSj+DMfP5F6bj6zHN9oiCwfPLT7v5pT4nlnuvssR2cS+0uKdarvPd7qrcmjquCFdBwPJjBxghK8xrUfKZeWF+a3eBWS5vryq/JNqhCIiACIiACIiACIhA3SKQVqziFOY4L4K3XKLplTo0jvJXTZu12CZOX2xb9mphLXkLLROBekiAXv8G/zjPpsxcYn27N/M5rOYsTNmYqYuslWuEbpjB66QeosiPU0I8ms3ghKc/SsZ8LjXtloV1GCNAVcYQcvCeCUJCczcded84MSF41kTeOCx38/lcal7Yru4IEAX37EcAS3rJBU86703n7qd03nN4zgVvO+63IICybmUFMO63Vu6eaeXEK8aIWOFza+aXLPPTJcsQx2QiIAIiIAIiIAIiIAIiUE8IZBSrOD88rMb9usgnXOdz25YNbJXlG8ujChiyek9g0vRFriOBJTbPNUibOwGiS9uGTrhtXO/Pu9pPEI8ahKaZi8ycAG4zS4Z008xDTKiI4aHiG/VuHESn4NXinmVRyFZYFvd0QSwgv1KBWnj2T3IvJ6DQxXW4oWd/jjcDecHi4tXcmJCFoOU9+Ny84MkXRC4vtrrlePlVxPDGcp2f2HJuCOO00+4ZhsiFh51MBERABERABERABERABPKUQFaxKk/LrGKJgAjkIwFCsJzAZ07gWDpm2g30HOoFqRJxCqGqPPoTSbPTeZLgdZLJywRRSo3xSt8l309ySeDdtVJ+wkqjzH0HiLkIVsFTsJQHIfPd9yndMsIeczV0Kr47XtRy4hWiVls3IMZHQ8lnQlVlIiACIiACIiACIiACIlDDBCRW1TBwHU4E6hwBGs8ITl6IKhGgfnefZ4TpEkGqPB4heDGFhrLLAWbLuUZyOm8Q5uH5JBMBEchOAA+t4J0YxojEfhqh2C0P3ox4e+VqCL8IWe1LhKy2btw+IWyxXOJwrkS1ngiIgAiIgAiIgAiIQA4EchKr9HY9B5JaRQTqKgEas78tdINr0LqwX/u9ZJrPDIhUuTht4K2Bh0bSM4PPNGbjIUmN5K1RV28XlbseEFjsxKpIyEJ4dkMkRsemWSfX7z7fc5fjMhraNzFzaQOWfnbTCM8yERABERABERABERABEciRgGqPOYLSaiJQZwngATXNCVAMiFF+XDL9qxu75PFlGmF4XoSKi1GuIepyGUXiFGKUvCvKRKkVRKDWCSAWd3ACEkM2w6sSwSqdkOXnlSwjLPF392xhGJVhh02cmr18iYDFuGPJNGMGPLZkIiACIiACIiACIiACIlBCICfPKtESARHIYwL0PjbV5RaaUiJITU2My8pl09A1IuMeETQk+RwaljRo6eFOJgIiIALpCNArIt6ZiOEI4N5Ls2QcPDSXlCGKk5sO0aqTG+LjzsxrurQHznTH1jwREAEREAEREAEREIF6SUBiVb28rDqpekeAfFC/OEGKATEKYWpKiUCF50M2a+aEptD486KUa/yF8BwEKUL0Crjnu2zoCn2ZQsAL/Q6oovOnh0RCDSMhy4laIfQ4iOuI7tkMz02Eq85OuPIClptewU0zkFdLJgIiIAIiIAIiIAIiUK8IFKRYNXLkSLvzzjtts802s4EDB5Z5Qcu7fpk7LJAVFi5caOeee669+uqrNmfOHHvggQesf//+/uxffPFFu+qqq2z8+PH2f//3f3bLLbf4+TfeeKNNmDDBLrvsMmvWrFmFSbG/MWPG2MUXX2ytW7eu8H5qdEN605tcIkghSk12glQQqOgRLJORKwrxiUYcXgnBMyEIVK1dI08mAhUgILGqAtC0ScUI/OHErCBcEarMtBfm3bMQj61sjln0bBiEqy4xEauLeyaqN8OKXQ9tJQIiIAIiIAIiIAK1TKAgW7EIJDfccIPNnTu3lFiFKNWoUSNbbbXVSl2WTOuXWkkfliHw7LPP2nXXXWcdOnSwtdde21q2bOnXWbx4sR100EGe/yabbGItWrSItn3iiSds8ODBds4551RKrHryySfto48+srPOOqtWxKrp06fb5MmTbaWVVlr2+OR6mYQY5QbGk+YvnaZBlskI1UOEovHlvQvcdBCn8I5qhGIlE4GqJdBrRXe/yUSgJgggqjP0+PP3IDrsYqdU4ZUVxCvvWeo+8wxlHmL+H3Ndviw3JA0hn+fmiu7lB/ezn3ZjcvDJREAEREAEREAEREAE8pZATmJVfXu7jjiy+uqrW9euXUtdmK222sq6dOliQ4YMKTU/0/qlVtKHZQgMGjTIz/vggw+sd+/e0fIvvvjCZs+ebWeeeaZdc8010XwmEHdmzJhhTZo4AaYS1q1bN+vZs2elBK9KHN6edKLbcccfb8/f+Ljt2XM7s4muUTXRiVIMmbqNDx5SNKYYgqcAYxpcSl5emUuibUVABOoqAcT48Dy0hKcsSeAR+oMXqvdKdc9bhCyfQ8stYzx0dumzb+HCo7s6AcsP7hkbxoRKKyy6NCt9EgEREAEREAEREIFaIJCTWFUL5arWQ26++eY2atSonI9R3vVz3nE9WxFPtbghSrVt29ZWWWUV70UVln3yySd+coMNNig1n5kPPvhgWG2ZZdGCHCbuv//+aK1kuaIFVTRRNGuxNZi40IqcINVg4iJrMGmhpd6evHTvz04x61YyHY7nkpUXr9DYD6kVmvw57uQaSWlDVlx4zPwy8lKFfWssAiIgAoVGoJU74dVdKODqeGXFPLNcaHWDqYus6JeF1uCXP8dM+5cGeGIlvLFS7vmc6uqeyyu6oWtjN93UjZtYqk3VVpfiHsWFdrl0viIgAiIgAiIgAiKQC4Gcal9VFQpCDqPyesykXGJWwsYaN87dZZ/jsH5Rnr8dXbRoUbnOq6wLCqeGDRuW67wrwpdy5FL2JUuWpL3ezMeaNnVvsytoFbmX0h0ql/OItlvkGj5OiGowYaEtGTfXmkxyIpWbLpqzbGLgIsJWnKVc/pTFf2ljxV1co8eFoPhxe/e1i92bVXUuUTk1IQIiIAIi4MX/4m7ud8YNpbL+uXpF0e/u+T3ZCVguFJtxAydo8cKhaF6xFY2ebw3cELdUS/eSoZsTrVZq5sdMI2hZY+ehJRMBERABERABERABEahyAtVSy/ruu+9s1113tZdeesmHdJE3aOWVV/biRKdOnWznnXe2W2+9NePJFBcX+1xHO+ywg893RK6j9ddf34499lj7+eef025HMu1DDz3Uh/aRmJu3ln369PFhZknPmp9++smXL3jxkOib8pJnaOjQoX56t912s2nTpvljJde//PLL/TqcZyYLDMiNFTeOceqpp9qGG27oczi1a9fOtt12W/vPf/4TXy3n6ZkzZ/pwuk033dTvr3nz5tarVy+76KKLPPt0O6oIX/aTa9nJU7X33nvb6NGjberUqX6az5wj4/vuu88X65///Kf/fNttt0XFJLE66yCiJY1E7QcffLAP74Nb9+7dbc899zTCDJN25ZVX+v0g4CWNMEPuyb/85S/WsWNHW3HFFW3AgAH28MMPR6sWuRwoDYfPtcavTbejtjrQLt7mFGt03A/27wMusK0P2snaHLOGrXDFJrbji0fbJzO/teLuTW3x5q1t9DYLbMC4M+zmmc/4fZ3z9U222wvH2k2jHrMla7ewlAsxKXbnxrG4Zhw/nMsBBxxgeKPJRCBfCPw0rdh+mrqsGJsv5VM5RKBCBNzLAp7FPJMX79jOFh7eyeaf3c3m3dzD5l3T3RacuqItHNjBP9N5tlvTIv9SouEP863RWy5M/YGp1uyyCdbihNHW7IJx1vSeKf63gt8MfjtkIiACIiACIiACIiAClSeQk2dVeQ/z+++/2yuvvOLFhJNOOskLTP369TPEp7Fjx9q7775rr7/+uh8/9NBDpRJssy2N9jfffNOWW24532Pf8ssvb19++aXddddd9swzzxhJuLfbbruoWOPGjbONNtrIfvvtN+vcubPtt99+NnHiRJ+o++yzz7b33nvP6H2uQYOl2hwCD+Xr27ev38e8efOMeQgkCF1M45WFqIMl1ycfEtuTE4ne69LZvffe69fZf//9o8UIYfR8h4iz5ppr+vNEACIR+DvvvOMHeswL5Yw2zDDxww8/eLGGMbme9tprL7/vzz//3PeC99RTT9mnn35qbdq0ifZQEb5snEvZb7/9dl92eM6aNcuChxvTwZieP//PN9bJz1znN954I6zux1wXxKcrrrjCe2oRPkhPjm+//ba99dZbfkDwOuKII6LtvvrqK3+PJUWvYcOGGdcEcZPrt++++9qMadPt08Gf2rHvv28f3v2aPbDJJdZw5p9i2dvDPnQvzxvZx2O+tI+mfW3b9tzc/tb3IBs/Z7K9MXiQffDWELv3gHu9OLZw/AKbef8cW7DY5UtxxvGT53j++efbTTfd5L3gEC0RcrkHuEf5XjBGSJOJgAiIgAjULIFUu0a2xA22Viyc0D3Hi6Y57yvnSesHQr5/dp5YzHNeWeaGhp/9Wc5U24ZWvLLzpF3JDassHVLtc/cO/3NPmhIBERABERABERCBwiVQ5BrTf7bKq4jD+67Rv/XWW/u9ITg9/fTTXqgKu//222+9YPD99997EYKe34IdeeSRRr4hxKjnnnuuVE9qeOTgXYX4gtgQRJh//OMf3hMLsYJtQ/jfH3/84T2g8Lx5/vnnvbDDcRAyEDzOPfdcw0sq2AorrJA2wXpy/Tlz5vj1CGNDFEuGNiLSkLydMT3C4eWFh89aa61lP/74o1199dVGmYPhfYSAgoj3yCOPeO+hsCzTGCFtvfXWMzy44IeYEwzxbp999vECH7zuuOOOsMgqwjfXssM+Ls4hKP3yyy/+WkUFcBOIWiRX5/ruuOOO8UVecEOsIgF7uI70KojXHIIcQg4iE0YIHx5KCKKEfcICIREbOHCgFwvxogohpJzHhv02sJ/GjrYrDvin/WPtI6zB2PlWNLvYps7/3fb/6Ex7d8oX9sjmV9jBPXfzeUpocKx4zkY2bcavXjylLHhEBfvwww+9VxYiKaIhYZgYYuUpp5xi9EqIl14whE/Og3NDmCPRf7AXXnjBnyf3ScjrFZZpLAIiIAIikGcE5rvQ8BLhqsHPTsByLyvIX2iLlq1WpVq7MMJVXAhhiXjVtFdbsw4ujFAmAiIgAiIgAiIgAiKQlkBOYYD0Bvi9q5BVxPCGwqMqbuuuu65vxNOwJ0wOTxxs5MiRPsE2Qs/LL79cSqhiOUILIg/eQfHwum+++YbFdthhh0UCB59bt27tvXGYfu211xhViRGWiPfWr7/+6kMdkzsl/JFlBx10UOQ1htDG+YVziG9DaCSiRqtWreySSy6JPLri6ySnH3/8cS/OIMrEhSrWI6E5AhUeWogrwUOsonxzLTvlCMdKlrein8lvdemll/rrirgVhCr2hwj1t7/9zXbZZRcvXME9aQ1HuFC+l3+3prdOtsd2v85Gjf7RjlxtLzvbp4TAWwAAQABJREFU9rOG37mQDSdUpZoVWYd1u9oj595trZq3tIsn32+zb+5u889byRYe2skdiG76zN9zcaGKeXhAEdaKKJlL0v7hw4cb58R+4kIV+yKkccsttzTE3ClTXGJ2mQiIgAiIQP4SaOYEqB7NbXH/5fxvBb8Zc29dzeZfvLItPKqzLdqhrS1Zo7n/jSn6o9j/5jR+ebo1vf0Xs5O/Nzt+uNl1Y82ed8/7oX+YzVEIYf5ebJVMBERABERABESgpgnkJFZVtFCrrbaa93BJtz2CFSFxeBXROMcQqGjIH3/88RmTb+NFgwiDh00wQgAxPHvwZopb6MnvggsuiM+u9DQiCZYu11SYhzAVDDEKy1QOBCu8oRCUxo8fHzbLOH7sscf8stNPPz3tOjAhJxfePSHsrqJ8cy07Yk2mnGJpC5nDzK+//tozwdOud+/eabe4/vrr7aILL7TVW69sjd6daU3u+8Uafr9UAG1602Rr/Pzv1vCbOfbUD6/67c/b82RbtONytuDozjbvspVdnpLVbMGZXa3dUWvannv/n40a86P9PHFCqWMRHkqYZTojpBOLhzumW49566yzjvfE++yzz6L7Pr4uYbF8H+hFUSYCIiACIlDHCDRwKQRc4vXFm7S2Rfst739b+I3ht4bfHH57lqzZzKy5q37NdDkVv3Jh8k87seqqMWbHDDM7w4lYd7g6wFu/mY11v2PFy3pp1TEiKq4IiIAIiIAIiIAIVIhATjmrKtob4CabbJI1/xKCFTmoCFtj3eCZki1fD8mwu3TpYiQ9D4aXE4IFIXTkfiIckKTlW2yxhRe9kh4sYbvKjBHBECnw2CLUjRBCjGnmcW7kIwpGiBiCB/mzMhneWBhiVXeXPDybIWqRTD3p6RPf5pBDDol/rDDf8pQdsQrPrqoywiaxEFYa9ls0e4k1+Mn12PTTPFv9pwZ24fh9XBfkVOqXJsW3BUvzjfnE5z1aWfGqzez7t37212DQWu7eKXaDaxv4IezUjcl7hiXPg7xSyXBPv6L7hwcfFno59B8y/MN7bo899rD//ve/xj1EYn88w/r37++5dejQwXcqkGFzzRYBERABEahrBFzYd6pzE1vCsPHS34sWzZq7XFfOY320E6R+mrt0GDffVSLcCzeGD2csPUuX3N1Wc/mzejK0XDpunVPVra5RUnlFQAREQAREQAREoBSBaq3xICplsyDwTJo0ya8WPIoQpLIZCdfJFUVOKoQCEqXTi9rJJ5/se4YjDxUDyxACLnReN5m8crIdp6xleFeRwB2RLOSgIocSuZGOOuqoaHPCHMM5JgWkaKXYRFneSaQZI1F9WYJWbJd+siJ8GzVqVK6yc12q0jhPrGurztbo41nW4EcnUI2a57oZd0ltE5bq0MiKV2tmS1ZzCW0nuYaAK8r8c7r5cEGuweSpLvTCWfCKS2xe6mPyPBAaq8rwACQvFSGyhC6G8MW1117b56zCszDXJPtVVSbtRwTSEaA3QHMacI9OzgtEJgIiUHUEnAeWdXW/Kwxbtlu638Xu+4ZgNWqOG5yA9aMbfnW/dSPcZ4bwMmbFpmZrOuFqDSdgMe7sPstEQAREQAREQAREoJ4RqFaximTS2Sx4sSA+YUG8Yn42byhEKpKW46USjIb+oEGDfM99JCr/+OOP7X//+5/PBcWYnvHiia7DdpUZk/T7vPPO86GAQayiNz8Srx988MHRrhE6GDhPen0ryzp27Jh1FZJzEyZG8vDyWEX55lp2BKFwLctTrnTrkqS24Ui3v++WNpLnPjrGmqwx9c9VG7lQC9el+JIeLmFtyZBq8+ftnLqrdOM6XAM8l+hFsCxLnkdI9l7WdrksJ1fbWWed5QeSwpOknfuV0FbET8QrepuUYJULTa0jAiIgAvWEQCP3u9XDCVAMO5ec00wnViFcMYx0ghWeWC6PqB/e+X3pSsu5375eTrRi6O3qRd2ceOXqCTIREAEREAEREAERqMsE/mzdV8NZhFxUmXY9bNgwv6hHjx5+3KtXLz8m7IywwHRGXiA8j/BMCQICvQoSEkf4Gb0Pkqia4aqrrrJbbrnF520iIXtVi1V4jpFcG3GBHEQYCbQPOOAAa9++fVR8ytndhfWNHj3ahzCG3umiFUomOLe5c+fmJFKsuuqq9vnnn/ucX+S7Smd4fA0ePNhOPfVUg3FF+eZadsLgKiSwOE8x3x24S4ZOb0pYs4vHW5H76/H7UiFz+NwxtqRvSyte3XlOIU45ocqo2Dsj4f4Vl1zkBU56P0xnXANC+fDUQrTLdA0QQnO9BumOU9a86dOn++TplAXBFZGVgXLjfUeIIL1X0hsgYawyEahNAj06lhZ9a7MsOrYIFCSB5Rqbbbjc0gEAeF8hWCFcjSwRsMh9Ndi9HGTAWrleafG4Qrxay4lXKzvvLfcbKBMBERABERABERCBukQgp5ZIRXsDREzBaySdTZs2zeftadOmjW+ss06/fv38qrfffnu6Tfy8e++91/f8tvHGG/vPhMRtttlmPj8U4XdxQ6A48cQTvbfP+++/n1NOofj2uUyHkDKSqqdLrB72Qf4qkr/jeZXO8EIjVBEBLORpSrdemBfyYRFKls7wTiOcjF4BYYxVhC/b5Vp2EuojyOVqDb+ZbU3vmGzNTxtjzS752Zo8/ZsVzVriN0+1a2SLN25lfY7c3Bo1bGSPTHjFfjvcJazdqZ0TrFyIX4lQxco33XSTP8+yuK2//vr+GiDipTPEQhiV9zzS7SvTvEcffdQ22GCD6F6Jr0f4a7ifuF9lIiACtUMAj8ebb77ZwguVdKXIZZ1022meCFSKAL99azgRajf3kur07mZ3rmV2zRouvr2r2eauY472TtxyOR3tS5e4/dHJZueOMjt2uNmNY83ecHkxJ7owQ1mdI3DrrbcaHeqUZ6BOg9c225SnblYdcOhVmnLEc3uSe5V5Tz/9dHUcUvusAQLlvYb5cj9WNZp093e2Y+BIwb3PC/KqsPIevyqOqX2IQE0RqFbPKk4CjxESjnfr1i06pzlz5thhhx1mCxYs8LmeQoJqenwj0TRhfCRM54scN7yXyEVFSBfhdxiCFAnZ8W5C5CJvVdx4kCIEEVZI+FVZtmjRorJWKbUcby3C9uh5D8PjifNIGuFdCBUXXXSRF9fwpokby/Gs2WabbbzXWHxZumnCDu+55x677rrromTy8fWuvvpq/xAcMGCALx/LKsKX7XIt+1ZbbZUxN1jRjMXWcITLNTV8jjV+YWnoQqN3Z1nDFd3bYWep9o1cF9/OY2pUExfeYDbv6u7+2nayFeygNw8yesmjJ8i77767lFcUouedd97p191///39vjL9O+OMM3xYKPcQnnt9+vQpter5559vkydPtmznUWqDHD4k76fgLYWISKhoste/L7/80u+1Z8+eOey9/qxCwx+vN4RnQjXzxeiwITw/kt/ZfCmjyuGeH+6lxQsvvLAMipYtW/qOMPBkLI/xouWf//yn/03Bized5bJOuu0qM+/VV1+1119/PdoFwnr4zeM+5XvESxGebZ07d47WyzSRyzaEmyPasV9eqIRwcvbJC6KQjzF5jK5du+b0m5vcrqzP1BtGjBjhOzPhORk8s7Nth7csbBjz0iK8wGEbfkMIYU9neOCG3JucZ/KFGNsQMn7bbbf5PJphH7vvvnvaekBYXuXjkPtqu5Jn51SXoH3EbOfq7QZyXf3m6jWfO/GKAWvrqn5rO4+rtV2yd8btnMAly2sCCDrlfYl15pln2jfffGNEFlC35nlRW8bzmVQH1E1DXZw8qpSN7+XAgQNrq2g6biUIZLqGRBFQn15ppZWiTog4TL7cj5U45bSbpru/WZE2KLl/k989elknLQwpQUIbOO2Oc5yZ6fg5bq7VRCCvCeQkVlW0N0Aanl9//bXhBYXHyHrrrWeE7JE/ioojn5OCFJU+GvQIC/Sch9jCDxshhXgu8aOGkBVvfFx55ZX25ptv+n09//zzvpJIA4MKLT+ECAYnnHBCmReCSic9EuJ5Q4gWPdCV1XCmMkvuKsqE/fWvf/XCSfJgNHQ5V8QluBxzzDHeY4kHGQ+ZIUOG+NBBPMdyMR58CHYXX3yx7bDDDp4v+w2NNnqba9eunU/iHd9fRfjmWvZSHnELi61o/tKh2QXjrMHkP0XAonkujMHZkjWb28K9OtmSXs0s1dGJVM5SLy17S9JoRMDkvhkzZowPlaORgicVbydmz57tQz032mgjv49M/2jAIXjhMYEoyD2JJxX7QezkRxRmpc4j087KmB/um8cff9znVqMnQe4njoeoxg8V5d1+++39fERXesZ8+eWXfeOLa1oIhkD1f//3f1FPleSXSyf2ViULwiwRPXmuZPJ0DMc755xz/LPqtNNOs8suuyzM1jgHAnh94lnLcz7k9MthswqtwnMvnicwuRPCaxGIk+Jwcr1Mn8tzz2TaR1XM5xnFS4pgPPMRq5599ln/OxTmM+bFCNx5tqSzsraBKc9Xnr9x43gI/oR8f/XVV/5ZGl8epilrttyTYb3yjKk3EGbP70CwffbZx/A6iQtQYRljXpYdfvjh/ncizOd3Go9cngHhhVpYFh+TF3PKlClepMr0AoGXJdQ7qOsEy/TSKiyv9nEn93vaqb3rRtcN2FQXXj/MiVaIVwzu5ZHvbTD0ONi1qdk6TrhaxwlXfdzQxHlvyfKKAPVE6jpx42UKL3733XdfX9eNL2M6F8E6uU1NfqaezTMCYVtWNwlkuobUcY877jj/bCQtS6EaL7954UEbL244cPCbgvOFTAREIDuBZZWB7OuXaylvF//973/b0UcfbVdccYUXUtgBX84DDzzQV7p58x03BAXe4v7973/3AgKN12DkpKKinmzII6a88cYbfht+vBmC8UCgwk04YLCQrwi1O2701Id3DeITRgMFr61M64dtqfgiVlF5ZzqTXXvttT7kEU+lIG6FdWmgU3lOqu9heboxjRHedNOQRoRiCMb+qMDzViNuFeHL9rmUvUfzrtbgzenW8Lu51nDUfGvym+tGbKHLR+WEqlTTBla8pss31bu5LfqinQtRcG/ld25ni7dcGqIYygjr5HVBmOQNBD98XGc8GoLxRoI3dSyLG/uhIZJsqCFsImRynRGt4sabR86ThkbSsuXiCvdHGLMtwhT3HuITA/tmHsb9SJ4xRDE8xhgwjkHvlZSB3GuFYIh5CMQ0ChGU+Y5Xt02YMME37jlOWWJVdZcl3/dfmd4AabwjiBCKUt1iVZwjnq6E2uIFg2CC5wy/I3zneMZWxPLtnuH7wksVnhMIN+E3i8ovog0emvw+8LzfddddlznlXLaBWRCqaEzihUVjmedm9+7d/e8tORqDJZ+b8edhWKcyY65nEKo4f16C0akKIj/l49metJ9++skQszDWWXPNNf02vPjixcSll16a3CTt53gIVfI8KQsvoQjnoA6RFBTS7rCmZ3ZyYhTDNiXi1QQXCvidCz/5rsTzaqITsxhe+9WssRM3yXW1nhOvGFZUY6qmL1e64yG0J8X20BkP9eh49EK67fNx3uabbx69qMrH8qlMZRPQNSybUbo1nnjiiXSzNU8ERCANgdJqTZoVKjsLLykqtORQ4q0oKnzfvn0jASjd/sndg7swlT4aG3hTIUgFd/x026BeI3JRCcd7i4oyP95UThEt4rbOOutEwll8Pl4URx55pH9DSqUg5HjKtH7YlrLxFjoXO+KII4yBxg/nFsJUsp1btv3ipcOAuy1eWpQDASvbG7WK8KUMy5S9aQtb07pal59dxfbuWa6L7fF/FtXVdz/9+zO2ZK0WNt8Nxau5Cm9DN9PZcdufZMedc9Kf68am8J5KZySs500NoSjcTyRVJxyFt3J4LSXtscceS86KPtOgYJg4caINHTrUXwMaefHwlmhlN4H3TzbDYy7pIUh58exj/zSWuUeCcc1J/o9nXAhn4dgIlcleCMM2NT2mkcebIL63NM4Q25Kc8argO1dcXOzvOTzFkuIgIb+E73Jvcn6sw3eLhuenn37qBWnODXEBbzfuzcoazws88XBPR/ikYwEqVIiBPINgHgxBGvbBa4LliKGIAJQnV+P84MH9SZhR/HrDiPsV0RVxFfGS86RcNILhwXOKEC8EAd6U13Xj2obwsF9++cUL/5xjps4gqvJ8eYsbRCnuM7yq8NLFa/XGG2/0nVJkez4my5LpnkmuV5OfaaSGlzZBCOR7Sj4QOhs56KCDvECHkJ9OrAovNrJtg6iOIbIjXMGS33N+XxGIeKHEvY0h/gdhy8+ohn94vwaPKjz2+M5yHoRRIKAR8hTv2IQihBcB8OI5xHeN8+K3Hu9Kykyuj/nz/8zjxHeY+gTP7ZBuIDwzOH9emGQy2OelWJUscDf3e8ywc0fn4uzqLj/ONfvWiVcMY1xI5FAnYjE8MtnFOboQwb7upVI/J1zJ6ypJss5+JuKgvIJyRbapKkAVOXZFtqloect7LOrqPFPLew0qWr583668/LKdD1zhm4ktoeTUZ5P11Wz7rM1l/CYl698VLU9Vcq5oGbSdCJSXQIPyblDR9QmLotJLYzXTAyS5b95YUjmkUp6LmENjlPwVVM533HFH/1Y5KVQlj5H8HBoBlDPp4ZNctzKfEdIoJyJALudW1rHYB3zZX64NsfLy9WWYvsi6jWxuu36/lvV/dHnr8h9XyX/rNydUOe+p5Rra4s1b24KjO9u861e1+eetZIv+r4MV93QJ0UuEqrLOo6zlPLARO7fddlt/fSvzAOdNO705brnllhmFqrLKk2059yMhUIT6pRPCEC7wDqAxzThfhCq8INddd10fOoMIt9dee3nxBQ8oDEEFgRRuhNCQyB9hh/P49Vf3Zr7EvvjiCy/4kteN/RDuh2BBo5F97LTTTlHoDGIC1wIRtzJGYxZvEvJfEEp8yimn+OPgsYaIReMTL4hgHBMPROxf//qXz2WGFyaeKuQ1K0uopFJEIxlhG6EbDz+2gwkVDIyGPMehgYyQDDPCdMlBwvyjjjrKlxGB4YILLvDb5Ms/egPs0an8PxN4dr711lv+NBB7OE+ucU0bz/DQGQXHJjcRZcPrl9AtKq1lWbZ7pqxta2J5yHOH1xEvg6iA47mMsSye0DiUJ5dtENoxQujgiEd0EHARsTFeuGAcFy9qxB/eGFMhrmoL5SH0MYjL++23X3QYBOOkBc8vxCeEKiz0CoyoFAQsns9heO6557xQxQuNkA8s7Adxj/BWvKMZI2jVeeO3mZ4DB65gdqnLlXiHy+V4osvxtpXzgCa3lftt97/x/x5r9ncnTl7nxoPc9Xd1AVndIkAvw4RLU1/kO8uLWH6/sn1feU7y2802PAP4DePFZXgZURkCvBSjHhxyvrKvV155xc8j9Ue+lbey5ePFHvUP2jS0iXhxycst6gT0ch63c8891z+rqLckjZdscAtienI5z2Fe2mS7rlW1/+Q15DwoW6hXURY+hxdI8bJW5PrGt2ealw/sn2cxz2R+3/Eu5l7lJWjI8UjdlOc5dXJeKvBig3ps+C0L+43ff2Feckz9IRP7sC4vpCkXubv47WKa357wm3HJJZf4edQhg1FXYj1ezJArkhcxvORs2rSpf9EXr6+GbXIZUwZ6hacuxD2HVzFtqNApWC770DoiUJsEcvKsojdAcy/fepHXQFZ4BAgZoGehL2Yu7TI7EMBRqocTovq5t659W9u8Tu4myZAfJWyicX4TwIOCfDQYjdQ11ljDe6PghYYYQ4LXCy+8MPKIQuBBfEZkISQHLw9C6wiJIY8GP8z8wCIeI85QOeGH/ocffvAeDfygI4Ih1uGpkavQmokilV6OiRBJhwbjxo3z50HljnPjB5vQ2PAjjVcFDV9Ch0NoLhUKBEa88zjvbEbliHBOhF8qFlQw2A/loFJPjrRgHB/D6yoe7kgFBaMhnCmZt1+hDv2DK55MXG88yGgQbbrppjVyBnjzcQ9QCUTACN413BM00BAluFcZuG40FBAnM+VXynTP0JjKBwveRvE8jvHpqVOnLvNCJJdt8G6mccX1w/DeRWTFEGR5c014NkbDJ25ceyr9lXmZEN8f03yXMUIQg4UwKD6nazwHTyuuFaIdL6/wDAuG11/cEMvDucRDBMO1JvQy3pssoYfcR+UJ348fLy+nW7tq4WZO2GNw19jGOk+rr53H1RBXBxjtpr9yYwZzz8bV3O//hi5kfQNXB8BTS5a3BPhdxquX7wwvijB+z0k7gGjLMp6HwfjuIzRcc801voHLi2M8ggnv5vcNT2DCvJlfUeOlFc8JXkAG43vOPBro+VZeyljR8uFdzQsF8uviuY3ozgtKXhxQj8BbFaEfsQVDbOH8eenDi8C4UZeCER6miB7xl/L8/uFBzEu7bI4BVbX/5DXkvmFe8Fbld4LPyU4syns/xs8/Po0QBAvqoOQPRIDlxR+5BuFHfZO8hbwsJFqA1C68IGSaSA5+D5jm5TIWri/1UV7apjPu/XB+6ZYzj/PlvDl/WDPNiyT4YLzMpdwsD8Y9wjx+46g7IvzxIhRxkxenRAwgvjGmXkN9piyDD2IzXvy8LOYeRLzitzukzeFahPMva39aLgK1QsB9Ucq0ERPnp0ZMmF/memEF9wadb1/KeWiEWRrXJQLFxanUqDmp1KOTUqnTRqRSB33z5/DXoanUDWNSqfd/T6VmLip1Vu5HMqWhbjNw3lL+u+sEpuhaukpUyr2FSTkBJ+UahH45328nykTrOHEimu/C71Ku8uU/u8pvyiWwT7kKQMqFyUXruMas35b9si8njEX7qsw95JLmR8dwCdFTLiwqxfPI/cCnXCiPPwbH5pgM4VjubbP/7ISrlMux5OfHz9XlhYvWDdswdhV/v51r2Ppz5DxDGVjGOk6oi4739ttvR/txomA0n+n4fuvDtAtn9OfHfVPd5+PE0YhluLbJMfck5eD6ujeXqb333rvUNs4zNfXwww+nXIUx5d4K+2VOiPTbpLtnkutU9zmyfycO+3I5YTNiGs4znB/rucZndG4urDVaN5SxvNu4ynl0r/OddmJzylXyo2O4XI2eqXtzHc1zIXrLHDccvyJjnkmU23k8ldov5WG+e3Nfaj7HcDnxovJwHzrRNBXWZxvXqCu1TbgnXEOh1HwndPr9uAZmynle+WMFhs67K1o3PA+o+5R1jqV+POvKB37z+e2nDkBdIF43oK5AnYG6A3UIWbUT4HvJfcjvZybjGRbuVdZzjehoVdfgTrmXM36564Aims+Eawz7+a7BnnLeM8ssc2JSyjV+U+6lQKllmT440cDvz3kcR6s4ocbPcwJxNC9fyhsVKDFR0fKFeoETo/xvUHy3/L4479WUE9dTTtTwi5yA4tm4l4TxVf20e4Hgl3FdXch9qeXU15hPnSKbVdX+011Djsv9RDmcZ16pYlSUX6mdxD64nMgRC/fyILYk5Z/v4d533kQpJ/xFy51oFN37TrSJ5ofyuQ4NonnJCScO+vpwfH66+5vl7gVsyomx8VX9dLr1Q9uZMjtBM+VCzktt5zyZU+HaJ8813f6cZ13KvXBOOSEq5TyfS+3LiXkpF4nj2bkXMKWW6YMI5BuBnOI76A2wPF5VvBHhDQyuhrI6QqDYPbN+mGP28CSzk92b5wt/NHvZhThMcaFMhAJs297szO5md7kQgVPdeEt3bdvk5JhXRwComBDgDRMW8uEwjWcUXhb0RoR3RbC4pwxvCYPhzRJy2RBqg8cKnkS4uwfjLVF1GG/MXGPU75rwO3JV4VZNaE/wskh33BDiyFvN8JaSt5+4kWcy3k4Fl248zDhHhvvvv99vwrJ4mBlhk3Fm8f0mOwiIL9N0xQlwL8CdRP6EdWFcX8LZnDBlhDDgSYi3AWGKeFiFELmKH7Vmt8RjDIu/uXZCSVSIdHnCct2G+xfvCnrl5X7GK5C8WISxsw++xwyEfMAUT6PwneGtf1Va8LqMh8XwljrkiArL48d0FfgonyAeCoQq4nEQLL4N9wKeIlhIWB/WGzx4sD9P3nrjJcpzJuQKi3foEtavt2N+8/ntpw5AXYA6AXUD6gjUFagzUHegDkFdgjoFdQtZrRPAQxKPV7w8glFXp0dpDA/BYHzv+U1jXX47k56DfD8IqcJDmmdrdVi+l7c85aNOhDcaz0y8fUgBETe81nme4FlDD+YY3mZ4yLK+azhGq+NtgzdQ8MByL8CiZUxQT8NCxxL+Q5p/1b3/NIcsNas8/EptmOED4a14T8WNFBbB4BqYMQ8vJzyOMHJs5pvhbRevh1M+PL3I3UsdhvOJ/+anKz/fd+69cH/F16FewL6oI+GdFzy+4utoWgTyhUC1qA2ECJQVPpMvAAq6HPwAklj1k5lmg2cs7c46AKHr642ce//GbiDUzz3YZfWfQEgQHHdxpjEYRCzyLAQLOZn4HBdlcE0mLj4YYkDSQoM2Ob+yn8lHgLtzCPOiosezCPdw8u6QcDqdBYGL8MW4xc8rPp/peIgTObGS4RDJ5J2ZemtCKKHRkI9Wmd4Aa+t8EBLS5cdIVx7yVRAKFq/0Ja9buu3yaR4NSe5x58EYFQvhJVj8Oxvm5bIN33tyX4VGLKIVoa7hvic0jk4F+ByEQPYfcjDGmYbjVmYcQhtD/ij2RchGsCDAhc+MuZaE81FZJ78W4lTIFcjyeCMcQQrj+xgXtLg/EKkwGjdB9A4iYBCs/QqF9K+xe9dJ4nUGHFp/ciGCn7m6xOdumOqEK3oWZEDI2sSFFG7m6hKru7AV1SVq5S7huxxexMQLgGiA0WtrML4LfLf43sS/I2E5Y/IyIv4iAse///F1KjOd7+UtT/mohxCGDLNMv/WEfRFyyYtBUi1giO10IkGYJu0qjDBCjNB6XqwgVoXQZULfyXdEOgFCvsqy6t5/tuOXh1+2/YRlpJ1IGr8ZOE7wDE8n3oWXh8m8Vcn91PRnvnPkXU1nCFb8DhE2ym9wuC/SrYsYhWXKhcpvGFwQUumQqLsLP5SJQD4SqBaxKh9PVGWKESAHxSdOnPrUDSRPDeY86GwTV6FEpFrFCVSygiNAxwI0zHhbircPFSvnFh29faVhhrBDQ5b8CqyPxbvhxZMq3hse+Z/4jADGmy/yOmX7ga0MdIQK3iQ513D/5glxCs8a8kIxP2mUhcTLvGWkUc5bSd400+Bmm5BPKrkdnxHkyHeFVxZvoEnmTuOY3sLId0XDOF4xTddQSLff+jYvmReots8PryPyh9EbHI2AYLyZPcIlDqYCG89rFJaHcbhnwufaHpODg5xs5J0gvxbJZV0Ihi8W3z3uSXKc0LBhGu+nXLZB5AlCFTlQXIicz0XHjtkP36eQkw0BiIS+CEI0lrCqFqTDM4NrQ4ONBLGI0BjPJPLrIZ6FHmXpKIHvMwIbAhTfZdaDEcYzKf6cCp5g5PPh/IKRpDicJ991uCBq33PPPX4VGBe8wQshiuGgLk5FdHUMRKvBbiDn6etOtGKgZ8FNEa7c0F11jJq8bzKJF7xc4rcp3hEDHlMYgjO5H9NZ8MSgkVsdlu/lLU/5guc2z91MhqhCvSP+ooFcVYhVCFjh+Uf9gvpG6FCJfEzUrZjHMwzvLJ59uVh17z9bGcrDL9t+wrJM+yNvF2zDC8mwPuPw4iXbS8n4+jU1zbXOlkMKwQqxCkE53Bfpysb3mPsCr/FMFjpFkliViZDm5wMBiVX5cBVqogy/ujedHzlx6qPpLi+qqzwGW8F5UFF5RKRaWZXHgKVQx7yhQ6yiYcePIIIMCVUxl7fJJ3SkscY0DUUah1QGQqJl3giyDUnKaQiG/SAY0chE7KLhSAWsOow3aQhtNMypIPKDHwSnUFEMvYJxfCo4iHK8QSYxOiIcwhXhg4Q7lWW4T/OGkPAh3kZzfJKKYySuretGb4AVteCBAv/u7o0doWLcF7Vt9AwXxCi8CkikSq9y8fsiWcb4snDPEPKZD0aCeAQo7t1kkni8oTBEp5BonnXL2oZQO65XMASeIPKEeYSj8F3mO01C2zDNcqZdjpawapWMCTNEAOO7zZvlIJqzc7wM+EzlnN6hMN604zmAWEUZeR7hfRWeZzzH4oaHCJZkSIcMhELTKLz55pt9mC+sgxEuJUsQ4GUXw74rmI13whWiFS/HfnH1kJdcqCADHfZs0c4Nrv6xvKuHyKqVAI3WXC0IJrx0YchmPAeqw/K9vOUpXxD0EE2yGQnX8ZJFDOcFgMsp5Me8XHE5OH2oFp5UeHFzfAR7emukrhKm2X86L6J0x63u/ac7ZphXHn5hm2zjuDd/cr1sy5Lr5sPn4J2cqSyhd/F0nYqEbRCaw/JcPB+r63scyqOxCFSGQE4tEXoD/D4ucFTmiNq25gjMW2L2zu+uO2oXEnKKyyHx1C9Lhar27u3mrh3NLu/puqF2LuB0WS2hquauSx4fiZ5HcFlf1fVMh9gTGnY0VINregizonGIZwpCFdM0gk8//XR/doTcUcHCGwPD84MGI2IFjb5QeQhvj6rK6wjPrWOOOcYfky6iCVPAKHPohh6xgsYnRqOT3FOIKZSLRjbzeHtJwziE9sU9LfyGJf94M4lHC9tRyQy939EQRhAoZHPJfL3nGQy49lUdFpaJbbinMi3n3nQJwX1POAgf3C9xMSrddunumXTr1cY8Gji8OeU7G4zvI73WhTCHMD+My9om9BYY1k83RozkexI8i7jGGI0mGlRlMU23z7Lm4TUVjhcEIwS5pJAW9oN4jKcXIhXl43mGNySeoOSeCkalnu8vli6ckN5D8dbEwnHhzb7pDlyWhQB1C+oY1DWoc1D3oA5CnZI6CXUT6ijvuroKdRZZtRDI9BuW7mDhu8tvKN4b2QZ+26vD8r285SlfEBfKCjdDpMLTjec3hucPdRV6dBs7dqxPx4AnTMi9xLMWC3mr8CRFbMfzJher7v1nK0N5+GXbT1iWbX/ZloXtcx1zjeJeiLluV5716Dkwm4X7iN/xTIYYyED6iWzf37As1NUz7U/zRaA2CcizqjbpV8exyUP1/Ryz95wH1WfuTeYC9xlr4XTJjd0bTN5i9m5JHMfS+fovAgkCvG3DG4ZKESFPeBbEw9kQAxB/8EaikUc4AD+IyQoBYXAksSZchi7h8URJdqUckoEmilDhj1S+SDxJnqyQDJ63VPEufhHKcKHG9Rv3+SCc4f1FhZA3TOTuylYRiBeQ3AIM8ePFl5OgNp2l81ZJt15dnUdYFuIAXjrk0ggV8Oo4H+7JeFLxbMdAXEWwKo+lu2e4t2vLyBc3depU35ihYYlgwneWkEvua76zcdGOsMAQGhjKnG0bcp7kwpNrzHeYCjzPAhpldExQXcb+OR75deianGdKCOXgmHg5MsQNjyw86Sgfoni6t9Z4PGQ7X0IrCYUkrJhnGc+T+H4QvAkXrClBNn5+dWqa0D+GA514NcLVU/D2pp5CnYXhIScYUk/Z2nlc9VI9pbaubRC++V4j+KYzfvd5BiV/09OtW93z8r28IS8Ynp+ZwrZ4plH34Nkbr0vxQowwbkIBwzMqCPasyzMRz1lCsKm/nH322eXCXd37L1dh8mDlwD68lEgWKXgdJudX5WdyUWWz0IFRjx49Mq7GeXR3L2HJ4cpvVabvKfcddbR4fSHjTrVABGqJQE6eVeXtDbCWzqWwDzvD5Z56YYrZ6T+YXTbaubI4sWqhE6r6ul5HTnaVjdv7mB3dzayPe2PjHmIyESiLAGINb+niQlV8G34M8UKgYRx+4OPLwzRvd9hPph/LsF5VjmlM8kPOEBeq4sfgvGhYJ4ULzidXoSq+PyoE8QZsfFkhT8Ofxn6+VIaS17s81ybTPVOefVTFungB0UBLJpWl4YKAUx7WFdkmeQ6ErBAeWZ1CVfyY3E94SMWFqvjy5DQ8ENQr+/3k+vNMSe4Hj1GuR6YGTrI8Bf+ZOgh1Eeok1E2oo1BXoc5C3YU6DHUZ6jTUbWQ1SoCee/lNx2sYETad4XXF9yAferLN9/LisY6R/zOT3XvvvZ71xhtvXGoVOm9BZMdTHU9WelmP5wNEjP/888/9i0E2zDUEMBykuvcfjlNXxqGH2JDIPlnukBMxOb8qP3M9Qw7F5H7xEP7vf//r61TxnIvJ9fjMCylebPE9Tmd4cPXu3dt/j+MdtKRbV/NEoDYJ5CRW1WYBdewsBOgS+lvXe9mNY81OGuFc6l3Fjl54yAVxYBezW3u7ZB6rLu2Jh557ZCIgAiJQDgL0BvjT1OJybKFVq5MAjUMqqGHI9ma1OsuhfZcmgIdZuCaMQ0+BpdfSp7QEqJvQWyB1Feos1F2ow1CXoU5D3YY6DnUd6jyyaieAEIwQjqcOOd9CMvVwYLw1LrroIv8x12TeYdvqGFemvHja3nfffZZL6HNFy07YXv/+/X1eS3JjJo10CniD82LvvPPOK7WYcGvybZJT75133vH7ib+MYN+EpSEe4gUXOr0ptZMsH6p7/5nEzixFqtVFiDdY6MExXhg8xeO5HOPLsk1XhAFpJPDijRuedYcddpj3nqbTD14SZTO87BCd+a6G3K3x9VmOxzGCJ156MhHIVwLli4Uox1mg5pKs+dVXX/Wuqyi7PKxr2niTQbgAPXzVppEAETWcH/ZMXQHnXL7Zi11+B/f28a1fXTKYkrdeTd2bSip827Y36+nc52UiIAIiIAIVIkDljdCLbBW4XNap0MGzbEQeMAZZfhEgp5WsCgi0bWy2W8elwygXFjjI5bEa7MIEP5+1dOjolm/v8rT0d2GCraqt+loFJ1L3d0FCb4Qcwl/pSGWvvfYyhA1yO9IJC6FDhLKTzy8frKLlJa8locVPPvlkqbx/VX1OdCpDDswzzjjD5xgcMGCA95gi5IvnBzwRstKFXRKqF3p0CyGAoXwhbxWfK5p3qDr2H7zTCZcnBQBesPGyhvLn25iQzV133dWLVXS0QwcshNrj7UQHG3iKEx6bq8GB/K/kkGRbenHs0KFD1s0322wzn0IBLzs6KllvvfV8KDteXYhOfA75YbPtiBcnrIeQyT7Jz4m3FT35cs8PGTLEf6fx6pOJQD4TqLZfe3rH4gvCl5IvTMgLU9MwEIj4wa0psYrcFeSuIZQornoTT04uHQS7CotVY+eZveEEqo9d5W1RyRvGlZu5ypt78NEVdIuGNY1XxxMBEajHBCrTG2BdxtK9e3djyGa5rJNtey0TARHIQoCXbgyHuh7UqPO8/ZvrWXC+2eOTzf7rErNv7uo8OzrhihxYsowEcgm/Z53kengLIlIdccQR3qvn/fffj45BuC+93Wbq2CBaMTbB/glni6cMCMeMh2aHeXHvodhu/CTrhPXCsqoub9hvchyOW97y9enTx8g1hPhBxwyE9QUjdJvcnjvssEOYVWqMmITIhYXk6mEFwo8Z8Awrbwhg2Edl9h94xK8h++VlDu0gzpOBciNWhfXDsdONWSeX9dg2rFfW9ch0nHTzH3zwQZ+TFUEHr7dgiI0IiySwD8cNy/icvL9ZRk98559/vh166KF+VTokwFMu0/qsRC+2iKh06nHFFVdYilzEzvC8Iycj90qyTZ1pf3xPaYPjRZX06uOa3HTTTRVvk/pS6Z8IVD+BIvclKFE9Mh+M3gDNrdUL1+wcDQWXL9Tw4cN9TGyOm1X5ajwcEatIOlsTduedd/oYfrqT3XPPPaNDktz2+OOP92o2Pww5G27vQ9xbxVecSEUCUqwhXlTLme3gRKo18seLijdDMhEQAREQAREQgewEMuXSy75VgS8d6epAbzrRarDrLWtJSdWVROy7ONGqXxuzBq5uJKtyAtSf8QAiZIjQY8LuMuWyrPKDV2CH5S0v4dW33HLLMjkAK3DonDYhtx0vsKkzIyQkc+DltJM6sBLho5wnifgReOraeXK/U37udXIeIohWxEJPtHhokb8sKeyFfSII43mFQEUvtxg9/+FNxe9F3759lxHJwra5jAkr5HwQusgx+f/snQfY3MTRx8dgbAMGTDGmBDC9hRY6oZfQewu92MBHKEnoHRJCL6YTQifU0GsIHULv3RAwBhtMB5tiDNi+b377eo49vdKdrr115nnuTietVrt/rVaz/52Z7Wz3I08dPU3XRKBpllXMyBAI0Px/uyZ8TazVjxon5jE1gf+3klSfauwGpJ/eLgiqNfUzbdNuXcu1/NsRcAQcAUfAEXAEHIGOggCTc3x20lAIWFo9oB9bSXBAL5H1lbRaVUMh9J6so5S4S5SDwXq1sZDas+LVlBcSjlVUs1bpa0Y9cIvDSqerC9ZOFly+M9aVVWL51Cv9+/fPtJqrlDfeSRBYjRAINz4ujkBnQyAX48FqgNUKAf/yrNSDYRfLmidNKvNcj3Njk+I851gaAt5Ve03icOWpk10jz2+rcnyvSth9qoDdqyTVdxNasphbzdzXUyVsBTV77+kzh3lw9TSOgCPgCDgCjoAj0AURYLJu8wHqLzOzyNPqIoi+NFzDJFwxSl0ENSg7+tLvdFJv6lwqbhcEyKuUF4Fjjz1Wtt122+CylvccT+cIOAKOgCPQdgg0fPrp5JNPDsHphg0bFgKbE6iOzzPPPFOsFaahxLPCPxvWGJNElp5l9YORI0cW09kGPr7kwVKiDz30kOywww5heW7yqEZwzdtmm21k9tlnlymnnDIw/vvss0+YVcnKB/NLAtoSaJdzWOabZaovu+yyklMoN2W0lSIw4eQ//sBJeeqpp0IdMMHEtHOxxRaTg/c/UH7+5whd+eatFmULooqlnI+aR5dxnl9kZQ0o6kRVEkr/7wg4Ak1EwFcDbCK4nrUj4AjUhwA6EboROhK6EjoTuhOE1f6qS12r5NXoSYvQ1HclP7uLInDqqafK9ddf30Vr59VyBBwBR6DzI9DwaacffvhBxowZE2JEYbnENmJWTF999ZX8/ve/D8QTQRpZoYDVEl544QW56KKL5Oabbw4vjjiIIAHLWX0Ecueqq64SrJEguDg/r0BsHXzwwcE1cZVVVgnlYYU+Vgu0AIBJc1VeYIMHDw5+5QRHJEDeRx99JJBnLGv64IMPCqsoQGJBwFHXceM0AKgKVl/8B49YrrjiinAuZqHrrruuyE8T5bEHHpXTzz1Tnp35Ubl7rfOk7ypqdrqRzhjOocHTXRwBR8ARcAQcAUfAEXAEshFYuK8In5Gqg931mchTanF1t1pcYam+llpZbayrDLLaoIsjECFA/C0XR6AjIID7Km6HhNBxcQQcgV8QyBVg/Zfk+bcgfiCZ8AWPZdCgQcEqCTLq1ltvLVkx79JLLw3WVdNOO21Y2YJfhOU6MdNFIKwgkVhNodzqDyGxfhFg/eGHHw5/WSqW5WltlT4IJlYzIbAiK/SxnCerOSDvvfeesIQp17j22mtLloQlWCBB0rEWY7ncI488MpzDV6UA66TBUuvvp5wnfe7TwOkad4FgkFs9fpDc9eGjcuFp58r/HbQvyTqdeID1TnfLvMCOgCPgCDgC7YCAB1hvMuifa6zPO5W0euTrlmDsU6gVFqTVJjoROF3D52mbXBnP3hFwBBwBR8AR6J4I5HIDZDXAtz6qfzU9yCCWBMUND8skI40Meoisgw46SLC+GjJkiO0u/hKfCjfAVVddNRdRVTxRN1jBBAuq+JoQUeecc05YtQ9yClLK5LjjjgsWXCz7ucUWW9ju8DvzzDMHSy+UTY6PHq0zeDlloQUWkkvXP0H6HP5+S5wFPa/3erPKX646JeTw0LOP5czJkzkCjoAj4Ag4Ao6AI+AItEKgvwZc312DCQ9ZsCV+FQmIbfVndQ+8USdRx06KCdrqRN/hCDgCjoAj4Ag4Ah0FgTadXoKgIvD6H/7wh8xlb/fbbz/Bh/zOO+8UAh/Gsvbaawdrp3hf3u3DDjssc7lQrKtuv/12ueWWW4KrH3nyn2VGd99999RLzDDDDCEtrouPP/54iGOVmtB2TmxZZnm7adeSye9Qs3RowjV11ZrNdJZvxl6y0NgWs89vvlFrq04qPlPcSW+cF9sRcAQcAUfAEeiKCKh+JbvMrqEV1A3wNiytdJVlfllJcFPVvwjE3jPXvG1XRMfr5Ag4Ao6AI+AIdGgEcr2hWQ1wodmrXxEwWfN33nkn7MKFL0vw18XVjwDtSSG+Va1CnKosMUstuyZufpBGuDKWI2CWWWaZkKWdl5W/PKdxu27RgJ8qC/aeS2QlXdXvdJ3tG6SzfihSKlwHF0TIPBdHwBFwBBwBR8ARcAQcgQYhgK6FzoXuhQ5GIPZrPhY5+H8SdLQGXcazcQQcAUfAEXAEHIHGIdCmllUjRowIJYeQKicEXCeQ+bffflvitjdggC5VXKMMHDgw80zcAVmV0Mpnv3nKSaaWvtUFPtDg6leNEnnre5FvW0ioPrsMFNljzlZJfYcj4Ag4Ah0NAVzARY1CGzFZ0dHq5uVxBByBbojAAJ143Ud1sA1m0tUClax6U/Wzsz7QTm5qkZ1VN51rym4IilfZEXAEHAFHwBHomAjksqxqVNFnmWWWkNWXX6r5dRmBpMLSqG9fXdklElbdq1U+//zzsqeyah9uf0g15SR9Kon2sNbxSLUkg6iaVZWjtdXUXKUHipKLI+AIOAKOgCPgCDgCjkD7IDD3VKqjzSty0MAWHQ1dDZ3tqo88nlX73BG/qiPgCDgCjoAj0AqBNiWrWF0Pefvtt1sVxHbgfjdy5EhZYIEFhIDqjZI33ngjMyusuL777jsx66tf/epXgSgrV04ye/3110OeCy644C95Dxvbsv3Stxo5XeHdblaRkxcQmaPPL2l8yxFwBByBToBAo1zAO0FVvYiOgCPQHRFYSledRkdDV0Nn+49ONB6oOuoTuoqgiyPgCDgCjoAj4Ai0KwK5yKpGrQZIDCjkggsuyKz0JZdcElbhW2655TLT1HLgvPPOyzzt0ksvDceWXHLJYhq2hw8fLvfee29xX7wxbtw4ufzyy0PQ9lCvL3WZ5FOHizw6ScHBpPwMJbEI6tmzcaRbXAbfdgQcAUfAEXAEHAFHwBGoAwF0NHQ1dDbiWX0zXhXVkS06HbqdS24Efvrpp7Cq96KLLhomgB955JFwLh4TgwcPFiZ355lnHmF1cOStt96SAw44ICyqFHbU8XXuueeGvLiWiyPgCDgCjkDXQCAXWdWoqq611lqy+uqryzPPPCNnnnlmq2yfffZZOeGEE6RPnz5y5JFHtjpez4677rpLjJSK83niiSfk5JNPDqQTqwKaHH/88WHzwAMPlA8//NB2h9/x48fL//3f/wmuhXvuuafM+T8lpg7RF+8r+oKcZvKQ5ud1VOHpN0XJef7HEXAEHAFHwBFwBBwBR6ADIoDORjyrw+YWmblXi06HbsfKgS65EGBV7TPOOEM+/fTTQFZNPbXqxypMUqOD48UwxxxzFPN6//33ZciQIfKf//ynuK/WjRtuuCHk9f336tLZDvL111/Lm2++GeLttsPl/ZKOgCPgCHRJBHIFWMcVpFFy/vnny29/+1uBBHr00Udl/fXXD6vgvfrqq8FSaezYsYHImnPOxgUhZ5W91VZbLczq3HfffbLOOusI8a8ef/xxufjii8MKfEcffXTRDZC6QqpBRP3jH/8QVv3bY489ZL755hNWCrztttvkySeflPnnnU/+MuPuIpdrjAOMpzbsLzNNtqjIQyL//Oc/gythr169ZM0112wUfJ6PI+AIOAKOgCPgCDgCjkCzEFhsGpFT1DXwJl3F+Z7PW3S8F3RV5z2VZJneJyHLwf7QQ6oAq/z3v/+VhRdeuJj04YcfDno3uj4LGpkQnxbdevbZZ7ddNf8SwmP++ecPE941Z1LHiZBle++9dxgjbLrppnXk5Kc6Ao6AI+AIGAK5yCpLXM3vFFOkv9AXWWQRIX7UXnvtJVg73XHHHcVs55prrkAeQSalCaRTLUJZuNahhx4a8v/Xv/5VzGbmmWeW008/XXbaaafiPtu46KKLZKWVVgomzX/7299st5DfrhttL+f2/5P0Hab1HKAzcHurEjP/1LLGl2uGWSPqxQdrMsiqLDyKmeoGafKki8/xbUfAEXAEmoWArwbYLGQ9X0fAEejQCPSaTGR7jWO1rMa0ulBdAl/9Ti2u1Mpq0K9ElpuuQxe9PQv34osvyvTTT19CVFGeF154IcSijYkq9q+66qryzjsa2L4Bcv311zcgF8/CEXAEHAFHoCMh0KOg0l4Fwhz4lVdeEaypfv3rX8uss6pi0GQZPXq08DJl9T/iUuWZzQGi9957L/jYzzzjTLLYq/2l18PftJR0HZ0hssCck8o+ceLEUC+ssBZffPE2qVeTYfPsHQFHoBsi4GRVN7zpXmVHwBEoReDHiSLXfSxy/yR3QPS+HVVf7amEVjsLYSmYyK1mQSLiSmH1X638/PPPFSdUieH68ccfyyeffFKS/QwzzBCsnggDUovUUs+s6+SpR9q5lc77+9//nsuyCvyZmK7mnqWVx/c5Ao6AI9AdEGjXN23fvn2DSyCWVG1BVHFD+/XrFyydNtxww1xEFefwQpl33nll/aXXkqXv6NdCVE2tVl4HzCWyq5ous4JMJJNNNpnwwl533XXbrF7R5X3TEXAEHIGGIOCrATYERs/EEXAEOjMC6Hjoeuh86H6QVscNE/nsp3ap1ZgxY+Tggw+WFVZYQYgJRVgLVts+7rjjhAnZNGH16l122UUIfE76WWaZRTbaaCO57LLL0pIX9xH2YrPNNgu6LPFkce3bddddZdSoUcU0bBD7Fb162LBhIV4V23y22mqr8MvkNCtss4/rEvMVIdA6+66++urwP/6qtp5//etfQ14QW0nJWw/Ou+eee0I+uCw+9dRTssMOO4T647K42GKLBewhrkxYwZw62EJOhx9+ePh/9tlnW5KwYBMeHEyQgyN54Wly6qmnhgn7YkLfcAQcAUfAEShBIJcboM+uK2ZvqAn4OR+IfDdBZIGpRPadU2TG6memStD3P45AExFgZpPgpSilxICDRK0kBEVlFUzIY9xyk4ISiDKKErnAAgsE8jeZhv8ozO+++26wXuzZM72bQcH75ptvgvKclke9+ygr7gWsDATZHLsfEIAV68o0obyQ2lmCJSgrGDGbTXwMlM6kVMJxwoQJAZ8vv/wyrIzEPWq0gC0DAYsJkmcmPc85ldoVuIIP+LPy07TTqhtNg6VSGdIux0IZfHgWZptttlZJ8rZtO5GYh7SrtphoKdde6m3LDCBpyzzPDKLSpNKzWgnbtDyr2UfgYsrJBBflTGvLlHHEiBHhfgwcOLBif8ezlzQsJ99ke/3xxx+FgT7XnWYajWWUEKwkKBvthzQWUDqRzP92BQSWVve/k6YUOW+EsixjRY5W97X99T25aN82qx1tjXhI/BKofPPNNw+W/88995z85S9/EcJcPP300yXtGPc4VuLj3QVBAmny0UcfhbhSd999tzz44IPCStyQWCZ4CEC6QKbQpok1S7/58ssvy5VXXin//ve/hWDq7Efo99ELeF6wGmIbsW2eNd7F7GcCmPwRdAXIIWLDxlJLPZ9//vmQV/xcV1sPyvDBBx+EfHr37i3g079//zD5zLHHHnsshA5hQSiO0SdxDerFKuEI1+e/6Rjkt+yyywp9zoABA2SbbbYJ+GNlRngS4vfeeeedFfuskLl/OQKOgCPQ3RDQTrWiDP1oXGHoh+MqpuuyCf7zeaGw4yuFwvb6ufzDQuHniV22qu1VMV1BpXDTTTeFj77g26sYXeK6qpAWtt9++4L2ZcWPzsAWdECZWb8vvviisPHGGxfTc67GWisoKVA8RwOmFjSAaUmak046qXicDR1UFtRSsphGB3eFY445piSNuv4WdOnqYhq2ufeNFFUCW5VVlcLiJY444oji9WOc2FalspguuXH55ZeXnEf9dCBQTJYHRyVyCuoeXJLPjjvuWFBFt5hPvRsah68kf43NV+D+lZNK5+RpV+jTsQYAAEAASURBVBqnrwAmMaa6MlS5y1Z1LE8ZkhkqgVHQBTNKysTzoYOJYtI8bbuYWDd0AY2Q31VXXRXvbsp2pfZSa1tWl5USTLhvOmgsqUOlZzUPtiUZ1vBHB+Al5aQt33///cWclKwr6IC9JA3PsJLuxTTJDfqpuI3a9tZbb11MqgPQwp///OeSdFtuuWWB65koMVDS3sFQLVXssP92VQTQAdEF0QnRDdER20CUtC5oyIzQJg877LCSK+rEVGHppZcOx3S16uIxnVwqKGFUUOKlcPPNNxf3s6GTKoXll18+nKNxWUuO0bfxXPCuIo9YOEZ+OhlRUJI2PlTQ8BoFJWRK9vFH41gVlltuuVb7eVdznVhPqKWeZGw6jBLIxevUUg9duTCUiXKpNVoh1kl5T6tlWDh+4YUXFq/DBv85R624SvbrglJhv1qkFehXTHRyqLDKKquknmNp/NcRcAQcge6OADMALlkI8FL550ctCslOrxYKj3yZldL314nAiSeeGF7YvOh1hjx3brrCTIEBxu9///vc53SkhM0ov5rCBywZ5KllUXFgjSKXJShkYK9LSxc0PltBV8EM/xkEIpBWDMR0VragZvGFoUOHFnR2NqTRJaeL2UIKkA4Ch4EuSjP5QkYiGsuiwGDzN7/5TeGBBx4oPPHEE0FZY1+sYBYzrGEDxRJSTa0cQv4641xgkEk5IFMQtZQICiVKpX1MQY1Jrfjy1IE8wIRt6g0e7KNeSCUcScNA2ogBcDzggANCHmeeeSaH6xbaFGXS2feCLmZR0FnbgAcYoxynSZ5zKrUriDquy73VYLoFnXkuqCt02Mc9aIRUKkPyGgx6GAyAt1oBFNTar2Ck3FFHHRWS523bljckCPXk0xZkVaX2Uktbhuyh/PSbtGWeae4b+9Q9J1S10rOaB1vDrNZfnjHKxHNFX6bWHKEtcz8hLhEj684666wwqDZCuVx/R33J97rrrgskLmQlH54XE2trEPKvvfZaQVcyDufQNyKQiORBn0dfp7EwiwNP2r9LN0AAnRDdENIKXTEiIppRe3WVC20uJlXj69DnqgV1eMfyfCL2nj733HPjpMVttfYpqPVtQa2Jw2QTByBk5pprroJaWrYiquxEdUMMZYG4j6URZFUt9aQMSbKq1nqYLqCula3IOK7D882zn7wPWWTV2muvHdLrSomcXiL0O+QVE4wlCfyPI+AIOALdHAEnq7IawE/6oj/7/RYlZI/XC4U3v81K6fsbgECtZJXNmvGy74zSjPJD1GBJFYtZCMSWUnZczfaDsrTvvvvarvDLLCC4amyGgg0A1fWpmAZFEAJk/fXXD/sYrJE+tjTCCgHSxBTac845J6RhFtiE8zTeQ0HdC2xXXb82EI2tRCApKBsD2zShLurOEKzJqG+aqDtEyOOrr74qHlZ3iLCPQXUeHC3NfvvtV8yDQTdlU9eA4r56NgYNGtSqnLfeemvYB2GTJlnnbLvHYYVbH2i5L5XaFaQY9Yit5NRlIuzDiqcRUqkMyWtAcFAm+pdYwJr93I88bdvOxYoA8ssGgM0mq2ppL3nasj3b6pZjVQsELpjQzpFKz2oebIuZ17hx/PHHh/uEBYgJFiCUE5IOgSyCmI4Fq1AIrSy5+OKLQx5Zzzq4c74uQ1+SBQN0PoiRWbHFqmFy2mmnlZznf7owAuiG6IgQVuiM6I5Nkg022CC0W95xWcK79oQTTihaAKpbayCiYovA5Lm6OnfIV13RwiHry3kvZImR9hDJsTSCrKqlnpQhSVbVWg8jq5jwSxOwpA9iMiaWLLJK3SlDeiyo6VtigVSk39AYYPFu33YEHAFHwBGYhEB6MBnthbu1/KS+9EPeb1mqeKYpRA6dW2S29Fge3RqnJlYef39iIxDbYKWVVgpxAnR2O8RMIJAlcXgIfqlWAcVSqGIS4jMRJwdRywAhJgCBQFn5UU3khRgECDFWiL1EbCICht51110hdsLuu+8ejquVSDiXVSCJJ7TWWmsJq9nEQlweYiQQs4R4C6z8aEJZldQIcZ8IxEmcA+I+rLjiisVYUJXKb3lV80tsF+q2xx57lJymgzcZMmSIqCVPiJkQHwRryv673/0u3l0Sv4ZYMAhYmYDlEkssIdQVIeYCogpjKIMqYDL33HMLgU1NbrzxRmFBBSUdQlkIskrAV/BvlMw000whpgTBZ02IIYUQhDZNdAAsauUV2kpWjC3ajyqjYVluy4M2hsw333whRkUlHImJQ8wQViRVJTXECrI2TP6NEGKXKKFSUs7VVlstZM29IsZJUrLOuf6eZ4RVTfO0K+4jwnOrlmxhm+XKEdpJvZKnDMQDiUXJ2fCX1WZjUSuiENuFviFP27Zz1fotxHRTQk50UGi7m/ZbS3vJ05bp+2irxFsxoV0ixIpBKj2rxOxCymFL7Kh6hGDGCG3K+ifaKkK8MITFTGhntFMlz0OcGNLw3sgS+l61WAvPPPGoaDf0kdbHP/nkkyG+DoGVaXc8N8S8U9JTrH/gl0VU4hWFLeYXz7ZLN0FgYX2GjtO2eMpwkWc0TtMPeu//PFCkV+UYkdUiRAxC4krF77ZkHkqIFHfxTBCHcI011kiNrWgJ0V8uuuiioBOxz/oAYi5dc801lqzklzhNiPWfJQfr/FNtPbMuV289TJdM5o/+SZy/vM85Map4dxBEXq2YRScLQn9DvC/0KPQHF0fAEXAEHIEMBJy2SyAwTmfFThjWMkt24FuFwhelsyCJ1P63QQgkLavMOkabbXG2jG0+uF5hjWIuRrafXzOlNmuJ+BjuNDZ7ZVYyOmALVkikw0oIwS2MWfX4XLbNKoXZ+P3337/VcWYhbdYMayPOMTexOC+zMipX/lphtZl9c1WxfHTwFspDjJU8gisgZbaZQ8MT1z0T7gGYkQ5MqD8WDma1YnXG1chmdbGMwXQ+iYtZc1jejfq9/fbbC1gxcT+x3tIViVplbVZXWbOorU7QHVidWFywcuclcSQvXB8pDxhgdQZOWIfEFltp18y7j3tC2ZLCdZLWc5am0jl525XNLGPZYrE4iNfB7HG9krcM8XXsnGOPPTbeHdogeGApmKdtc7JZDupgI7jJcH6zLau4bjXtJW9bNnfVuM3hykadiDmHVHpW82AbMqrji/7Uykq/Qf9CGeN+TANFh7g6tGH6Hp4ttpVgyrwyVpTkw8f6en7BGqGP5pi5GFpa3hfJ+D3xRf70pz+F8yyf+Jhvd3EE0BUPGNqiO6JDoks2UIh1pARpQYmN3Lnae19J17LnmOUtLukIrvDW5iv9JstTr2VVLfW0yiUtq2qth1lWoQtmiZJVBdz7YrH3X9p59EdKGoZ7aJjS52y77bbFMAlxXr7tCDgCjoAj0IJArqkfVgN866MftX/t4jJ+kkUVK//NoZZUR8/jK/51gFuOxY66YxRnE7FEYfWYgw46qMSCCEsHLKOwdtptt91CyZWokFNOOSVY8jDbrubuJTVihp2VczTId7B6YkUplmlm1RqsU5SUKF53iy22CLPsGrsk7FdFQzSeSVjNhUw13pNwLBbKiqUR+7HmQFiJB+unrPLH51e7bTN9yZX/mAVE7Hi5fB955JFQZ+pnSy8r+RZOYUaQVYDAGKsDZm4RrMvYZkYUizOwZsb16KOPFlYiwqoLod5YbGDVoYPdkBZLuUMOOSSsTBQSNfBLY9CEsnA/WXWI6ydFA7uGVb50oJk8lPmf1ZOwyEDIM2258DQcSc9+ykNbw7IHASubBQ476vxK3n/LjhXLsqTcOdZukmnidqXkpWhMjpC9unkGSzP+8IyZhVPWtfPsz1OGZD4811ghKKEoSuCGsrBNG0SwHMjTtqmbkq6i7rSixGI4t5FflEOJppIPFhFINe0lb1tWMjPkzbLyWJ8qCS1KBoV91BWp9KzmwTZkVMcXlpdYtyJYg1nZdDKjuPKWkmzB2o3+x6w82KaPyhKeP1ZUo12CM+8AhL6ZZwTLWkTj/ATLUFZO0/hWof0krVZJpyR4eLdo3CzRiYyyVl2kd+mCCLA69DFqYYXuiA455H0RdMoGCVbmWIKnvWuyLoFVOMIqdOWE5wExy1RbDVcXxwgr47GaXdZHYy6Vy7rqY7XUM+si9daDsjRKsEDl/UjfgrU5Og9WmTfccEOw+m+kdXmjyuz5OAKOgCPQIRDIw9p1i9UAJ2gwdYtRxezY6PS4NXnw8jTVI1DOsopZLgQrAH1owscscdJiPtlMPLNsOmgJnzgdM+NmWUV+lhfXsDgkzHiZNZAOgIK1ARYHBNZk1p7zTj755GL+e+65Z9jHMcQsq7AEsNVyLAA159oKaXG5wol1fpm1AzN8sehgLJRPB+nx7pJtVkf7wx/+ENIR8worjViUoCnWnTpgnWCxjkiH5QP7uVYsWCPwQcA1xpZ9BHTmPCxwmiXgwnXNasSuY9dOxqax45V+sdyi7PGqiOVwVIU/pMfajEDwCLE/aDfJuDuVrp11nLywMImF2WrKWc6yqtw5edrVtddeG65BoGsTC5CNJWK9kqcMadfAui22pAEfrOHAw+KkVWrbxHxTcqbYJxAXivMbZVllOJGnfbDuqaa9VNuWuU92LX6xSiXIui2qkOdZzYNt2j3Ju8/6VbNUUsKyeO9sZTMswHh2zGoW60msKKmTLXyQ53pKqIdzCJxulhXJ2FO2qhdBqU2wNqUMXA9MedZcujEC6I5mYYVOiW7ZIME6nHYWx3BLZk2/QT9v72919S2oO34yWcl/JU5CvmYRRNxJrnPccceVpIv/8CzyfKHXxFKvZRV51VJPzktaVtVaD3v+eb9nSTWWVSykohM4rbKir9AJwYA11sgujoAj4Ag4Aq0RyGVZtdBsvWWh2Vti/egLrGvK1Rp7hngDxKg6Qi2qpvNwXh3lRutyx6EouvRxsJDiD5YIWfLSSy+FQ1hk6cA0fHbeeedicmYIY2Em3MTiB6l5dzHGwxxzzCH33Xdf+BCDhVl7RJeOLuaP1QbCMXVdCdt8EQfFrE+IeUKMAgQrgWZI//79Q7ZYtsRi/8EjTbDwIYaLKmnBAoV4NBYTxtJTF2I0YemA1QVpsErQgWJIYrOyyTgPzCgqIRPSzDrrrDL//PMXsWUnMaZ0YCxYLzRCsJpRd4ZgIWH5ERMCaztdBa3k/piFjZriW9LMXw1a28pybpNNNgn1J1+kEo5YySCUz+Lb0Kb++Mc/Bqu0Rlgg6cA5WOiEC036Mgsuu0fxMbYrnZOnXfGMIPHzRJwh2s29994bjtXzlacMafkTN422StwyrP7AmDaHGB6V2jZxW2j3xJ1jtt3uHf1Ksr2nlaHSPmLG0DbiD3Hy+I/kaS/VtGXypM3RV9HnYa1x3nnnBWtHi8GU51nNgy3XqlWwQMDy0uJPYdmnwYpDduqOGfpR+iIsZikvwj2ib0a470mhzlgxJt8huvpZSEr7sLYWx+jjoMW8s+cUy1PeFcRro08H00ZaYyTL7v87AQLojuiQ6JLolOiWDRL6CYT4UmmCBZVOOIXYihpYPSQhXifv36w+WIl3UVfoEIuN+G8IVuC04yuuuEKIuZkmWF3xzGH13mippZ5pZWjvelAmHXYFq33qlLRsBmMlFsP7iLimZj2cVhff5wg4Ao5Ad0UgF1nV5cF5+CuR/6jZ/5QKx8Fzu+tfB7vh0003XbFEBByuJBAfCCSKWk21+sw555zFLCBvLOg6O6eYQhVMFRS4WFAkGDgSNN0E975k/joTb4fDr1pnlfzHXQ6xIL0lBxvwB6xwz9EYFCWKkZmYWxDs5KVwn2TAymAeNxcj2CydWrWEQfkdd9wRgqYzoCXwMANkC9hNEFfEgmqzjXKGi41dd7311gvBxTnXBBIANwRIrEYIpBduh9yzWKgDbSO+37g0IiuvvHKcNHUbdykUS3PPIhH3FwLP3C0q4RgHcI4vYgRq3Nbj49VsL7/88gFjIyg51wYqNhhJ5pd1jq4GKEusvJnkaVc2wDeymGtw/yETjBRKXrea/3nKkMyP63NvNfZQIJaNWFIrsDAg477ladsMDtWKqvjR1eTCpdSyUCAx6xXaBUHw4w8DwWraSzVtGddcnklITAgZsIX84TnkGUUqPat5sK0XF+4Pz3HcH/O8IbQ3wyf5rONiixgpGf5M+oJUgnTCbTwWc2eCpLf+AHfmWHA/RJjAoF/DdVjj4gTXaPpdF0cgIIBLILokOiW6JTpmA4TQAegOEEVqbdgqR0Ie8AwzSWD9sa6oGdKpVWDoi+OTeIbVolJwt1UrRjHdiHcxLsK8Q3BXUwug+LRA3KvVVdjHO7HRUks908rQXvWICT4IKfoT3P+YDEwKoRNY5IYJtaTelUzr/x0BR8AR6JYItDa26j57MPE/+eDjC4WdXi0UdtBlh1/5pk0qr7O6BdxK4iCxbXLhDnyRcm6AuP+Y4IqjD2pwBWFf7EZnwYIJqE0a3H3M1Qp3FYJO436F2bq5AZImFnMF4XxV1MIhHQiF/NiHixsuJ2zj9mYuHxpDK+RNgF3E3ABxpTGTfZZa5zw+OvgN6dLKHw7U8YWLIdfQ+CsFtfgpEFya/9TdhMDe1B0zfo3rFI6Dj65yVvIxtwDOI9g67i64GeD6YgG0OR9RJTm4SpGvklghWDF5cm2N9xLS4HbFf87V+A2hfLgIso971AjBzZP8aCsacyaUA7cI9hFwNRbqg4tYmtA/UBdzBeB5tbKzDQZqkRP2KRmYC0faKHnSLnAjxb1JV28LebCsdSNESbWQH66clJ1g+1yPuppra3z/uWbWOXsceGLh1eG6NLtKpXZliyJwPy+77LIQvJw2B2aXXHJJyKPer0plIP9k3XQAF8pw+umnF5SQKODySZkIrG5SqW1bOvtttBug5Zv8raa9lGvLamEU2p21fyVcQ5sgsD9tl8UjaJfkoYR6KEaeZzUPtsk6VfOfZ5B7xT1VoryghFxwVWSfxkILWVlfS3BonVAI7wTaO89/WnvXAXpwSyYN7ZIg1DyL5Bk/g9Z38U6g37fn1BbxsLaNq1Gy39QBaDXV9LRdFQF0SnRLdMx3vm9ILe19rqsCFvbZZ5+CrjAX3slKLoU2rBboBUIXxGLutDppUDjqqKMKajEVdCC1WAznKKkT3PHjc9BTZ5tttnB81VVXLfAcXHnllYXtttuuoOR22G/6TnxeI9wAya+WeibdAMmnlnrU6gaI3kM/ohbXoa/CvRwhuLpOkhVwHSTIOn0JQe3Re5VUDOegq7g4Ao6AI+AItEYAE9UOIbxQGGS2pSy5+BKFAVPN2LJ6y22fNvzSWXWCQOCFpq4LDb9mZ82wVrJKXf0CluDJ4IPVmyzOi+0zQoH/DHqQLLKKeEMM2uxcBnNs8yGOAgMdBna2zwaI9p9V4hAbQLGf/PhP+fjPL9dB0sofDtTxxcp8FlvFykUcmji2hMXwUQuEoOxaurRfKwoK15ZbbllSdwibWHiGY8yoazJ+FsSeEVRcD/KPwXQjhXIZsWl1Uveh4kCca0GuccwGn8nrm7JsRBvHUSjtPnIu9xbyDmHQYNdK+w2J9ItV5Qx/S8dgwtqEpavnFxI0Lid4s9qbiV2f+29S6Zw87QplnWfC6kUZIIkaJXnKkKwbuHKP4+ea5z+WPG07Ts8qddTR7n18rNHbedpLpbbM80B547YOEW2EM8cgN+k7Y6n0rObBNs6v2m36W4svZm2K55pymRCrC2LejvNLn0/sKZNkm1C3qJI+mnOY5IhXC9Vg7iHf+DmC9LYJkLidx9dmW10q7dL+290RQLfcXvveP2ks1O/HNwQNCFK1vCxp87Q7dR0uEB8pTSCo1NKw5By1JC/ooinhXZh2jrq7FtTCsmQFO64DWUW/zvOZFPQkSLGkQKLxHCbFVllVC7DkoUK19dRFcAIhxHsilmrroZazASf0syxRV/DQh8TH0bHU6rKIMffD5NFHHy2oRWfxmPUZ9CNOVBlK/usIOAKOQGsEcpFVbRFgnZcbMzJtKUv+apHCgD5KVp2kJJkGOmy0ZNUJawqW+yWYt0sLAjazzQucAbRZevC/nGVVHEyXtDYY05WgijPw7GegyjEjBLLIKkpDYFICcXOefSC5WCLdBALDBr+kWWSRRcLsvFlaGVnFoMkGSqSDmLGgzuSVVX67Tj2/WEgwKDPrgnryis9lEIfyV064ZoxXWloUO7OGSzveiH0EQmaWOU2prjV/7jF1M4u5WvPBugVrMoiPZgjlVBe8qjDOc06edsXCBjzHBOFthuQpQ/K6lIUy2TOaPM7/PG077by22Nes9sIzQt7lpNKzmgfbcvlXOsbzy72jXWUJ1m48TxB3eYW0WNCW6x8Y+ELilUuT93qerhsioP1w0DEhrC4oJYPrRUPdeIM1obrwVnwncy36PvQbyF50pLzvHp6tZ599tgDBDbHP/7aUauuZVba2qAd9IQScut4XF32w8nAM/LFmZVENrNK9XzF0/NcRcAQcgXQEerBbB9Fl5a1RGjBaUzUzyDqxKYjREcc7KVuoeg+++q0stfqy8vG4L+STURoDo19LrKJ6s43Pb/M6xRfvZtsEzSVgrq58UxIPijhMBB3V2fiqA98q4SI6QBI1hRcLVpqE1QJXkyaWDTbYIMQx0VnLELyUgLyqKIa84nS2nVV+O+6/joAj4Ag4Ao6AI9AJERitQcoP+Z8GOZwgcqjGslq8Ja5mJ6yJF9kRcAQcAUfAEWhTBHItecdqgPWIzoKHwNXtuUqOzl6E4IWhDD9psMjLP2qpUh8NgNkEoqoevOxcygyXaEG/bb/9QnAQcDwvrjpDnJmX5dlZfwmaHQfOtnr069dP+NQirCplqz9lnZ8kqbLSQVyWk6zylzvHjzkCjoAj4Ag4Ao5AB0cAHXN7Xa3y4g9bdM9TFhDppbqniyPgCDgCjoAj4AiURaBpb8vhulSuxpEQVg1jme+ppppK1FUqrJ6mrhbFQqn7V1iamtXB1Lw4bG+00UZhdRIS7bDDDsVlqIsnRRusasTS1iy/nRSuwypQ6oYVVgGbccYZhbz//qczRD7TVdl6a/UnKQysWEU+GrcimU3Jf1ZGIR3WOllSqU6sRkQeGqyymIX6rId9rMrCylMsW441D9gtvfTSoibDIa26Y4Sl4ZdYYgnRAJthNaRtt902szzgyopFLJsL+aJxA8JS8pfrUsUuzUOAJd01TlBYNap5V/GcHYHmIoBV7VsfqWWtiyPgCDgCjkDtCKw+gy5RPFWL7skKgS6OgCPgCDgCjoAjUBGBppBVLMOuQRZFAw6L+mjLNttsE8gS9dUOyzzrKmrFpXBx3dI4QsGCCGKGbT64TCEaGFbuu+++zIqQp/rfC6RMLJBPLBd70kkniQZaDeQPy/m+/NLLsveFh8hezx4vE6b9pfoa5FAgkc4///ywLG+cl23jynXmmWeGpc4hvrKkUp2oH2VmyVoTiDr2HXPMMcWlhHU1IsGdDNdIXeVEdPW08F8DVgeSavDgwWG5W12ZLBBQhlmcJyTV2WefLRobSXT1ooCJxkyS3XffXXbeeeciznaO/zYGAdqRBrQWjUvWmAw9F0fAEXAEHAFHwBHovAhgXYXc+bnIWHUJdHEEHAFHwBFwBByB8gikh7Kqb6+tRMYqIwR0NCGIq60+RKDGWLKCkRPEeqmlloqTlmyzgojWsNVqYhbgWi2pQtBcO2n8LaMKe8+/TTiH8+JVS2wZbiWMLHnJry2jfcIJJ5Tsz/qTVacXXnghXJ+V60z22GOPYpmUYLPd4fess84qHmNFFVZ2MgFf6khdCLJpQlBYgnlPNtlkBcodC4GhbcU2VjBzcQQcAUfAEXAEHAFHwBFoMgKnD29ZHfD2xq9A3eSSe/aOgCPgCDgCjkCbI/CLaVEZTqtaVxAsShAsd+J4SroEtJx44onhmK6UEX6b8aVkUAhuTbwhJcWCu1y4zoSCTP7QaLlg2SNlvVXWaXVpytuzZ0/R5ciDpVcygS79K0r+hHoljzXqf5rb4+abb17MfsiQIcFKzHaA72abbRb+Pv3007ZbLr300mC5NWjQIDnooIOK+9lQAlBuuOGGEIwcy5+kRVZJYv/jCDgCjoAj4Ag4Ao6AI1A/Ahv2b8njfg0loTqpiyPgCDgCjoAj4AhkI5CLrMo+Pf0ILoDIZZddJgRXj2WllVYKbnS4uzVLbrnllpA18acmn3zyXy7z0jciX+mqLAOnlKNPPu6X/ZO2CIKN2x3xth599NGS4xBgusysrLPOOoLLYLNkq622apX1nHPOGVaRgyjbcsstWx1fYYUVwr44jhZkFJKFM4QVeeGKOGLEiJDWvxwBR8ARcAQcAUfAEXAEmoTAQlMHHTToouikLo6AI+AIOAKOgCOQiUBTVgMkRhWxnYhZpa5pou6AIaYSgc5Z9Wy++ebLLFAjDhB7CiFIeYk8Pabl78r9ZPnl5wkr6ZUc1z9YIt1xxx0h+Lm6yhUPY1WFUJdmyoILLpiaPSsCsvJc3759Wx1nRUCE1QFN3n777RCcPUm62XF+CdaOQFYNHDgwbPuXI+AIOAKOgCPgCDgCjkCTEFAdVN7/QQSddJnpmnQRz9YRcAQcAUfAEej8COQiq6qt5pJLLinPP/98WLXuv//9r2iMp/DBDRDLpWOPPVYWXnjharPNnd4shViJsCjjNWD7i5NmsVboFyyusC7S2E7FJGxQPiysbrrpJjnvvPPCCnpYh1133XXSr1+/ostdyUkN/MOKfVlS7lh8DgHeR40aFXbtuOOO8aHU7ZEjR6bu952OgCPQvRHABVzUU2Wh2Xt3byC89o6AI+AINAoB1UHl6o9bdFJ0055NcXJoVGk9H0fAEXAEHAFHoN0QaNob8te//nVYvQ7rHeJGHXLIIQJ5hHva0ksvLXfddVdDKj169OhW+UAqISUrBA7TWawfVSmYs4/I9FOE46zKlxRiVhG7itXzbr755nCYsuJit9122wVrpeQ5jfwfx/hK5lvuWJyWVRX54K7IyoyVPltssUV8um87Ao6AI+AIOAKOgCPgCDQDAXTQOVQXRSdFN3VxBBwBR8ARcAQcgVQEmkJWvfXWW4Eg4YrTTTedbLrppqIr7cmbb74pZ599tmD5Q6DwPAJBA3GUJe+++26rQ3PNNVfYRzmK8vb3LZsLt1guYU307bffFg/HG7vvvnv4e+WVV5b8NtsFMC5DPdtgNlDd+j777DOZddZZhZhXaR9IPVwIiYXl4gg4Ao5AEoGFZuvtVlVJUPy/I+AIOAL1IjBJFxXTTevNz893BBwBR8ARcAS6IAK5WIpqVgPU9QxlxRVXlGWWWUbGjx9fAhkkyr777iszzTSTPPbYYzJhwoSS42l/BgwYEAKyv//++60OY+300EMPtdq/1FJLhX2siFeUEeNaNueeKvzi4pclxI0ivhbxtp577jm55557ZJFFFpHlllsu65QOtx/8cV+0WFvJAmJVhismZFYa4ZdM7/8dAUfAEXAEHAFHwBFwBBqAwDwtuqiYbtqALD0LR8ARcAQcAUegqyHQ8JhVEFIrr7xycPO74IILQtyqGDRWn4MoIch6yUp9migZP4rzIIleffXVEPR8//33L2YF0XXQQQelWkfttNNOYRU8XA433nhj2WGHHUQ+nRR8fJZe8sADD8j5559fzCttA+uqJ554IsSwgnTbbbfd0pJV3JdWp4onNSDBoYceKtdcc40cd9xxgTzELTMWjhPXao011pBFF100PlTz9tixY2s+1090BBwBR8ARcAS6CwJTTTWJrOguFfZ6liKgumgQ001Lj/o/R8ARcAQcAUfAEVAEcpFVuIJUIyeddJLcf//9csABB4R4VazKByEydOjQ4P4HgbPPPvuUZIm11TvvvBNWEESJW2211WTGGWeUAw88UK6//voQ8+rjjz8O1k2ffvpp2MdKd5BjWHPFMuWUU8ppp50mEE4EGL/99ttl3c8Xk94/9ZTHTxwul159uQxUN7mJEyfK999Pcg+MM9BtVjT84x//GFbMI45VnkDliSyCBVlanZLpmvEfcgr8zzjjjEBW7bnnnsHaDbIQPF566SWZYYYZ5JJLLmnG5T1PR8ARcAQcAUfAEXAEHIE0BGaaRFZ9WbrIT1pS3+cIOAKOgCPgCHRXBHKRVdWCA1Fy3333yV577RVc6XCnMyHo97nnnhvcAW0fv5BBRx11lGAVhbCKIBZauLPdeOONAtly8sknh2N8TTvttCEOFoTT4YcfLlNM0RI03RKQzxxzzCGDBw8O598oN4ZDkz8zuRBQHMuqDTfcMJOs6tu3r2y99dZy+eWXy3rrrRdWCLS88/5m1cnKCglmYvvKxY+yNHaO/WbtP/3004V7gRXVmWeeacnDLwQi8cPmmWeekv3+xxFwBBwBQ2DY5xoAWOcC5p05l8e4nea/joAj4Ag4AuUQmHJSnzpO+1gXR8ARcAQcAUfAEUhFoIdaJZWaJaUmq20nRNLw4cOFQOcQKhBVxINKuv9Z7p9//rm8/PLLQuBv4k7FZA7xl1577TXBqgqiaokllpBpppnGTi37S2yrodvfJWN/HieLX72JzDLbrGXT28Htt99errvuOrn11ltls802s91V/ZarU1UZ1Zn4ww8/lFdeeUWmnnrqcA+IVdVocTfARiPq+TkC7YuAk1Xti79fvesi4G6AXffe5qrZRFW9d3pNpIemvnrxXKd4IkfAEXAEHAFHoLsh0FSyqkOBufvrLcsEX6rxmfpMXrFoxNWC0GE1Q1YOjImziid30wROVnXTG+/VdgQcAUfAEagKASerqoKr6yUepwsMDXpDpLdaWF1WGlO061XWa+QIOAKOgCPgCNSGQC7fjmpWA6ytGG1wVp9JVf2hssk1xmZHHHGE/PDDDyFmlhNVbXB//BKOgCPgCDgCjoAj4Ah0BwRMFzXdtDvU2evoCDgCjoAj4AhUicAvQZOqPLHTJZ9RY1qNGS/yxU8i05fGt7K6QFIR4+m7776TESNGBHe5fffd1w77ryPgCDgCjoAj4Ag4Ao6AI1AfAuiiCLqpiyPgCDgCjoAj4AikIpDLsorVABeavboVAVOv1p47B0wq/yeTFISMshBbiyDnrAb44IMPSp8+fTJS+m5HwBFwBBwBR8ARcAQcAUegSgRMFzXdtMrTPbkj4Ag4Ao6AI9AdEOg+llVzKun0lN7S98aKrDJ96r3t0aNHCPCeetB3OgKOgCPQzRDwAOvd7IZ7dR0BR6BtEEAXRdBNXRwBR8ARcAQcAUcgFYFcllWpZ3a2nQtO3VLiod93tpJ7eR0BR8ARcAQcAUfAEXAEugoCpouabtpV6uX1cAQcAUfAEXAEGohA97GsmnfKllVXRo4T+frnzLhVDcTWs3IEmoZAj7ETpcenP0mPr8dLDzxbJ+gy2J1VJu8hhV4ihel7SmFALylM1X049I5+y+bt7/eio98jL58j4Ah0MgTQQdFFWQkQ3dTFEXAEHAFHwBFwBFIRyDUS6RKrAfbUqv5m2hYQnh6dCobvdAQ6PAITCzLZsHEy+Uvfy2SjfpYePyhJ1ZmJKgDX8lMP6hPqpfUTraeLI+AIOAKOgCPQ5RAwHRSdFN3UxRFwBBwBR8ARcARSEeg+llVUf4XpNG6VElWP62f9/qmA+M6uhcDHH38szzzzTKjUhhtuKATQr0WeffZZGTVqlMw+++yy7LLL1pJF/ecogTP50HHSY7SuaplDvvnmG/niiy9kuummkxlmmEGIyVZJWBETzKaaairp169f2eTgwWIEs8wyS0m6n376ST799FOZMGFCOJa1SMFXX30l48aNk9lmm63k/Mk+URJuXEEmLKyxPCarXOaSk6v88+OPP8qwYcOE3/nnn1/69u1bMQfq984778j48eNlvvnmk6mnbnExBjvqlCXTTDON9OrVK5w3ZsyYVsnAfMopGzfLzqqmb731lkw77bQyzzzzSM+elbt7yv/uu+/K9NNPL3PPPXerczhOPWOhTtTN5IcffpD//e9/oZ4LLLBAyTFLU+8v7euDDz6QAQMGyBxzzBHaYaU8y53Dvazmnjz//POhL5h11lkrXbbNjtfSlvOc8+2334b2TvukHXG/k/LZZ5/J+++/H573OeecM3m4zf7T39F+V1hhhVzXrFRu2sXw4cND26B/oC9NytixYwM+k08+eegPsvq75Hn+vxsjgA6KoJO6OAKOgCPgCDgCjkAmApVHL3oqqwF2CVlKZ7FmULLi/R9E3tLYVQtNimPVJSrXNSrBgPKggw4KlTnuuONk3nnnratiL7/8suywww4hj48++qgiAUPCiy66SB5//HFZYoklimW58MIL5V//+pdstNFGcsMNN9RVplpPnmz4j7mIKsiUf/7zn/Lcc88VLwXxsNdee5WtP6TetddeG4gbTgR7sEuSSRzjPv31r3+VlVZaSXbeeWd2BXn11Vfl0ksvLebBzq222krWXnvtlgT6zX0ATwaWyEwzzSRbbLGF/OY3vwn/+YKQo74T521e8NmHH35Yfv/73wukjslZZ50le+yxh/1t9XvLLbfI3nvvXTwHcuv000+XnXbaSb7//nspN1C/4447ZK211pKHHnpINt9881Z5V7p2qxMydjDAPvHEE+WUU04ppuD+X3bZZbLccssV98UbnHPooYfK3//+9+JuBudXX321/PrXvw77IHMghpLCvaO9Iffcc4/stttuRXzYd9JJJ8n+++/PZlWS5upaS9vOc85br78u5513XqvybbfddrLaaquV7Iewu+KIIbLLLrvIHCtG5GY7urPW0pbznHPOOefI4YcfXqx///79Qx/Bc4+ABf0K990EvK644gqZeeaZbVeb/dLWbr755kCclbtonnI/+eSTsuuuu4b+yvKizzvwwAPtb+jr4rZNf8Cz8Lvf/a6YxjccgRIE0D3RQdFF0Uld2hUB3g9HHHGE/Pvf/w7vcPqu1VdfvV3L1FEv/rq+J9Ej0PmWXHLJhheTSS50kBVXXFG23nrrhuffjAybXeb33nsv6Cbo0fbebUY9Gplns9tJXFbGG2+88YacdtppwoQR0ux7El/ft9sGge5lf6yDCVl7xhZk7/684QgnLQ4afoFukCGz1BACfD7/vPH3KA+EEFxc/7///W8xOS+JHXfcUVZZZZXivrbcYOCOxVEeuf/++wNRtfHGGwdCCfIA6wCIqCx5++235fLLLw8KCIPTP/zhD4LVAQpcUrCY4gWRFMiaCy64IFi7oPwddthhssgii8hNN90UrGBIj7UXpAxWGn/605/k4IMPDlY81113XbDEivMMFlZa72bI119/HYgqLGMefPDBgBeEGmV64YUXUi+JNRWk1FJLLRWs9RjMQmj+3//9X1hFFIsKiMzk57e//W2w2FpwwQVDvrxYGdRyn+IPRGgj5Prrrw9E1X777SeQh5BkEHLbbLON8HylyTXXXBOUxKOOOkpeeeWV0Bao79V3PCHDPmu5B7QRBGU+LveRRx4Z9kMAoGBibfbEE0/IY489FkhK2tOLL74Y0uT6UgvCLFfXWtp2nnOwEuzdu3cgpyHL7cP9NcFy6KmnnpIzzzzTdpX+tpM7ay1tOc859H/cO9olz8R//vOfYFW1/fbbF8lInnGIKshn2jWE36OPPip//OMfS7Fp4j/6qUceeSRcMyZby12yUrnJE0IZi0FIvZdeekkgLo855pjQX5A3+yGqaPO0b/7T9jnvyy+/LHd5P9adETDdcx3VRdFJO5gw0GOAXK3Qp7z55puCJWZ7SK3XR9c744wzwgTcwIEDi5bS7VGHaq5Za32ruUYyLVboQ4YMkaeffjp5qKr/WW1sxIgRIX90ss4izS7zhx9+GDDhvdpZpFHtJE99b7/99oDPxIm/jBWafU/ylMvTNBaBXJZVjb1k2+dWwvKus5gIysKL34i8ozNc80+dWiAGfLh+oXTPNddcqWkYADKLi0UKn9dee00Y/C6++OLhA7mx8MILp57bXXdCdPCiwz2JGS0sUdZYY41AXuB+FlsDMUCAKWeQzwAaWXrppUNatjnOPcDaAyUDgQyBRKCzglSIhQEE9wiJ88HSx5QzrsfAFfnkk08CYcX1sRZYaKGFghUQx3jZYl2EWyCuWwzMf/7550Bm0V5wUeLlgusd5yYtbsibulJn2gtlZbCcJQRTzytYhWFJg9sjgoXDyJEj5YEHHgj44BaWFKx9aLuQMeYuxkwOg1TqFbtPMjhlX7JOhtt6661XPLb++usHBRY8wIX8UGYZLM44YwtxDIkCoQIWv/rVr0qKRr0LczfeuoqBN20Hxctchv7xj38ENycs6GgfSeFZR5hZNGszBuncP+41M41Jwunee+8NxM1dd91VrBsEEuRns2bJsIbCKgorE9ofFnJ/+9vfggUMhEKaG+ttt91WJCqpI4NuFEYG7TynIn3CfeQYg3FrI/w3YaCCQEDarOshhxwS2h3Pamw5Z+e0+q3g6lpL285zDs8HdeaTJSeffHLWodT9beXOGrdl+kL6pEptOT4nq/1DICNYmppLMIM6rBHpL3jOITkha826EmKc/p02iLVeWjtJBauOnZDD9Cd5hfZcqdz33Xdf6B8g38wa8fzzzw9tmX1YSKIjIPw39+FLLrlElllmmWBdBfHt4giUIIDOie45tVoA2MRpSYL2/7PqqqsGXYA+uxrhOcTqmHfJpptuWs2pDUlb6/XpyxDI+c6kr9da34aAXWcmWW2MSUzewbzDOot0xjJ3FmxrLaffk1qR67jndQuyylhe4qeEQdTG/UWu/0Tk2o9Fjk0fnKCsYmmCtUUaWUWevJAZ/CEQAAw+zRqFwSkz8CeccEKw1iC2T3cXYtlsueWWYWAfY4FrCUTKnXfeKVh2mGDdYO5LDIwQBvrmGgixgsUQ52ABAAG2ySablLht2KCZc7HUsnywDjEz42OPPVYYmOHuBLFpwjbpSQtBE7sBQgTwn/yJkQLxgTBoYbBOnrHQnrCwQRjI4ToTC+QI+SXjP1kaVv3LI1jOMOO28sorlySHcANjSLIkWcXgDTKQ9ox1IBYkCATa8ssvH7bti3Z/9913B7P5G2+80XaHXys7M0FGTEAaIkZCYYGAQkhMJMoCcQXxs88++4R0ya9Q77mTe+v/b6SlDdTJkfhHtIEsJZ2BN/2BEVWcY/FpIGGTQl+Aq9if//znQMjacfKHxDOCjjYOYRsTgpa2ll/i6mABGMcoMyI0rZxcg+cSd0wT2gH3Z+jQh+XSIS3PJM8D7RTrIogpSFDcJbiXCGQuwjO62WabhW3DcrHFdJIgh5Rzda2lbec9h3ZKGSkv7o5gQTs1s3KKjkscQps1a7Kwo8xXW7izQsYhZ599drAQYLtSW87T/iGW6bOMqCJfsyzlvcf7jucF4iYWeybifc3cZoA8aNCgcAnuy6233lr2ckxoVCo35CVibZptniHaiL3zefeQjxFVcXomM1wcgVYIoHMim6gOOpUSVi7tjgA6Ce+wzkRUtTtoTSoA7xQsujuTdMYydyZ8aymr35NaUOvY5+Qiq1gNUDSm7kKz9+7YtclbunV1UPbQV2oeoy4xj+jv6jPkPTOkw+WAOC2QAvwSW2nRRRctBvmFlMFNCtKC+BZYXWCq2N0FiyczZcVKBfYbdzOUfog9CAsGhxBPCLPlzFLnlX333TcQVQweyAMCCVLJhIEH5JK5+UFWEeDbLAh23XXXoLQwO86AnPTcQwiNOCaL5ccveUGQQQbhM801IaqwsGEgY9YYDHQZ+KEYGVHFIIsZJKxzGBjitpUkgOxaPXIaVhlplgwEbARVmom+7eNcymDC4Iwy2oANrMAG98KkVRXn4DKDixDuhpBamOWieEDwQMggxKkiSPPxxx8fLKnCTv3iOUqL85K33pZP3l+IS9pJMqA59cpSlsw1LL6GERi8HJMCUY3EMW4gT8ifj51LGtoKBDfEbb3CjGss3Ldzzz031JfrpAlWoAh9Gq5UuDThysdzaqQXbZ12CoELdrQXfunbeEYgeCBMsEbFugbLGvLAVSrPc1zJ1bWWtp3nHMharCT5QOia8GxiHWPB4y2wuP1aukq/WFgVZu0lhakaN2FB++XecK+xAGYy5OKLLy5pP+Xacp72Dx648cZixBXPMffbFq+wNBDd9BE8821hVcV1uY5dK8+9yVNui80GiQ8hi/Beh+QDO9o21rxYaI0ePbpI6BmRZWRXONG/HAEQQNdE55y5l8jvfpkY6I7gJK2182BAP53n+c6TV5yGCZw8+TKBw3Nfy6QS59p7NL52ue1m1bfcNZPHarlPyTya8Z/7AKZZ94KFQ7ineTFvi3o2+n7WWuZay1GuDddaFtpGLeeWK0u17a2W69dyTrXl8vSlCDROey7Nt2P/66XV3m2SmSkzXaN/zl1eGimuDgzqDjjggEAuMNsaW04xAIY4YcUoLEqwoDAXotwX6oIJ4zgeuEeBGa4UuKRAWkH4QYSYrLPOOsECxf6X+4UcgWBCIH8YZGJxlbSAwNIF4Z5A0sRxqbAuwcUFFyqEe8d/G7iEnYkvBrRYSkFYmqUWA3gGMUcffbQMHjw4nIH1FWIxVTbYYINAxmEd9pe//CUcgxCDuKtH6MSR5Eva2mfs123XsQE9bl9gAMEGSccgHSwhWBCINPaZdZqdb7+8BC2uEffazsPN0lZa47mB8ABbghVTd54f4kZkkUSWfyN/03Agfwa9KEKVBMwg9nABou3GFlqcO3To0DBoB0ezPGI/WNBm2M+glzaImxVWS7FVIWkbIZAHFnOItkfbLCcMyCGUOQ/hnpg1FmUlL9ooRAakPUIbBzPut5HRWCrZPadupK8klVxda2nbec6hTXKP1ltv/UAg0ubpJ7hXtMtGSKW65bkGBAhkIKQu1qWQoBBVuO/yzkkSneXact72b/1Gsnxpzwh9KcQObYxFBzqLpJXbiPM999xTsIplkmH33XcvxlGkr9t2221DFSHocemG4DXSl+fIxREoIoCOia6JoHuig3Yw4b1P6AD6Q0hZtunveU+VE/ol0vIuRJgo5D99VSzki17GxAUr6NLnrrnmmsGDIU5n2/RRFkeT9EyeYTGKGzr9nkne61t6+7X6ojvyfqLMfGICnjLg+owuStgCyoHVOK7PaYQ0fQl5ECcR90IWqMEzgzwqSaPqix5JGbBwzhL07KRubGmZsKFvo9xYyRLmAB3HdFhLxy+LuHCtcjGsmOQiDRNmhnlWG+NekPbKK68sXobz2Ec7RFfCkpfJV8qGpTfjB4QJFCbGiDPJ+5AVsKlHPO4oZqob1bbH+Nx4O63MHM97P+O8Km0TF9Qm0GmLWLczWc4YpJygg6HTMMYCG7wgeLYJaZGUvG24mnaSvAauwljfo7twH7FqxFjAQonE6XnWGHOjX6IjY93NhFM5ybonPI8YQfD+ZsKcQP4YTaA78YzbGDIt72rKnHa+76sPgVxvTFYDrNeqisZhA4dqigw5VK3kOmfxaURW7ifyvbrv/F1N/icN8itdi4ebgRwNmxdQljJPPnQMp556asgSqwwsHLqzMAAwtzysANZdd93gZoZSU6/riA2uwZcOyCTpxoYFjwkvOaxZEDruWlav4sVorkIWgwlrBJvptwGkDfgt9hYKBcoAHyO0KEeaAsT+gk7G5hEjqex6do4NLq2stp9fKyvtlXaN9QSDYWJJMUOFkoLCgZUML5S0PMiHukFEba3nESMJsg7lAeKGAR+CwskHkg68UT6NQDRsQsJJX3nrHZ+TZzurDjyjhkdWPpA0KKz0BTzf9ozH6SErEYIyxwIRiosQ5CYvSfoPBri0P1O64vS1bnP/Uey4p9w/2jlKfiXBxREimXsGGc+L3eLIocRjyWPPCbGvuMeQV3y4BuQOeKAckR5SGKU9Myh5VKBKrq61tO0859AGscDcbLNNi7Ox9CE829SjEVKpblnX4F1GX8FzB6nLwgU8h/Z8058x4LN6xvmUa8t523/yXWrv8PgZgcTE1RUSGwtKFD4j/OPydLTtcuWmjYM7egvPDQoygyXrq3h2GTTR1iFoIel4holPyDvO+v2OVmcvTzsggG6Jjomuic6J7tkBBYKVCQaecfQxtvkw6C4nHCed6becz/+YsIX8gqRC12Oih0lAQhWgV0ACE/MueR1Wp+UYfTB9MedgScOgkeeROKFInuunld/qi45DvlZfs9aBGKBPQ3fnHYguCflBPXm3ogMkA4ETd5N+g/ck52JlDlmStHRPK0+j6kt8UMoQ68TJ67FwTkz42XGsvSk3i+KgB6KnQQxhLYtnAPpdLFjvci0meLIEXZ806MeGeVYb4x6QNnajpu2wj8UtIC7oh5kgYMIXt32IN3QM/lMOSCp0amJfEVqD92OybdXSHrPql1Zm0ua9n1n5JvczNqDdM+7kvQTxgpcC+hr3CYt20wviczEIYDKVVWrRE0iLLgEphfs8+cTPap42XG07sfJwH8CFdypkF0Qozz79DQQloUfQb2LhOef+EkMXbwXCHthYK04Xb2fdE64Jsce7Gw8YJtZoK8Sl5BqE40h6t9RS5rgsvt0YBHo2Jpv0XFDieLDoFInfwksA03kaJzMsMMMmdEYEMGXQwKpizNLQeGDLcUOiA2U5dnuR2Hn2SyOkU4ThJ2YOgzRehgy4MmUXneHCLPu179TURmePNp05MykH6GDNtYcHLo/wguUFzcCNlyz/TWCKeXHzImMA39WFlx8dD+6ADPjpZFFWuPcEOE++CNPwMGsdOuvYCiluS5aG81FEYoGRh9HnXtApUQ6EDrsWSSMr44FgchBpLkUM5hiAJsViOyX3F6bvKT1+qEzcWv7J2ST7b8fj/M3aJnltIyXo+C0APdZQsWB5w/3k2bQA22tqh28CcYeLpLnH0AZo67HZPddnH9dJCvVuhlA3nr3YhYfrUJ8kDvH16aMIGo6bE+SSuTfGaSAG6YtQLLCiioXroWwlB/P0i5A9tOsYm/jcvNvkwQsYa06sv5hBTbvvlh848OJG2bP4Q7Rhzv3o217yzifjZSl9jrCWAhtm5kzMHZT4Vqa4MwtrQn4M4JlpriSVXD6tDtaWLT/7b8dtP7+2z9LYMfvPcfoLiAtIq1joKyBQuZ8xOROnybtdqW5xPrxneKZQtCH/GDSlCUQVCwSY+zHKLO8SzueDlSMzl9TV9pEP2/SX3HfSgIEdh6TkHO41hAv/6WftOO9xhPbBs4JFAtZHDJBoZ8zyMpjjebdz4l/Ojf8nt8sd5xiSPCf+T7lp/5Dj8X7btvPBlL4MxZxnhYC/vIv4WFp+sRxAB6G+9F0MhpiVZhDKcfBGV+GZZlBHP8aggP2Q2XFebNv12UaXKXc8eSx5vh9vaecxDjG+8X7bbpfj36rL0jfqCjy5Xv0ZvednZrfhRpYP3ccIJPKtJFg586F90wdYLLxK5zHhRlosdwkbgPVMHGCd/pOB5vs6yUtfBfljQn8CAcQzw+Sl6WG8J+nb6HfRK+L3JX0iE2kMziErKl3frpX8tfoyQKYfSNYXCxbeW7zDiINn7xLyIcwHxAnloH+0MAt2DY6DIUQB45A0PdHS8tsW9Y2vl7bNGAVMeTdAVjHmMkE3hxTCGiUWSAcs5NA10I1Ml7Q0tEEwoD8kLbpDLW2M/GhfjA/jxTQYWzGW5B5RDsYUpsPwzPM+Qq9i3MGEAlJLewwnVvFVzf3Mmy3vHu4NbTF+vrCgIwYqBBJteddoXIHeznib9sc9jSfrefbAh3cZenrS0i6rDdfSTqyOTOIywQNJRT0g20zoA/bYY49AoKE/xOMo3ut80C2ZCOde1ypYzMMx8LzH4TtoI5BVtCdwsuvXWuZay+fnpSPQnJGgXuuqq64Ks5DccF5CNEoGo3T+mPIxU0FjtcG8zQag7BHAGUWZ8xAaEW4FkF4cS3aIPKSQUnROxGShwWFNwGwAnajFCAqZxV8Ij3NwAABAAElEQVQEuNxnTpG/DlMfJw24PrcOwsrMekGCMSDAZNE6xDi7tG3qh3UFDzgBwGOhE6F8zMLw0uvqwsuGjhHTXRQRrDJwZWE/2CRnBTDTRWJFgEEcswJJ9p3g+SZXXHFFeKnSHnhRJgWFCLKKlxhCezK3jzgtA/BGC7PuWB7wMkPZYUYBJY4XOOWlTaRJYUAvkVGVySqUAQbZDLp4EVmHy0wSEgcHt+ugSDBQT5p580wiPIuQLha7ys4DQ2axGOhhaWDPJc+IkRjcU+pq9xASGRIagoBzEAZ6KDVp1gih3nbBBv4yU4vQH5n7JrN5KJ4WHDx5OfofiCr6Gga61ncl06E8QATELq2WBkUbEgjlz/AEI16cEF/1ElVcB6XR+hWsPSoJ94FnEGIm7tfs/qMggQvPLSb5zHab8Dwi9O9mmk0+ZkGJYohptxGfdl4tv7W07TzncC9QSCDsGGAgzKZBxlCneomqvHVFQeNdAEnFM1RJaEt8TKw92X9+uYf2LMb7bdsWQrD//No7zvalxTmjjfGJhYkcm8yJ97fHNgOjvIKewKcaQakuJ0zUmUtsuXR+rJshMLqb1Very6CXdyvPTExUgQTvBfo8LLl5p6IrM7CmL+S9iG4RE1Wcw0AS4oHJEXQ0W9iFY40SyoulB3oPYw7GJbFgkYK+BDGHLsu7IxZ0A/SctD45Tmfb7V1fygEJgLCSbExUsY93P+O1ZLgD9FesnHgXQIbERAnnsWgSEwNMaPAurkfQ22Oiirzo5yEXEO5DrL9wD9Dl0PMxYqDNILW0x3BiFV/Nup/oXzFRRZEgfqgj73ImjY2c4hgW/FhHc15MVHGMZw9DAcKcML4mZjATMiZZbbiWdkKe6PiM+WgzSaKK41h8MU6B0CaOsLnUcwyhb0jqHC1Hqv9mgikmqsiBvgZ3U9osk3gQePWWufqS+RlZCDSFrGK1HV5MNHwUNh4mExhNlF+C8jKghgmOhUaMqT2DJxo1QoNhZoYHEhM+Bvkm9bC8IY/5dMBMDIFLPtTlnnRwftx8Gqyo5bp2Dftl8IKkKe+WJu3XXrYWz8fSMJDrTgIODAz5QFbwn44BwVQXYiVmzLnnWKcwIIMIgQCAKGCGwe6F4Wemvww6cDli8I+yw7WSglWM5ccxOklra/wnLwTz84Fq8WKxGMLOOr+YuaL8EDTMCKIE2KAGYsGunbwMwZknzjKFEKy5kvBSRnGAMMadCaWK5wS3LYgHhDIw68LLAyIJ9z+eLV4SmLtjTQCxCInFfeLexLMg5AHGEEzmasmzDPmDkofSwMuQumF9YWQgLwiUOK5PfSHozOw2+fKgvo0MSk2ZTSDCKTuzp8w+Q9hhRYGY6x6zdihAvCB5iV1wwQXhOERXcsEE+gTMzhEzYedllxRTprCwZJYQc2baLH2h5Z88p5r/4IkCTXnoXyAUY6Ft0C8zm02b4MM9RplESYXYp2wQxSiGTDAcf/DuYUBAnsQjoS1AGGOViBJEepR6lKizzjor5EHMPvDAXYJnFTexSoLLZ48KoX5qaduVzrH7xDuHPodnhAkSZvLoGxohedxZUQ7BNst6OFkOysk5CO9VhH6Mfbwz6f9o15BttAWsxzhupDLPOMLzzwCR4yi2DP4gTbFQYjDIQI02Q34MPEhL30WekGGcb1YHVh7SsJ//9uFatp32m+d4uTQco61R5tW1ncfXIOYUbRqFlHLTdmmzkPekM6Hc7GcfbhLoMugvELq8D+i36QvAFTx4N9FnQ8JDcDIo4h7SjviNy8A14v/c5/h/8nh8jG0/Xopfh8fn05+kx/kjpcePGlx761lEVuhXcr/bovyh0bTzF2QUghtXmqAnECsTvYE+d6DqXDxz9EE8T7wbbfLDzmcSkkmwWF+0Y434haDi+caSI0lUWf5MOmElgg6bJKvQMfMSVeTX3vXlfUGd6Q+zJs7R89AT0fFigbhDR2KSeNfIqoc03FOEmEP1Cn1qUpiIocz0+bShpBi5ZpbUHK+lPSbzrfS/GfeTd26WPoLujQU7+jaEj03Goqfy7o4nGOOy8+4iT/Q09Pl4cjOtDdfTTtA10RdoL8mxhJWJ5w2yCk+pJFmFTtkIQQeyCepkfhii8Dzz3kfqLXMyf/9fOwK5yKpqVwMk0CiKLsQCD20sKNgMbhhQpZFVdPAw3yh6JrwssDyBrGKgG5NVtbK8lnf4XUPJiZEaT+o/qryfNlzfqvOWHLY/Znky96SVzWx/pV+z+rFBrKXH7JIHF8KiOwgDdbOoigMC0skyUEboWLG2soCUWLMxUOBlaPFCGJDQkRFELw6IR5uCeCBv88dn1oUBNMJABEEJ4nwGpwjtMRauw4ub6zA4if2543RZ23Ydjsfb/GcWg5cCHS/tn5cLpAkDfWvLpEuTiXP3lh7jVPEdXZ7kxLIQRY4On84WQdmL6wnxx+AUhQzBVJ0BL+cYeUbHDRbxsxgST/oyZdv28QKC9IB8gihDeHZRMoh3gOBGRt0hpWkLCGQJM65mmcO+Qr+eQn2bJQyusT7i+bP+hEE8psgMPBEw4v6bW6lZEVk7jMsGQZokq4ykjtOhcGCqjqJryhfXhRjLsqqLz6+0jVUM5WZgbS4V8Tm0B54xlDfqxsAdMfN+nkN7NumXsDhi8I5g8cPzFLv54fZB34zg98+5uEjHmELKpWEWToq+8ri61tK2K50DYci7irrazB3tlhnjJIFKcWPiICp+2c087qyQZgx6+LA4B4QzbTQt6CgXQ+Gi3UBGQcrTlumzENoUhLDNpkLOQLJQJ85B0s7Bdc3OIQ3kNffcAuRDWPJ+5helHyUYxc6UO84xMQLN/rfFLwQrA1n6l1hQvHlXQAjT/4IH7gB8kmLlxv0ISzEjfHkOeC9AhJmAFZbd6CUIzwB9X7lFOexcsyy1//7bhRD4UpfvvUgt9nvPJbLJTCI7z9apK8cA2FyA44pANDFxUU6YpGWAaHpFWlojzo2s4v2M1Qx9DBYjWIljqYwOCZmFrhDrC2l51rPP+lH0oiyBJMESFz00KXHc1OSxtP/tXV9z9UZPK2dJzORxkqyCKOHDBM/76iXA/UF4Z6DrMKYz0igcqPGLcBJpAunPvbBJmDiNWapDspjU0h7t3Ly/zbiftKly94b3Es8Y7RGyiueV9zL6T7l3DbHkIKuS7TitDdfTTsxYg/EUulaaMOGD0A/EwjjKJsXj/bVs0z6tXSTP574hNi6qp8zJvP1/fQjkIquqvQQvF14yaYo+efGCQxhQJwWrhrTBsc1SxEpxPSxv8rqyo7p/sGLLM2NETnxP5KeWhyZOZzF1mDGuRix9sr5YunQ3gcxggEOMAEgAiAoGz7FgDs4sHIMGm9ViYA+hQyeGksLMdlIwM6bThQRhgEenROceu6bQIUPSMNOOQCjQWccCuQiRRPkYzPMSZGDIyjQmbMf/2Q/BZiSbpcMShU8svNhxY6Q9QRpAftoAOE7XanuyHjJh4T4y2fAfy1pY8fyAF8oebY4OONk5Y1GUFKyN+HAOpHIlCw8G+Enh2ecDxmDHvU3WjYEuH+4vx5IvUiyqAlGl9W2mQMZwn7EWoS/BoiQuK2Ry7MefJJuzykbbzZpF5hwUPq6Lgg5GjXRjYKbRBttZ5WM/pGQstHGeG2aKeXaYcbMXt6WDaIMEgAwDMwbvyb6aNseHuoEpynySsLX8kr95XF1radt5zuGZh3Sj3aIwpfUvVl6wMqLb9lX6rdadlT6JD2b99BUQwGAP7ibMZHOvIFgrtWUU2WS7qHQO1+F9DMlNf81zGvfVWOfx6UjChAWfpMTtPW+5IQ9RqlGuaRemt8R5MxPNB6st+su0AVOc3re7AQJjdAIAHfIL1SeXVz0F3bKTC+5EscuxVQc9wyyjbV/8y7NjZHvSUiJOZ9ux+zPPHkQYEwhYiJg1MxPgWOqweEved4vln/fXBsuQIOUEXRTCm/4hfl+i11Yr7VlfIwvT+ri4Hll4oNMzAQdRb7oP9UG/SVpbxflVs41OmiXljsXn1NMe43zybDf6fmZhb2Wxe2dt134rnWekr6W3/NLacD3txMgwPDb4lJO4HyAdE4pJXbPc+eWOQZznlXrKnPcani4fArnIKlYDrEaYVbSZRTpyYrjgcsSHQRrm9VmSxZ6jKNNYjfHk/HpY3lbXZ2D8hzlExqqlyWvftXwSicx0MflQJ5K1+muzNEa4tUrQzXZAIFn7yKo6aZIDRgYDxDaoJLQVs3JJpsU326x+OJY2sLFzkiSK7W/UL/VL1rFi3tpOJ87bRwqz9pIeuBl8PV5C8OYJhVan8rxUWjWj1Um6Ix6Qph3Psy9W3LLSFxWMyXuE1Q6xPmFQ3yzXv6xyZLleZqVv1H5TEhqVXyPy4RmDlConDMgrDcprqVs1rq61tO085+Rpt+WwSTtWjzsrgzHITT5Y72HBw+CQVRYhDQkkjostA0lIz1racqVzIHArKbxp9e4q+5gEqRRvpVnuSF0Fw25TjzFKUJ00XOQTtaxarG+LTtnkSZe2wBbCIc2Cylyos8rAwJAP74NknNG0c+K4lfTXNmHEGALLHcYOWDriVg55RdyqZhBWNoHEZGKWLkn5IanQE5Pvw0r9RVrd26q+lDkeR1EWm8yEzCknNmGfTIMVN9bxuP0RWoJ3xhU6mUKdslzXknlU+h9PJCbTljsWp62nPcb55Nlu9P3Mwt7KYvfO9Pe4DVuatF/aA5Ikp9LacD3txMrFhL55FaSVh312HTueVhY7Vu1v3rZCvvWUudpyefryCOQiq8pnkX6UFwmuJcmYQcz8M2Mcu2/FOVTDetbD8sbXLG73nEzkzwPVROZ9kaeVtEJ0JRcTe2lBklUjFli90ou9mjw9bW0IQHbhEscvq58lA0nWlmvbn8XAvjC3zhDM3fbX9it2HwSGfa4WpsqDzjuz9o1tIHldXdugKA25RCPdWSHwIab4ECsMFwtcBfnF1B/LK58Qacht80wcgeoRwPUPiyqIqkWVqEKXRKfsAoILXtqCIZWqxsBwoFq4M1GNlW2WtTYeE1iyG/GEBSlxiDgXMghrKj6EEGACHAtwXHkhwCDyGy3Wj+IGlOV+RJmxACFsQDUD4LSyNrK+VhYmM9LErEXiYzZBZWOV+Fi8TeDwNIGsx6IaF2zcrCHvcB1llbqONNFRa3tMq3O5fY28n3adLOztuN07nhmEkBvcB3NlCztTvggZgWQZisSn1NNOLHwO5FjWoi9YteO+mNVPxGVpi+3OWOa2wKU9rtGUNynsOqswsOw1HRjLuPMg0XkSYO04NSnOEutos47H+419NUY5PhZvV2Kk47TSWyE5aKBG2Z7E4137sa7CpvGsVCCrKB9BH22lunCgwpfFT3KyqgJQbXCY2R8UHKyr4hhObXBpv4Qj4AhUQkCtEHB1xRqpswt1oC7SBMsKJnV4xxIjjDghxLnChZN3k4sj4Ai0MQLoiKwqDVG1uBJV6JDoki5hcpoYtljapAn6OfExIbMsLiz6GSQQY4ek4H5OOAmE+LjNEEI1IOUWPWFhFBakIE5dvdLI+pqFTDK2lJWR2JNJ4RxIJWJaGnmRTINxQNrq2paOmIkI99nudSMCq1v+jfrFWKLa9ljttRt5P+3avNuJZZkmkGNMVjEmjseZTMxjXMGEVpoQ45dwJkyEWZtPS2f76mknhAdh/Ezb4LlJE6yu6AeIhdoRpDOWuSPg1owyNOVtasu6Y6KLe8LgwYMDa2tuPxastd4K1cPylr12L4WFmTHkG7WsOk6VkKHfhTg+rDgBM2yBeFsSlX4T+4WZJITZBYLWEnuJ2W8XR8ARcAQ6CwLz9p+szayqiphMcnWdsNTUMnE2XRFyyh4i6ira4QV3Vi0rZQ5lV3fdZhBVSRyYPYV45z1DLDgXR8ARaEMEVDcMOqLFqDpwoPqxNEW1brNKZQ0m8xQgeS4LbjBIZZI6jQjhOHGt0I9tcROzlmLxgrSJ4eeeey4UJc0aJHn9PGVOpiGQO3H+IG9wv04KE9DEQmXSII5rmUyX938j6wvxh9iKhnEZCMOStbo1E7m4B7KSe7x6HudjEMB+W2wmztO2wYwxGYtysAgH7uUExs+SRtynrLzL7a+lPZbLL+1YPfczLT/bx8I1yYUOIJwgd7hnLNJjsas4xxbOYdEqFquKhXhi5MdCO5C/WdZO8Tls19pOiA+M+x+Ta4ccckiIDRrnzZiZPgJp1Mp/IbM6vjpjmeuoboc+dZL5UPkyVrMaIA8ATC6dVtYKEI2aDUmyvGmKeqXZgMya22z4Mhogc5S6BBKHYNDs4eGHwWZFJVZWsjhWlg8+9QSehrCDsSZGEpgw8z1wknmmpfVfR8ARcAQcgXQE3NU1HZdye5OxU8ql9WOOgCNQJwKP6oIHl36ky0epr/T6M4nsoMHUlZjpzEJ8KeKsYrWJCx6rNeeJfWlxClnwgX4IK48111wzEOjoxFhNsMIYA2OsW1iwhHAhL730UiA2sFQyYfEH4iBZkGrc/iCzIL2wDCJmH54O7DfJur4dr/aXCWlWx2OgzypruLQRh4j4Wej2EDcQWXkH+eWu38j64sLIyq+QVSxytddee4XYOxB8kH/cU4tTFJeJ+8I9x4KH+GSs+gvxhbUbBNQrr7wSXNCJk5gm3BssqYxwIM6ZLZCUTF9rG0vmU8t/xonVtsdqr1PL/ax0DchAXF9ZmAtscYuF+KEt4iJIHOAkcQrhyn1llWeeOQhHnhsIL2K/Pfnkk2GRKVvRuVIZOF5PO2HFczxbWKGdRa7wvILUxPLrnnvuCc8Uqw+vuuqqeYrSJmk6Y5nbBJg2vkgusqqaMmFOSOfN6kF8MOmLBTNS3AQRTDHrFVheOh4ewrvuuqvkpZpnNqDi9deYQeMOzCbyz1Ei//hQFlpnRhm02yD5xyX/CL7sEFfx8rYw6hBULKHNg4gwWwSbnxQeWtwjeaGbb2wyjf93BBwBR8ARcAQcAUfAEeggCIxXcupq1Qnv/1KtJ7VMu6iO+Dslq7qAsGrfUUcdVQyMzQRsrONmVREyiQEzRBIfBtfotgg6MSQBenDSUol0TP4mJ35Z2RkrEQgWrEb5IMS1In4W+y0AMvvLXZ/jWZIVHwd3KkgAyB7GFtTJhMl4XBTXWWcd21XyC6lVrTSyvoyxcMuDDLQwJJQH8g1yA6IjWW88XxiT7LPPPoGcIlC6CfGPIA7BO4usIi0kipFV5VwAs9qYlYlxpInts3hmtj/+tTTxPraz9tfSHpN523+7RlxmjlV7Py2/5K/lT1tjpUVIRIwhTLguRCr3PF6gwI5TDkhLxsoQLybky/0i/mXaJFdWG66nnbDqMiQV12WFXhZNMGGxKe4LZFVSsspCOurBcchSE8MseU84nqcd2fmkr7XMnOvSOAR6FFQal11LTocffnhYZQ0GlweEjo5AhKxixGpGsPa4x9FxstwpS0lfeOGF4SGkc80yHaXh8UKKfbFZjhsWlgcAYqzcbADXwOwxj7AUK506sxME4pY31NT7nA9EvpsgE+brLUeOvkROOef04uwRfusw1yzXzgwGL1+2EfbzsjNfcrs+MUeo7w033CDbbLON7e60v+VMhDttpbzgjoAj4Ag4Ao5AgxHAwsGlEyJAIPXzRoj8b6xIXyUl9p/rl7ARnbA6aUXGNQiXMcgJYtmkDfrSziNAMhY4WG5AiCQnqzkHdyTSMOjFjS8tTZw3gczffPPN4uQ3i+OkDco5J8/147zzbhNvlzKj40K6VSpz3nzT0jWyvrhXUm4snBiHMfDOI7gDEnOY8wmeTuyecoSB5Ym1HPd0iSWWCO3H9qf91trG0vKqZ1+17bHaa1VzP/PmjTstgfKJM8ZzlmXBFufHUB9XO+4RJDDjcIv7HKerZrvWdsI1GB9jpUgb45nG5S5PPaopX6PTdsYyNxqD9sqvKWQVDRh2FNPD2HqKDh5zQ9znMC+FwILRxSQVE2Cso+68807ZaKONUvFg+UrIKswFY8Fn12YD4mDrdM6nnHJKeOFiFlsXWcUFP1MlBcJquC7vOvXkctuCr8hRl58YOnVekrFQL9hjW3KXToWVmzCDNnGyypDwX0fAEeiICLT1aoAdEQMvkyPQDAScrGoGqk3O84UxajLxocj3Ghpi7ilbiKqZezX5op69I9A5EDjiiCPkpJNOCnGxGJO5OAKOgCPQCASaQlZZwWDOMaOFyIFtZxUPExhK/OIhsPL4w9t55X7rYXnL5VtybLySUld/3GL+zQF1C/x+k2nlxTdeDjMY0047bTBnZmZhmmmmCQEL6cAxbyTY/KabblqSXVf645ZVXeluel0cAREnq7wVOALNQcDJqubg2pRcf1S977pSvU921BAXPSdryuU8U0egsyFAbCsssOjXsPqxBbU6Wz28vI6AI9DxEGgqWdXxqtvAEj2rM2yX6gybugXKAJ1Z23sOkfmnzrwA5pdJn/zMxJ30gJNVnfTGebEdAUfAEXAE2hQBJ6vaFO7aL/bO9yIXjhT5VC3rcfsb9CuR5XThHRdHwBEIscMsyDcr/BFbrFy8KofMEXAEHIFqEfglil2ZM6tZDbBMNl3rEMrK/Bpz4h+qxLyq8az+Mkxkg/4iWw1IXba4qxNVXevmem0cAUfAEXAEHAFHoNsi8JNaU930qcg9n4sQ2XXxvroUlk5KTj9Ft4XEK+4IJBGAdB8zZkyIUzV48GAnqpIA+X9HwBGoG4FcllVOVlXA+QFdEQYT8XGq3BC/YHd1d1xsmgon+WFHwBFwBBwBR8ARcAQcgQ6FwGvfilz2UUuc0j7q6reduvytPWOHKqIXxhFwBBwBR8AR6A4I5CKrugMQddeRFWIuVeXmFVVykJX6ieygCk4/n4VrAcS/HQFHwBFwBBwBR8AR6KAIjP5Z5BqdeHxydEsBl9BJx0E6+TijB1HvoHfMi+UIOAKOgCPQxRFwsqrRN/iJr1sCsH8zXoQZuS3ULXDdmTQQZ49GX8nzcwQcAUegqQi4VW1T4fXMHQFHoCMgMF79/O79QuRWdfvDQn5ajZBBAPXfTt8RSudlcAQcAUfAEXAEui0CTlY149aP1aDrN30icp+6BxLrYNbeLVZWS03bjKt5no6AI+AINAUBJ6uaAqtn6gg4Ah0FgZe+abGm+vhHEeYUf6fuflvNIjKVBlN3cQQcAUfAEXAEHIF2RcDJqmbC/8EPIleNEnlLV5NBFtHVAneYTWTglC3//dsRcAQcAUfAEXAEHAFHoG0ReF/1s2tUP3tzkn62kOpnO6t+NpfrZ217I/xqjoAj4Ag4Ao5ANgK5yCqfXc8GMNeRZ8e0BGD/TONaIcSzYtXAAWpx5eIIOAKOgCPgCDgCjoAj0HwEPlULKlb5s7hULIpDAHVWeHZxBBwBR8ARcAQcgQ6FgJNVbXU7xmscBNwCb/9M5Dt1E9RwVrL6DCKbzezBO9vqHvh1HAFHwBFwBBwBR6D7IcAiOLep/vXIVyKqjklfdfPbVPUv3P56opC5OAKOgCPQcREoFArSo4fHP+64d8hL1iwEcr2hF5qttyw0u1sB1XUTUIY26C8yZKEWgmoK/f+QKk0Hvi1ypa4iiCLl4gg4Ao6AI+AIOAKOgCPQGATQrdCx0LXQudC9mCREF0Mnc6KqZpz/97//yQEHHCA33nhjzXnUe2K5Mtx5553y29/+VuaYYw7Zb7/9ipc666yz5KCDDpJx48YV9/lG10fgqaeekjXXXFPmnHNO2Xzzzdutwtdff314bj744IOyZXjuuefkhBNOkE022URmmWUW6du3ryy33HIyePBgueyyy2TCBDV8qFLKPS9VZuXJHYE2QyAXWdVmpekOFyJo59YavBNFaT1dJRDB4urPqkhd9qHI505atYDi346AI9DeCOAC/tZHP7Z3Mfz6joAj4AhUhwC6FDoVuhU6FoLOhe6FDuYB1FswqeN7xIgRMmTIEHnwwQfryKW+U7PKMH78eNl+++3l6aefDmTVVFNNVbwQZMEZZ5wh3333XXFfR9/4+uuv5c0335Rvv/22IUWtJz8Ij/fee68h5aglk1qvv9tuu8nDDz8sAwYMkFlnnbWWSzfknPvuuy88N2+88UZmfieddJKssMIKctRRR8ldd90lM8wwgyyzzDIybNgwufTSS2XQoEGyyiqryDvvvJOZR9qBrOclLW1n2FdrW+gMdfMy/oJAm5NVxxxzjFx44YW/lKAdtp588snAalfT2TaajX7yjWflgJdOl/f+pBZrKFDciQextHpL5MIRIiM79oxPLRi2w632SzoCjoAj4Ag4Ao5Ad0EA3QkdCl0KnQrdCh3rLCWpdppNZLqe3QWJptcTAmi++eaT2WefvenXyrpAVhmef/75QEYdeOCBgr56yimnFLPA0mrBBReUXr00XlknkRtuuEEWXXRReeihhxpS4nryW3XVVWXLLbdsSDlqyaSW648aNUrefvtt2XbbbQWLpQsuuKCWSzf9nJ9//jmU8YgjjgiWVNdcc418+eWXgah89NFHi9tYDGIptuSSS8rjjz+eu1xZz0vuDDpYwlraQgerghcnBwJNe2tD7vTs2VPmmWeekmJcdNFF4cW29957l+xvyz+vvPJKYLVXX331VuXLKoex0WPHjpWtt946K1nu/SVl2GkTkY3VHP2ez1uUq8dHi/BZchqRjXT/wn1z59vohMy+fPzxx2FmappptDyTpKT8iXtsafzXEXAEOjcCuIC7OAKOgCPQ4REYqlYyd6kO9fIky5M+ylKtp3FBcfXrN0WHL35nLOBKK61UtWVHo+uZVYYXXnghXIrjSWlPt8VkWfx/2yDw4osvhgultYe2KUG+q1xxxRXyr3/9K4y57r77bllsscVanbjwwgsLxNVhhx0mp59+uuy7775C/SabDGa+vGQ9L+XP8qOOQPsikIusqmU1QNhOzCxfeuml9q1hg67edDYaZWp7nfUj4Ccm6/d+0aJ0oXjNrUspMzO4gq4i2LNtg+sx+wKxeNttt8mmm27aIDQ9m6oR+F590z9Rd6yvfhb5sSAyQT9dQSbX9txbPzNo+5+1j7pmVH7ZdoVqex0cAUfAEXAE6kRgvL4Hn9aJPfSl4T+0ZEbgdPQlAqdPnUvFrbMQXff0n376SaaYYoq6gzpbbJ3JJ9d7U6VgaUIZqhW7Zu/etU+4UP9qra9qxazWelaLS1unr7ZeteJXqV7WHvLcz1ruO9evNwA61/3b3/4WqoKrahpRZfXkWcJV8J577hGMBy6++GLZa6+97HDdv7VikHXhatsBWOLKW8uzn1UG3995EfCRYc57Z2z00UcfnfOMGpOhXG0+QOSchUV2UfJqgJopo4RdOFLkj0N1NZtPRb4ZX2PmflpbIvDNN9/IzTffHD5s1yQTVRl/Z6zI83r+h0pWjdVljHISVWPGjAn+7V988UV4iVa6Pi8HzI3ffffd8JuWnjSff/55yDerTrxgPvzwQ8Ea8ccftcxl5Mex4+StF9+Un95TUva5MSLvaltvQx6O8r3++uvCLGze+BVYVzKLhYLAdpp8+umnIVZGVgBNMBo6dKg8++yzmVin5VvNPu4PrhDEuUDxyCNfffVVKDdtwJS7+DzuP/cVtwp+kwIetLfkh/o2Uj755JNQzvfff18mTmRpr/JSqdycTX1xE6Bu5F9OuG+4FXQkqaUtx+XHlQAr2jQZOXKklIuvUam9p+XZjH30Tdy/vJKnHYEr/UMyVsz333/fqp1bux89WgkUl+YhgA50q+pC6EToRuhI6Eq7qs6E7oQO5URVTfgPHz5cdtppp+AB0adPH2GidpFFFpFTTz211fuO+DkbbrihXHnlla2uxbtk//33l+WXXz64M0055ZSy7LLLCpYjCAHP99hjj7BtXzvssEOwFuF9dfzxx8uKK64Yrt+/f39ZZ511gtuTpbXfZBmeeOKJUCa8OBACqVPGs88+206RY489NuzjvZAU4gNttdVW8qv/Z+8s4O0orj8+CQQLEoJrggd3KBR3LYWixaFoaZFSHBqkBYq7OxR3lxYr/+IBggRNkARIgGAhIQnZ//mevLOZu2/vvXvvuy/Pzvm8fbt3dnZ25rezszO/OefMvPMGiC78G22yySbhqaeeykZNf6PlYk6wwYwNM0OcY9NOxAK5QH7eeOMNLQ9lZmIfnCEn/vrXvwYG9ia0vcS/8MILNejoo49uVh6LW2TfkvROO+00vTcWFwMHDtTjLbbYQvuE8b05f8ghh6iPpZ49e4aZZ55ZHZtfc801cbT0uGidK3r/NGE5sPJSnxBwBE/qZiz0A3fffXc1taSu4tCcsuHIPE/233//gA8s+jz4lcJ/1KyzCkneArn++uu1X7XGGmuEIhpgWC+hWYXgO66IZN8Xu4Z+FM8Hs0KemdV9HNHT3ykqtdbvOF3ygC853vVZZplF87HCCisEsOY5xlJPXYiv9+OOhUDFaafRYyeEj0eMC98yQBbB0W6f2XqEaadqLMdVK+NKXuq5husqSaPSbAkjneZhasF4I2n4NpDZwVeFqHhYZg4HyUfvdumg3SXLL686UwgbyrlFe9aNBR/qRi+Dmua/EtCZc/Vck0miXf4cOnSodnrIHIMdGt2aBKLqTXnmIyd1XIpcT/2jQ4hjUZOFFlooHHjggdppsLB4D7Fx6aWXhkGDxM9Hkyy11FKqVceHG2EgdtFFF4WYgOEDvdtuuwWbMcUXAB88W2WHThtOTvn45sm//vWv8Oyzz6o/CTqkYaj4G/lRBiJLTx8CWletKE888UTYZpttSgah+DGoZKIMrnRQTDCNZUYLPwgIZB/nWYXIhNVnKCedXoQPP/4eIPRMjjzyyMDHt1HCB59Ousnss8+upGm558DzopNsHeJZZp877PnHY8Nmv90x8Px7icZbz27fhd123qGk077xxhuryvqMM86otzrppJNKfIPY/emYl50lrEFrsLXqNqTFxRdfIs9kUoeIgRLPkg5hLAzCLj38VHVwOvevJ74b8Xmtt6YtOKfM6vecouR0a/yopy7H+bjxxht1gEpnmYGqCc+Nzqr5d8Ssn0Gr+SspUt8trcmxp/5hQgF5VklGjx6tKyrxXprgzPaOO+5I/e/wfcTfTTwIoNxgxMDyH//4h252fbxnUF5LBz++1o8rIPCefA8fF83zF2RiwyZt+vUMYVPpK60gbVD31v1mVMhZpzjFt526y3vN92r77bcP9GNeeOGFwDcKUoZvm5kbMSHG4JQBbiy0G2jiM5lAOptttpkOfiGSaVNpryAHspMChKNJAeHEtv766+t7ysTII488on2FG264ocQVRzYP9CcJ4x03yf6mn/Lwww/bad3zvtN+nHjiiapNBQ74BXr88cfDo48+qhvfelZii4X2AJKDPhDfQ9pI7sd1kBjc6+6770772mAMZpABmHnR7+E65JlnnlHygbaDc6z+xgCe9KxPRT6z5YnzU+24JemBKfcmD/TtOGYMQZomkFi//e1v9ZsBYbfjjjsGyCueJ87N2ehHWR2qpc4Vub/lw/Y8F/JpEwh8v3v16lWSZ7SYeK4QTxCzfAOp9/RNeQ4sIHDllVdqX8jS5VlBREJsWl1aZJFF7HRde3xQIfHKldUS2nTTTbU8kFBFxlJgkffO8n5DfIEXKw726dNHy49VDfGpz1hMVZNa67elx3OhrnCfmWaaSYlqyD/GThDPTPzznGgTkHrqgt3L9x0QAWl0cuXHMb8kD7/2Q/LGx6OTL0aO0+2Vj0Yn97z0fcK5ciJqiYl8mBJRtUyk0uuxsNjJ8OHD9RIZNCXLL798IrOViXwYEukgJjIYSKRSJhtssEEiH7NySSdSmZODDz44WXHFFRP5oCXS4CTrrrtuIsx32WvyTsiAlOmU5N5779X7yWA6ERZd8yED9EQGeYkMikouFU0DLYs0siXh9kM6uYl8nBNx3KhpUx5ZrSGRj3UiDZBeK420RU/qyUMy+KckueyTJNn9jeTutc5Jtpp33WTOnrMm3bt1T/ot2i+RD2YiDWx6DzuQRlXvLytQJNLoJpRXlm5NzjjjDIvSbC+dA71GHDpqecRGWn/Lkr8at678R3eRj7fiBe7y0Ur69Suf/+iyDnXIs9hjjz10k8Fe7Xl/b1SSPPVNzdt9f7ku2XPB3yb3HnZt8uVtg5L/O/VB/X3eNv3LpnX5zqdrnBfPeDQZdvNbyT2HXqO/bzngkvSa0zc7Ko1DurcfdLn+fvSYWzTO57e8rb+J98kNbyQfX/9acuomR2jYkOsGpOlYmV45+wk9R16H3/5u6fkB3yfJhNohK3qFdMYTIZqSRRddNJFOVCIdrEQ6jFrXpaOYm4xoKOl5GbwnHEsHNpGOjYaJRopewztI2yKrtSQ888svvzy9hgjygU1kxja9r3RkExkAa5z77rsv9761BtLOkAfaI9GGSWSAofek7RVSMjc5WfhCrxEntMnb7w1O7n95ZPLiuyObtf2zz90nETIgEa2wRGan9RoZ0KdpgqF0nhLp5JVsorWWxkkPfpEHXGMdb626fdL6hyYHLLFj8sYFT2v9p95TL61uU2c/uuaV5L9/vz85YtV99BzHVpcr7ikjZa1TROMrkRV/yl5dT12OE5NZbX2O1BkZeKWnqNPUGSHZExlE6nsi5LSG2fexWn1PE2vFAxnwav5k9lXLQZ6rCX0PyisDU8VWBsD6e8stt0wvtTj0aWgfhKjXOLzTiAy2E+nIl2z2XZSOf5qOH7QQgVHjk+SJr5LkKPlG/P71iZv0gbQvRJ/IpWEI0JbzXtBvEQIiTZfvBu8+56jzJjKQ1DBxBm1BuqfNIK4M+hPRSEzP0ZYdccQReo7zQmSl5zjg3SWcvj3f5Vj4jtFXnHvuuRPR1E1PlcuDaFJpWjLQTuPaAd8o7hOXke8aYfSNRcPWoupYQAbLeo5xB31jExn461iH/IqmtQXrnm9e37599TrRxE7PWRvBvWg/6ROYCCGViDaPXiMLUVmw7vnNNTH+JRFq/NGS9HhuQlA2u6OQJdq34TllxxcygZCIn2Atg0yOpNfWWue4sNz900RzDsAN/LK4Csmj40khDxMhREquJM+iGajXiXleyTnGRKTHJhPBOj4tiVDhhxC2ep0QYSWx7B2j31aLCLGq6clkc9XL8t4XIRN1vM5YXPxNl6QBJozl8553ScSmH/XW77322kvLIGRUs36qEIU6PpcVERPeuVjqqQvx9X7cMRCAIW8mP/38i5JSQ4b/3OwcYQ8N+CEhTp4w6JHZCH35RZVQj2U2P6FDifAxkpVDEsKEkVeCik4mBBcNHA0GH42syExNIjMWWpmFrdePII26qJdqGB9FPoRFxF4mBp2QauSHjwbbAgssoOkJg1zykc17wbkXHztrbCmPzMYnvHRcT1n4iPEhzzaS9eSB++nH/pDDNb2ePaZNNpprtWSPBbdKluvdT8Nmn2W2RMw5iJqK+J3Sc5BnfGzJC8/GOt1pxOgAko3nKBo5Gh8yid903JEW5b+ps0IeNtpoI+0Y0RCSL+pHNv9RtjrUoczSJKI6rls8WIfEkhkCxZ9BkKi3ahwx2ZpUvh+lM1YHUcU1h624Z3LKhkIgRNffvP/FOsD+7r4hJeHE+eU/X+k5yCe7hjDSYRBP2Ig73tM4dx18VRpnwpNfJ8eucaBuxDEi4Zu7P0zjQGox6H/4qH+lYcT99t7BSg5cscs/9XwzskriKJExCZGGHtngVGZx0nQZnFMHRX09DYsPRKNEz0Oam4j5g4ZBXEHAc704u7TTuqfjTzgdOYhrjuMONEQ4YdkOf0kiNfzgPSe9OJ+Qw4TddddduSnx3onqtbbrTEiUa/vvfv6rtO1nwADxRkfJBAIw20m1cyV7yJvXZRDDc65ha426Pe6J4VoHb9r3wjQvPz/2hYZdvMPf0zDqcbwVJqsoH2WtkbASf4/6bWFgJSaHJfDFP+qpy3Y9z5AOMt9P6kdMVp1//vkaxrfAhEEXk0+vvfZaofpu17Xm/uyzz9Z8kn826nI1od4yURbLoYceqtfTV+Fdpi6LlmUcJRHtQ91KApt+MNDkGymalPqu58XxsBoQeE8I7kuFGNhTiCkjqQ5+O0nu/zJJfhhXQ0IetSgCTBjzDsmKc80uYQKCc/TXTfL6xaJlovGWWWaZElLJrmEvGs0apxxZFZMZ8XWQyeQhHszn5YFraiGraAfp49KHh4TOE7v3BRdckJ42AkQcXadh8QHh5DeeULe+M/eLSTe7zsojCzlZkO5bQi6VJNT0oyXplSMIRDtfyyvmnXm3TCB/RFtMCS0br9Va50i43P1zb9oUaM8qS1bZty9+rnE6TAaJJq2O5SB1TIys2mmnnSyo8L4cWSXmoIqfaGwVTouIYkqq1xWZ8LT6Ffc3GXNRTxm35gkEEudtUjYvjoXVU78hhyHEGIvzHc0Te5f695dJ90jqqQvR5X7YQRDItef7+KtxYb5ZeojJn/gAyAhh8/aeUs0DM6f0Jyq0+L4QBjSgEskxqpRSodLoqFeiAsw5VP6k8VBVS9EIUDVGbJ2lIUvjS4OuqpbSaQ4yEFJTJVRvUUfGbIlV/VANvvnmm9NrihygmisNjfroQS2VDT8y2Cmj4olpRDUhD5jcSAdZ1YRRcxatClWXlkZB1TMxFygnteaBZUz/ee6ZQToC4Y23B4ZHH3k0XHPQuWHAZreG61f7e/hu5Hdh79/sGn65X3yufFtqPka+UKtElRuzr6y/gDiPqIDyfMyUCBMlfrP6RCx15V/MSDT/oiqOevU1YjaGI36eKSqqMtguef7x/TrSMfWVusmGLxyE+sIyz6i77rvvvmoahSkacfidCs7U6xDUklG5zppcsXoIkudnh/cLMzbMYExQOUfNFr8NCO8sYulwjPr3Msssq2mShpDNAdNB/BOYoNKPxGri0jaqHwCWYZbBnUVtvh8mGDSZIDc/2bIQzBSQ+P74KKBe8t7miWh0alsVl08+3hqV5bupu1wvBGzJ5ajLm/D+oWodY20mS9J5tWgt2mN2IAREyXNYe+21NU1U9LOCTx7RfNW8V2v7F5xzurTtx4cPZba6hkkHYbSFtJ2obsemqCX3/VBMNGo0b22tuo2Zn8zWq3mr1VN7T2RmPM02ZrJsmMHVLJSVMlcRVOhxmsq7IRrI6hsN1Xd8mpSTeuqypSVET8BfiPm9sHD2rJiF7wjaAL6LfBNF6yDg02XZZZctVN/j9FrrGJMJ6gYbps7VhPYRE1zMJ2LBXBehrHzHqcv4kyE+ZcdnF9/ycs8fx7iYulD3s6aj8X38uAIC9FkelBX9jpDvZf8PxS5qpPh8kHHSSmLid+QCIZwtbeQWsgjN9KWmuRVS9FM1IIDpG4KfHkyuYzG/rTIhHQc3OxYNfg079thjU/cA2UiYHJUTvpflVty2/gf910YKPigZS/Dtpu3NE0zk8UHFt94E1w4sQvTHP/7Rgkr2fAsRM0GLTzL2wOQqK9YPaHQZs/dpjd9ggZSrI+CBKTWrxZvPy0bUuZaURSxsdJwmSga5yTCWFUJLnyFjoKywEl+jhP4UfWZzvVE0XXPDwPX1CP1WHM/TX5OJqGZJ0AcR7e6SPmWzSJmAWuo3ppaM+fl+Yx6bJ3znGWMwhnLpegjkfvG/HTUh9BXfVOVk9hmnDIPFl1VLhIY/60AOe1gc31EZGdxjO4xAstC4Qa4YeWL3pvGjgcQnD/bmvCBU6CLCR4G04w8GLwqEGx1ymV1Sx26V0jIiCl8+dOxj4aNHQ4g9PwP0PKklDwwqcfDOxxySCNt4lWVm0IHfrs/MEQae/FE445Wrws2nXRN2uXXzEJaVc+PEz4MI5AJlso+hBrbwX0Py35QHPggMpiEkIR532WWXFuaufV1Oh4XBD0LdpmFmEISPlWbCqn91CAM2BJvvWOw3A7Cs8JEynwl0IHDKjY8K/DHxPiLmfNzSsTR69Zp4H84T1+LbefxMIGJuZ0Hq84gPHwSokQLpyezB50JYLTRtNrTFvyFnKF+2UwBJa8Ri9iYMZm1AK7Nw+mHH5w3thb2LOF2PBSIAggN8GcDS0RVNTI0is2DquwOSHNwgLRshkEaQhrEYwYYD6qzQ5tGO0lHZtkrbP8dMPcLAwSPDDRefq/4D8LeBw1cER+6IaKjq3v7hs4zJhLRdxkcVRGSN0lp1m2yI9luAuKGTzcQK5DltG98kE94TxPYWXnhPmeeWjljGhxVkCMQQJAedYftWQCBD4Fe7Xz11mTxTRjHJUR8i2fea89Rd/HbRkbVnSzhkDf7NePbV6jvxW1t4r4wcqoYVecEfD5IlACGrEd4RvrUIvjpiP29gUfLt1VjCQ4q/EMgq2oJsuk1RfFcOgXHi7wa/nBBTr8v3ybpKs8v7to5MfKzdOwRWS3ZpdQTwUUU7SFvE5DHtIt88JnX4TsRETbnMQLgjvCvlZKWVVirbrjFBUO495puNxJPZ5e5RSzjjC0TcipS9DKJetFFKzovbj8CGMKHHxIGY/+vGoJ+J+nKCP6c8wR8eY5JGlzHvXtkw2r08QoZ4TLDheLuS0HdifMKEeDnB9ylCX5Nn3Yg6V+5e1cL5dkIK8tzBvZxQX5l8o52PhT4NCwg0SuhHmi+3Wr4j9KeRcnWqWv54r/BNyVgaApbFAkSTUP1D8YyYZGWrRcrlJa9+W/7jb232Xkwogkn2GWTj+e/OiUAuWdXaRa02cwJZFc8qFGXrWZHEGsAiZaiF+c1LjzwyqGe2Byd7ecIHm5VEzAFfNk4teeBedATQPLLBcZrezNKZ22qOcOAyx4YzFrwqPDHh1bDLVFuE8Jp0/j6Z2DnfYPE1Qr9ENGUgzrp1Sy9tyUHD8t+UCQgcyCocbXY2sop6bWQR9YHOD868WXmNmb0SUYuykpBCP0wzJCUGmq6y33a+XGLMzNBxI590GNH6gciw6yA8YzGi187bOTo9zMbQaRE177STiyYSxAWzUcwGVSWrvpHZ3VYgq7L5tXwz6EVLrJqI7zcdzBMPLQ2ISDH5LbnsqaeeUo01OgLxSkQWCU0NtKDAmutJp9wH3q4purfnnY1frmw4F4V4h6DoO9skYjF7fZDHjxNPOuEM6iH7qL8MYni2aOEw2IF4ow5AzBlZhyN+lTq1Bu2ZZctmv+18szw3BZSr25xmVh1tQpx82swepAbEHxMhDRPKvtB0ig0TIgwKIUSyWgxoF4Nj/L6RH4itWCBXy5W7Ul3GkSzanWL6FtZZZ52UnInTpj5CohGPSRcGTzxPCC4GLmjvxVKtvsdx2/LYBoFWbywv1pZx3gZUkNJiPqJOp5lY4HvHpBnvfyyQnLznPLdGCc81u0Fk1hvGde3q+mGjw4QPRgXxxRkm/Dw+iGFwmDClbPNOFZIFpw0TZMJ0wjuCwVuTcGhX+W96PkXz1Aj8aSdop1pLmFhlsoqV0mjj0SRio27jJF38FJZoV+flw77pRv7mxeHdY/CJ9nZWGB9MbuG7h5gmeS33p21kpbmsRjb9O0gOc5qdTbMtypnNQ/Y3fT/6a3kCiVJO64z4PEt79kX67ra6WyPqXF5+i4SZdhd1sZIYUWPxLS4r1tl3w8JasqcfBc7Ux1rIKvov9BVM87CePGC1g5Y8ihfUaTaEMSyLItAmZL+Zle5TS/02XIs8B0hh+sy0SS5dB4FcsqpXz+5hhCwNPGev3NNh6MjxujpUvTDB1NYyc1IPW18kb+UGhnnMb156RWaQuA4NsnJkVS15MI0PPgo0LHlChwj5ZFohqC4SzbTnRS300olqlat1l9+nfBRCbyG2VpOB9eqy9W2Z1kqr5V9mXTqbMKhHIBrpyCA0/pCZzcgqPVv7P/uY2IDMUjCSotqHlY8VGx1i8VmjK2Exo1QuXYgLJE4XLQw0FhlYM7izzg95Ej9p+j4we1NI6iTtqqUd5zeOS7lNSyMOzx4zgEXQjmLVI56pmchCYqNtJLb7OqiHkMgjPIjDRr0AD9SczYQie79af2fJDwZUSLmyMWMMMfngPTeHhfv+Rdp+aRtyZOg348MC88yiGoF0GJiBw5yKNgmtQdMc5FLaUVmQQdsqyOeUrKpTa7BcHWxp3eZ5iS8vnSHFFAA1fMgKNGWox6Y9mwNHTUE8g6cffzLceOrduupcOZV9CCE0iCH/YmICEp86FQtm1OSfeMzkW3zuBdEGNpimxeEckw7PD/NQvk2mSUQ7xApUXG9ah7RPrE7FdQxYUdlnAIupDmE8e/CDmObbvt9+++nKXZBwdl/bk64d275oGPGrxWWgDR5opVn68Z7rTUsU8300eC1Nex79+/dXQhacIaAZiFoaaJOZdjKDA8LBGG0KyHc69oRZmnad7fPCCaMdzbbZ8XPuUscvdqnStrvCopVLHed9gIDGJJbvHJPG7NEEx1VGOeEdQSDXsxM48TWcz9NmiQn6OH5rHpvmcZ65XqX7MkGO9hnlQDOF9hESH9ILLSS+56a1nk2nLcqZzUP2NxOTEJJ5Ys817xxhkBNsEDt8c6pJnF5L61y1e5U7b4QqdbGS8K1EYnc2/LZvJMeNEFtNkG9y1vKoXPoQhBA4aPjx7a5X6BNjusuGhiCTMxDW9HWZ1IK8YpLG+mHV7lNL/Y6fQyXtTZ4D71pLylkt336+fSKQy0b1mbVHePqd0WHGacc281v18Yix4dOvx4WNlqmsDlqpuLUwrvWy9ZXub+dqyYddE+9tFsFetPhcfFzpfC15MPVHTI/iJbfje9mxzlpMO4XoNYsK/Yg5QrhNGtpfLxDCjEJcDZXZffxCsM0pqva/koEp23y1z2i1av6tMJ1kb1hliQQjfEqKObWosPw0kWAoCa/yw2YbTDPAottvs223cPbMavBRwl+DdSDIK0vEMmMzZMgQHYgRl486PrdMzKzM1MPxQccAkM4H5I2lZ9dC8LLRAY4FHxbcLyY74vONPqbTwYcPQs06qtwDQtiIxOw9GaDT+Y79U0DWYOJIuSkvbQIq5cxQQsxBfsTEGJoqzLRiSmXEER9nZq4gByENTLMne/+iv+koGzFq11hble1s2XmeH0szj/jm+/DSx93EL1X1tp+6hoYcAxpIAgg7BuXx7DRloRNls6h6vzoJyNaq21aHqf/mY40ONyQrJAyDtjwzOcOu2n7g4LfDjY/dHv71xO3hsxHDqkVXH4gQKUUkHgjh4ypPKqnWs8R4LJCLbLEwGMsKJBlbVmgrIHfaWnJNqzOZwjcVW1ZsUohw6m1J3W2KHMex6yHJ2BolDArijc5//NuO88KLhpFG0bh58QpdPzoJ3YXk7iauI7pzTDm6Sdmm7xG6zzVt6Db3NKH7dFOWlC3vXnlhhe7fhGNnub5R9SsvHb73DMDR2KTNYyKGDZN9tAxlNW6dwKpEVtnEDJrDdpy9F+2EDTyz59rityyspLeNzZ2z+aDvg5kv33vzU4TrEeoVg/jYD6Vda/4o7Xd739M/gKyvR8Chr0xWQNyjFWTf0mxatJFo9vLuIo2oc9l7FP1NXwXiI689j9NA2wkpNzkfx23JMa5Q+PbjJgcNZuvzxGnSt4QEtTp42GGH6eQIk0r1ChrlTG7x/CCDmHRh4x4QYfQz6OdBQmY1quu9Z3yduabhOZQzq6Te8C1Gu4+65tK1EMglq6adqntYs9+04YmBo8LXP04Ic888MRraVmhVbbB0z0CceqWWisagma0etr5a/mrJR15aNhCvxspX6sDWkgebpaIxK2d2aPnM01ybdlVx9rjnYiEMEdXr/30rWleyfSFmVvcMn7jhT2VV8UG0imzzF9O4mpz5t7J11L35YMO8BnKIRp+6kbswANpvP030m1JLeeloUi/RkMAUyzoE5lsmT80WgoHOFh9tOqYmNogn3NSg0d7gI4ZAsvGbji3EC2QqZWF2ESea2boBUYa5WSx8fBj04rcgt2MLadcKYgN77o2ZZuBZ/QAAQABJREFUE0KniY5WuXcLM1xMOelQGOmHHyU0YFD3RyCnmJ0lrbyODR/+c845R2emzf8V12GzT8ekpUQVafGxZ9EKBgR0PhDzHWbl1sDoHx0eOmRow6y9RHdt+7/8dmyYf7aJBDbH7376bfjgf7eGrVY6NL3SzCeoH2gEMSMP+WnlABsGALHvp/TiGg9aq27TcUYg+GzQwm9r11s6e8rAfCp5P6adqthkAO8vBCfvbrzxPsW/7dg6cbyHmCUQDumJ/z/ed8pEWHw9ZUOTh3ATZlNJgwELnXh+gwntCN9grgcrfDZhusGCA7w/pEW7gSNay1N8r0ph2XxVipuXZvZ6NI7pUF9xxRVpXvLSxJQejNGco+0iDo7tGQTwDoANPjsw+UNTzO7DYJWZZjTNeF8Jx5Sbes87zADN4rKPt2r5z/tm27PpcPtPpI/xomh1vyCb+mqTEmBpIxOhOjGGZncLtbo7HCbtPMNo+OGjjveBdtsmU8g2dZeBK0Q0Ghe8H/EkTFw0/FtBeKO9yWROnmDi3J6EBSMoL+3H6aefnqu5Qb8bwg4NaASNSr5/tJl5RBVx8PvVlYR+EH0f/HDmLeDExA/9YCbP6G9w3Ig61xKM+Zbhp4s+Uh7hg7Y9i0BRP8r1n1py//harBqwRqAe8q3JW/jEvjf02YmLxiMacXy/6hV8Y6I9xXsLIR0Lk9Ms/kQ49bk1yCrDlTYj1cCPMyHHTKYy5lhllVUyZ/xnV0Agl6yi4D2n7q7aU6wONaTJmTrmgWsvPl2LiKpaQeUj2VcGXLWy9bXep574NrhmBqmS0OlvhNhAihmpctofEA84DSw3q6H5oJPItqM4lP1ABmoQV9apvFuIKzacm64spJVoWDRKGpb/RmVoMqeDpgaDQMgqBu+YTzGg5HczmVOIw89qJ6tIBxKEDxgr+tgKPmjzQGKY+iydLsglPojkiUEtA086YHTcIDrQTuCZMXhl0AVJxewKg1K0aDD7QTPJOqSYeiHUzaxZI/cgnaxqMx0b7svA18hfTcT+9ZZ62AoC9nzg+QCjvQkRjNkXYv4W6ChgesXAlzJCUkFWMatMhxUcMBHjfcSJOKQMZeGYjpjNxpEmHR0G9KRDp4COHHvM/yD4UPuutEISaRQVNGEgq+jIYGbI7C5EEs/AHMiiUUOdgMRE8xOyEBINrTHyP3TQB+H214eEjTbfVmeSZxCe5Zyjfx/eeuPV8OO3IxQDfHTgaJvVfFBfJw38lGGChRkbnTxzSGuzgFqGOrUGubY16jbEIxskDJ0hZs6pl9RvOtItJRGW7NsvnLz3sbq9+snAcMvAB/TdMjPy7HNFw5DOvhF+2fPZ35BV4E89Bue4LtMBpwMMgQPphAYfWhJZgdyCkGIwSj1HqBt05CGtaScYoFKPEDTOuB9kD/WFtGOx+h6HTY5jNPyol9TFWLL1nfpJWTDRpXPMAByiCuLaVgmkXLz7NqCifYOo2n///bXOW/rMdDNAr2S+YHE77V6IDl3tEoLqJdmGR/0G3EkwCQZBtfB0MB+dFoaOXDD62mhh4kuPQSM+amKhnkM2UM/LEVXEpy1goob3CQ2RkrZfzmNKiNZxexIG5LQD9JkYmGPeF/eh6VPTZwIj0/6mjaOvA7HHlvUxxLeQdJCsNn1Lyp6niU/7zjeL76P1s4veIy+9ItfmXUcfBqKlf//++u3MLvTCedM+N/9X9da5vPsXyXc2Dt88+kV8D8gv/SQT+sO093wD8adbbtxl8Rux51vL9xVylPvyDYr7IJA2TKjyLWJD6LvRH61XjIBCu5/3ILY2IE18qyJ5E7B6ooX/6POss846Or6AyGbyNBYmh7BsoI+CmWJW8uoCE2u8g2iIMnnu0rERkF5EeUF7qp9o2wxiZkz6Ihy3hdTK1lsj2Np55SXgXqyqxEpaebMrNMzmIL6l+WFgy8eSgQyDwPhjamnTwKE+ij+RqqYQdBoXEXNOtl1k2vN9Ia4grayziZng+7IhT4hNd5/vQ1hSbKJ7TJqNn3iy2P+G57/YbdtNLEyt6AgyCILYgKCAAIIcwg9MibBiGO9bHaumsSol2j0QJ2ZuB/bWyeI++G1hkAu5SaeLjimOz8mH5QUSAsIDogphoMsMEx9SE4gb05qhM4vgUDsrEECQVVmhPiO2z54Pc7VOmwM5wbMgX2hDIWhK8M4wuEfAiE6qad7wTtFh5d2zwTCEF7ixmh+dNKScmS4z15B8DHrpENsMLddAKtFJaYQw88RMGcSTacpRz8in+QjBLJSy0RlDaLuYmeP52kACbLZffzHtIBDnhmuv1A4b8WwWz0guBi/47GCQQ4fUnHNC/EBwlrTJdWoNkofWqNu8l3SOeH533HEHt1HBn5M9Zwtjb+9D2TobR84cr7D6SmGFXdfS2Xu+GXwbMA3lO2FCBwsNPDqiRTqgReoyxCHPm8FmnlhZbE8c2iW0jDBvZRCE8DyZhWZAVKS+60WT8V+c//i22fpOewfmfC95LxDqL4NrEwYF1Gucp0NIIwy8IbBNaCOYbKhkFmVxO91+nPjHfOvHEF6RfgGr+X07sS3RcvKOM9kFSbWIEFTdJ7bznQ6DTlYg2nVM2mkPaX8YRNJ2Yy7LgJhBYWwGn1d82kfeIwhivnFoY5AOE2V8CyBwIIB5b8q9r3nptnYY7znaKkweMTlOe8DgnH4NZeddh+SOzZToH0H+0wfiHEQH2uK06Whb0pdgQpJJrr59++pETr3lMO122iuwhMCwdpk2iW8u35OiZFWl9KrlkWvRJIXsp0/BtxKtXsge6g7tKhM99HMYv4Eh+WOsxDeNttWknjpX7v6WZi17SBLySb+HvDKRCCHL95J3gD40k0GN6p9VyxtKEEwkQrDQj4OIJI/UO8gyJrmy2t55ZE21+8TnmSxmfMA3nTqL2R8EHu8nfWIIZjCJ3Q7E1zfiGMfuTPpAGjJRyKQR31+UPeiX0g+HyMoShuXqAnUODWqczjtZ1Ygn1MZpyACqqrwzdEzyzmdjqsaLI8jANJGPXBykxzK4S0Tlr1m4BQjLjaOeRDrEFpRIY5/IS5OI9ocepyeaDkRNX6+Rlyt7Kve3DKg0vjSeuecJlJckEU2Y9LzM1uo1MlBNwziQl1vD5QVPpPNbck7IgET8oOh5yiTaDun5evLAxTJg1vRk1aFEZrrT9DgQTZlEPhx6Xl729Jx8wDRMZo3SsIoHE2RdnvdHSeGGJZes/ze99vY1zkyS37+eJHsOTJJzBicXH3amhteCIfesJ/8V89oBTwpBlIjmUlpfRDtFsRRCqbQ0v8hzeP2HJHnqm7q28f8ekYy4473k58e+KHw9cblm7ONflr1mzKOfa5xf/vNV2Tj15rnkuvekDk4GkYFsIuRAwnMpIsQjvmgsFYleNo6YTyViMpcIYVQ2TktOkE8ZECTij6CmZCibaNqUvUZMHxPpzCeiWZMbh3ZJOuyJEKa555Mfpbx11mm7rrXq9uhHhmndHvfE8Bbn0fJasqfsGQEvGcQlMoObiHahtgV8L2SgpG16JnrFn7XW5YqJRSdJt9Z6FF3ebg9F4yEZPHhwQp0uJzIQSGSA0Grvabn7tsvw78YlyTPSnkgfQPsC9AlsO/Qd7TNo30HaHpeOiQB9R/Ehk7ZDtEVsQsQkMllTUigZSOo5IXpKwvkhLgISmSTRvrulIZoRiZjXJqKRnYgmUiKkVcl1jA9k4FwSFv8QYkjvJyb5aXC5PMgKvBpXCPc0rh2IhnMik3TNvvm0czLBkwgRpNdavmVCIBHCqlkbwLdbCOxm8SmbkB+JEFyJ+GzUtIRg0tuLpoz+FgLLstNsD04yWC8JJ2+WFvkSAjA9T54Jo69fVCqlVy0NIZh0jGT4iFuLkkuEXEh4lnbe9uRZNM5L4vKjljpH/Gr3J05WZBJW8yNEWfaU/hYlgESIj5I8i0JAIprqiUxWNLtGSJBEiMFm4UUCZOJX70Oeygn9J5kwTITcK8mTYSmTkolMciZCXOl5IdkSvlXVpNz7Ql0Vbf+S58q9hHzWd5bvZBGpt36TNn1PmfjRe1o52YupbSKamrm3L1cXhBhVXHhOLh0fgW4UQSpDwwWGHeYdM4GYeUe7ApXbrJmQZQBTnOOPP15nb2FZTZi1gK1nRqEcW4+qIpoL1QQTGVQ6YfrNhCl7DdomMMvMMiHkF/YZrQrUEU0wjSANZqBxJAw7jf0tvj6YdUA1F00H/N2gcYL/C6SePHAdbDH5YlaY2Rxmf5ipwNyDPDBzzvLZzASZwIxjmoOKM9oxtQiaBmiU/GaVjcMBC20XphqehPXmWCVc8v5t4cCX/h7u3eGS8Jsdtg5huRkmmhY2acpwjyyGhNWTf67rzIImHDNjaD9llz+W9bwnmlfUoWHVoTHDT97SUqd8Qr5DP8aymUeLs6vVaTQl0TKpIHxPmN1nhhyzRLRnmZV3Pw0VQPNTrYcA3UN8XL4mmmUDRHvqIzmOe4wLijuBlUR7asUZQ5i3mE+21susp9woBGSiQ/0x0X+lDUJjCC0jNB1qFVwF4CqDa+lDoxEkA1/tq6Mpi7lgexPM9jDjxx8f5n1olMamWNn8Yq5FGcENnOJFaDCxZixEOmgftURIH/NstH7QlibNlkhL0qPM+CzF7JwxD/39rKA9R37RXgaXSvmttc4VuX82P9V+MxxGq45xClrzaBlVeu7V0mvUeVx2YOLOc0dDj/oIngjPALNANIzwhZtncVNLPrC4wPLDTFvR9Mp10VFLojXGRYuReoM2FVxCpXpD0q1RF2rMskdvZQSaty4NuiEmJMcdd1zq/4KXqNKqRHZbe9Fsb+H4j6HSYmKSdc6IirHMohQiqkgvm7bdI94TJ45nx9kGmQ8wKpKY8Vx22WUl/kBwvAhhhQkBZFVs0mHpxffMHmfzwHkaKYizPcQvDeZE+NowwSwRnCCr8qSejgbEGCTcfS8+qtv6a68X1tt769DjEjEHfEnu8vnYEO74cuKGb4plhGBgW2p6xS9bzpbkP69MnSEMn0F0PGxFjJIyYT7BAJeB7hdijvvNuBBYTe2XeMRQckXH/0FZ1bdJxy9KRy9BagI+jzyTRspCMsgdLWZEI6U+dwWZWcyiKHMVoY1mVUI2JjQYyGEywTeE75yLI9DqCPwg5nxvinnfG0JQscXmfVPJ9whXACsIObW8bNRrl06HAKZ8DFLNL2stBYRkZ2KZMQD+fvB/k+3722rWea4zarlXa8WFoGDysKgwmMdUK0/wPcjYpRHCczFn1G2dHmWGbKwkkJxsRaTWOlfk/kXuG8fB7K3eeh+n0+jjSnnCryST3Ex0Zcdb9eQDtwJt/V6ilBIrq1QrR2vUhWr39POTF4FW06yiGK3FdtbC1k9OOJkZwLafJUBhva2R3n333VPb46yD6Zbkjxkb7HnRsqIxw666qFPeWu5bdvZlrAw235ZO7QDp0L4ms67ijD8VNGIWkMGZkVeQD1MQOEkmV/4n3dGP2gUCP0m9+RziTYhOiDcEp9s4U8dH1XTdJ4b5/zZHoNXIKkrWVbQGIV8hqlrgt4eZ/vYww9vmFdIz0HgEmPhgoRUjpwZntKdYwW85yCmZhFpCiKoWrATd+Mx7iu0NAbSx8HPF5Cz+qrJEDT6hWMSBiV8WcmGyzsURcAQcAUfAESiHQKuSVeVu2pnCWd6a5evRroINzgoz4qhtMtgQe9x0yftsvE7xe9iYieYCdHoHjQphXKT9M40QEIv3FI2riVpXbjLQKZ64F8IRaDkCo37pXFqDkPJKvsogn1U9WSzBxRFoTwh8Jt9qtKfelG/1O/KtHiMTCCY9pP72k281E02Y98/t5n0Gje+LIYBmFa47WL0Lp8xM3jKpioUBJnGE4xaDiVwXR8ARcAQcAUegEgKFyKpWnV2vlLsOcA4fVag04wOLlcJQZTXB9neTTTbRlR0OPvjgcO6559qpzr83rauB0iEeKB3ioaJJEwsmg8zSsi0pHePZZVDn4gg4Ao6AI+AIOAKNRWC4fH/fElIKTWi22LSPO2Hmi4/ApZu+ya491Vj8u2BqrKKGD1pMlPC1gyYVbiDwA4SfzlrM7LogfF5kR8ARcAQcgSYEnKxqYVXA1JElRXEYyYdYVhDUWSOWaMUhHppVa665Zrjzzjsnu5O6FhatsZfjm4aZXIgrlrvOdpZnES0EiCu0rxaX/exiEubiCDgCjoAj4Ag4ArUhMFxMrN+R7yxaU5BTX0cm+qTEZBG+pyCoxL+k+56qDV6PXRsCLPyDNlVruKmoLSce2xFwBBwBR6CjIVCIrOpohZrc+cUMEMfmt99+u64iIcuH6qofzCDhFPeoo47KXSljcuezXd1vqJghQFrRkaZD/aOYAsXSW8grTBFsm8dNEWJ4/NgRcAQcAUfAEVAE+J5iem8bC3HEMr2YojIRpJrMQk759zRGx48dAUfAEXAEHAFHoJ0i4GRVgx/M+PHjA+Z/8cp/Db5F50uO5bE/ls42xJV1tvFjE8sM0tleVDrbbIuJs3act085yeQyjurHjoAj0BgE3AS8MTh6Ko5AwxAYL/6lcIL+rjhFf08IKrYfMt9L/KTZRA8EVR+Z7JGVrlwcAUfAEXAEHAFHwBHoSAg4WdWRnlZXySvk1aeZmeLvZDntWKaUjveCQlgtJuQVKw0uIttMoo3l4gg4Ag1DwMmqhkHpCTkC9SHwnWhJvS/EFBvE1EdCVI2PFi8h1ZnErM/IKfbzOTlVH9h+lSPgCDgCjoAj4Ai0JwScrGpPT8PzUh6BL8RBLB11m00elnHYzpUssb1IRF4xm+zaV+Ux9TOOgCPgCDgC7QcBtKbQMoaY+gCCSr55X2VM+sjt3OIQ3bSM2bPqpIsj4Ag4Ao6AI+AIOAKdDIFCZJXPrneyp94ZivODaFrpbLN05tl/JNvPmdlmlpCHsFpItK7Y0MSik+/mEJ2hBngZHAFHwBHouAigQcykC5pSH8r3iw2i6pfMd2xqtIibtIeZjEGLeAbRpHJxBBwBR8ARcAQcAUegkyPgZFUnf8BdpngTpIP/iXT0bTaa/ReyIlJWphU/V/i70k06/eznkJUHncDKIuW/HQFHwBFwBBqBAMTUl/I9wtfUYPk26V6OR4smVVbmlO+RmrY3aQnPLxMu3d3fVBYm/+0IOAKOgCPgCDgCnR+BQmRV54fBS9gpEcBJOxpXOmvdNHud9X1FwSGw+jYRWOz7yIYGlg8QOmW18EI5Ao6AI9BqCDBxgsbUx/LNGQI51bTPI6bwNaWav/LNUe1fmUDBObqLI+AIOAKOgCPgCDgCjkBwssorQddC4Gub3W4aREBmZVdSApEeMpONk1ojrzAnnE8GFNP4CoRdq8J07dK6CXjXfv5e+ioIjBHNqE/lW4L5npFTLA4yLmPKRzKsaIs5X6rZK9+TWUSLysURcAQcAUfAEXAEHAFHIBcBJ6uaYHnzzTfD1VdfHXbbbbew3HLLaeh7770XLr300rDaaquF7bbbLhdAD8xH4IQTTghzzTVXOOCAA/IjtKfQmMCyAcfIzOqDll9MBjHLgLhizza7mxEaPL7vXAg4WdW5nqeXpk4EMOMbLhMdmJqzQVCxx7QvT2YWjSmb6DByyompPKQ8zBFwBBwBR8ARcAQcgbIIuJfOJmg+/PDDcM4554RFF100Jas++eQTDfvpp59aTFaNHDkyfP7552G++eYLM8wwQ9kH0tFOQOhNOeWUYcEFFyzJ+mWXXRbmmWeejkFWMYhgW2mmSWX4XsgqTDiMvGK2HNMOBidsL30/KS4OcOcR0mpeSKymPce9ZXVCF0egAyPQD3NYF0egKyHwjay+95m092y0++yHypZdwANMcCXFOzK/TF6gfYsJOSTVjN616kpVxsvqCDgCjoAj4Ag4Aq2DQKEeVVedXZ9uuunCwgsvrKRLS+G/9dZblbi55557wlZbbdXS5NrN9WuttZZqUA0YMKDd5KkhGWGwsYyQimwmY8Xkg0GLza5/0jS7/iO+seSYLRZ8j8wjA5m5ZRDDHkKL/SxCYrlD9xgpP3YEHAFHYPIhgKbU10JKDZUJCNp09sNkDzH1U47Tc3I2vbTnqk0badXSpk/lpuGT78H5nRwBR8ARcAQcAUegKyFQiKzqSoDEZV199dXD+++/Hwf5cVdGgEHJAvgckS2W72TQYzPwn8qgx2blcfD+nvjEYotlakmH2Xi2uaL9nHLsA58YKT92BBwBR6B+BJhg+ELa5M8ho6I9xz+XIaXwS4hmrGrKSptsGrMzuaZs/Q/Cr3QEHAFHwBFwBBwBR6B2BAqRVY0yBRk7dmyYaioxt6pREpkF7VZGE2XcuHGhR4/aO5H1Xlcu6/WWLS89yjt+/Piay1UJp0bmLy/PRcLqwbyea4rkpaFxGMSwLRVpYTWbuW+avWcWn5l7W7o8zggmJbNKOhBYbJBXthHuqxPGaPmxI+AIOAIhsPreVzJhACllG+QUG+E5vs4VtumElDJtV9275qtXJ0fAEXAEHAFHwBFwBNoTAtJba7zgrHzzzTcPDzzwQPj222/DEUccEeaff/4w9dRTh9lnnz1ssskm4cILL8y98f777x/23HPPgJ+o4447Lqy55pph1llnLYmL/6dDDjkkrLTSSqFnz55h5plnDuutt1645pprSuJlfzzxxBNhhx12CH369AnTTDNNWGaZZcKBBx4YPvjgg2xU/Y0fK8px3XXX5Z6nfNtuu22Yd955tWxzzDGHlu2pp55K43/66aeahpX36KOP1t/nnXdeGoeDCRMmhLPOOitsuOGGYZZZZtFyrbDCCgE8SCMr1XAiPfDAWTwYgT3523rrrcOLL76YTa7m36eddpqWg2cxcOBAPd5iiy3CiBEjStKCJDv55JPVST1mlbPNNpuW8X//+19JvPhHvc83TqPNjyFXZxVidlkhsDabLYR95guh/8IhXLFUCBcuHsIxC4aw5zwhbCx1e+npJ5JUDKpGyODqjR9DePTrEK4bFsLpg0M4dFAIe7wZwuHvhnDWkBBulPDHv5J4P0wcnP1SbjTW5ih4Bjo4ApiAD8JEysURaEsEaOMgomjzaPtoA2kLaRNpG2kjaStpM2k7aUNpS2kaIfppY2lraXNpe2mDaYtpk2mbaaNpq2mzy0yMtWXx/d6OgCPgCDgCjoAj4Ah0RQQKaVbVCsw333wTHnroodC3b9/wpz/9ScmW5ZdfXkmKIUOGBMicRx99VPfXX399gMQweeaZZ8KoUaOUBHr44Yc1eJFFFrHTSoz89re/DR999FFYbLHFwo477hggN5577rnw5JNP6nbttdeG7t1Lebjzzz8/HHbYYQHto6WWWiqsu+66SlJdeeWV4c477wz77bdfeg87+O6777QctjqghZPGSSedFE488UTVFFt55ZXDr3/96/D4449ruSjbFVdcEf7whz8oCUU6Y8aIRo0I1/J79OhJ/o3Ai3Jw/UwzzaTEDgTdK6+8EnBUTv5uueWWsP7661sWQjWcjjzyyHDmmWeGKaaYIqyyyipK0D377LMBn1k8G+6Fv6l6hfxTDsoD8ccx2m+QZCbDhw/XPPNsyDt44LT+kUceCeTlhhtuaOa4HuKrnudr9+wQ+5ll8MS2pAygYsFkBW2AVDtAHLlzTBh+sUxbIL6GYzSyZpNBFqsS2ma/2c/QKq95Nhf+2xFwBByB+hH4QRa1GCFtHqvu2Z5j+12Jk8eflGmjziVtnmmkEuam1fU/E7/SEXAEHAFHwBFwBByBtkRAyIaGy9NPP023UjchX5LHHnus5B6vv/560q9fPz1/6qmnlpxbfPHF02tF6ykRIic9LyZhiazWlwgRlZxxxhlpOAdffvllss466+i1N954Y8m5559/XsNFwygRAqzk3Msvv5zMNddc6T0vueSS9LyQRRp+zDHHpGEc3HbbbRou2mLJu+++m54TLaJEyCU9J6aJiRAz6TnSBRMhi9IwO9hrr730nBA6yffff2/BuhcyLZHV9pLevXsnQgil5yrhJORdIiSVXier9aXXcCDEl54TAq4kvN4foq2V5KUlGnRapl69eiVCVpUkT/3gGc4999yJmDum5+p9vmkCnfngR8Hpg1FJ8l95H+76Ikku/jhJ+r+fJAe8lSS/f73yttfAJDlS6ulZg5Pk2s+S5IHhSfL8yCR5X9L7ZmySTJjQmZHzsjkCjkBbI0AbQ1tDm0PbQxtEW0SbRNtEG1WtHaOto82j7aMNpC2kTaRtdHEEHAFHwBFwBBwBR8AR6HQIFFK5aMlqgGgGYdoWC+Z3rI6Hmds555wTDj744DDttLLCTiQ77bRTuOiii6KQEK666qog5EvYZ599wuGHH15yDvNC0lxooYVU64nrTbvqlFNO0biXX365munFF6644orh7rvvDr/61a/i4LLHv/zySzjhhBNUiwgNJSHP0rj4ztp3333V/PH+++8P9957bzjooIPS83kHlAczw3nmmSc8+OCDaq4Xx9t7771VAwyzO7D629/+Fp8OeTi99dZbgXyiORVrpXHhNttsE4TUC//+97/DF198Eeacc86S9Br9A/NHHNXHQr4wrwQjIfvCEkssoafrfb5x2p32mJUFFxINRLasjBGNrOGiffVlRiMB7QQ2zuMAni1PphDVLFYotA1TGExnZon2OIV3cQQcAUcgDwGclX8tbQ0+omz/lfxmxT3bqpkr95B2CE1Q0wpFS5TjOWSbXTSkcHzu4gg4Ao6AI+AIOAKOgCPQZRAoRFbVi8aCCy7YzMzL0oKwwtwLE7c33ngjrLrqqnZK93kkD2QUAlmUJxBWv/vd75T8wdwMM8Sff/5ZSSDR4gnbb7993mV6bwg1TOOqyauvvhoGDRoUNt5447DkkkvmRoeggfxaeOGFc8/HgRBUEEv4zsKvVJ5gSvnPf/5TyZ0sWZWHE9jiyF40ysJrr72mfqvidDEpxJcYvr5aUzAP3G677XJvIZphWh7RJEvP1/N804u78gGDuPmF7GXLiphphu/EvAZTGgaP+HFhr1vT8ViJY+Y22evtN2Y2ar4oTUZvIbJ6yZb9PZOccyfwhpjvHYGOjwDOy2k/vpW24hvZRsrxSNlnf2OmXE2mEjLKiHDdQ0ZJO8IxxBTth5iSuzgCjoAj4Ag4Ao6AI+AIOAIgIL3D6lLvaoAQUKbdlHcXSBXIqo8//riErOKaLHnF9WjhQICIGVlechr21Vdf6d7IqsGDB6tfJXxKiTld2etw5F6ErEITCsHnVTnBmbyYDpY7XRL+/vvv6+811lijJDz+AdEmpooBh++xlMNphhlmUEfqpr32m9/8Jmy55ZbqNwoCD39YWaf1cbqNOuZe5VZ/JI8IRJ1JPc/XrvV9GQQY/EEssS3aMz/S9zIANW0ItCC+gcySvR7LnsEpg1G2T/OT0FC5lQ44IbMgsnrJ+8ae3wxE2WZs2k/pWhIVkPRTjkDrIjBeNKEgoXj32bMpGSXv+rdyzDvPb8KFr6oqvPv2rqtWJu+9EFBoa5qWJu++iyPgCDgCjoAj4Ag4Ao6AI1AQgVbtPUKwVBIzQRs2bFhJNFbDwzF4LDj0tni77LJLfCr32FbQM/IKratKAiFURCC/EFYAbIRAqiHV7g+5NHTo0PDDDz8EI3rycLI83XTTTWHppZdWU0rMEdkQCEJWW/zzn/9ckUi0dFqyh1gsKvU+36Lpe7wKCDCIZFugTBy0K2wAa4NYNCxS7YqmAe4oIbOIxxYmLSCQmyrLxs8kA1kjr7L7mNiatrQtyE3PA1sFgZaYgLdKhjzR8giMlvcvS0AZGVWyl/f1JyGrigomyDHxrFqV0l4YKW3EtGtVFkXU4zkCjoAj4Ag4Ao6AI+AIFECgVckqVoirJF9/LUtMi2S1fLL+q4gD8cFGXFaXqyazzSZLUYuYZk+8+l7etdXyateY6RxmdI0QI+zAopLZICQVqyZOP/2kFeTycLI8QfYde+yxumFmyeqBthrgoYcequQVfqsqab5ZWvXuWR2wqNT7fIum7/FagACDUAambJWE1QyNzDJyC+0MjnWw3KSpgYYWg+WfmlY6rJQm5/Blw4qGDJpnkG16OcYskb3+jo+bzhHXB8/VkPXz7REByGGIX9VmlHfnB45lz+/4mDB+E5eV9MYVUYFqKjBNM++QajzKe22aj0ZAQU7Zsa+m1x5riefJEXAEHAFHwBFwBByBTo+A9EhbTyBJKgmOwBGcolcTiI++ffuGjz76SE3icGaeJ/hA+umnn1ISpk+fPhoNP1OVxPJSKQ7nFlhgAY3y9ttvl40K8XTiiSeq8/U8n1LxhbIqov7EBC7P9JGTlAlNMXxkFSGAZAVFdZ4OXhBcaFOxkRe0s/C39dRTTynph/ljowTcTWQpgjBhwgR9FhYW72XlP/05ZsyYNA7mk0OGDAmygmQo93wh7bgP13EPl3aGANadM4jWVB8xAQpsOSKD8W4y8O72vWwy2GaPRogdx+F6jkE4pBdbUZHBeDKt5EMG5EnP7iFBk2s6OZYwDZffE/cSJj6/9DzniCeaXMk0kkA32bq4zN9rIgDxu93FIalefGmXuo2ROiuaTt0gZUdP0H03Fjr4ScLkN2Qt+4nHE+N1GyXhvBe1aD3FuZGFEpIZpe6yCYkbH0NGlYRDVFUlc+W9HM8W36TjHPPtc3EEHAFHwBFwBBwBR8AR6LgIFCKr6jUFeemll8J///vfkOePacSIEeGOO+4IM844Y1hqqaUKIbjSSiupc/Nrr71WVwTMXoR2FCvLYS745ptvKrkzxxxzqIndCy+8oGF598JUEKfjRWTZZZdV31eY2Z1++uklmk52/VlnnRUuuOCCgGP0arL88strlIsvvjjstttuudGvvPLKALmzyiqr5J7PBl5//fUB7alzzz1XV1qMz7PqICsWsgLjk08+GRpJVsX3qeeY1SHxCXbjjTeqqWI2DUg74nz++efh5ZdfDjhpd+mACMggORGzP7YiogN6BvGiQcKAHqJLB/X8/lF+6yBfyK70nITJ6mQ66IcUKHKTbBzILggrCC4c2LOfWn7Lqogle4guDZ90nlXLNIw9TqWnaTrHqosu7Q8BWaWu289CLo2R+sRiA0IqTfwt5BH1iHM/yzmNY78ze0goI6MgquSvJZKw+ub0Un+ayFa0CJV0JQytQcKNiLXfkLMujoAj4Ag4Ao6AI+AIOAKOQCdBoNhosQWF3X///cMjjzxS4uNp1KhRSsywUt/hhx+e+mCqdpsjjzwyQBL1798/rLbaas1ILs5DVOH8PF6pj3scdthhSnA98MADAV9PJpgH7rPPPql2j4WX20P2QCpdffXVSvpcd911JVpAw4cPV6IKDaidd965WTKmUWQn1l9//bDOOuuoptPZZ5+t+bRz7F988cXw97//XU0gMesrIkZAnX/++ZpXM120ayERkcUWW8yCtPwQdmg1saJiLZItUy3XxnH/8pe/BJzCU160zCAeYznuuOOUqFprrbWcqIqB6eTHqgGF1hMrhxWV8UJAQCAImaXEFloskAkQXEoqyG/TbNEwYReatF6UHBPSottoCRstJFjRe1aLJ1xC0kP+UQxMq8S8MZlSUofQkvCEcM7LuYSWOS+O8BSBa9hDfqFNEx03D2uKJ9doPLRp2ORv4hYdy601UIKSblJ2NMty4xEogrma/E3cSo+7JSRCJPknsOfG43q07IR7DPK8gpBGgWPIo6b9xLCJ50rDJl6jYePkBjwv0kALT8xRu6ENhFmqnOuGQl5OnCDh3Qgnf40WeaaTtPiEWIL4FFJpUpg8Y0hQwiA1IZqUgJJjIUb1GTc6T56eI+AIOAKOgCPgCDgCjoAj0IEQKERW1bsaIITSa6+9phpBe+21V0ArCXO82267TbWc+A2JVFTQiiI+mkukjYYQ2lZo4+BAfMCAAaF3794BTaRYiIe2zvPPP69Oxw888EAlOz744INw8803h9dffz1stNFG4bHHHosvK3t8wgknBPw9cS1miVtvvbUSP+TjnHPOCT/++KOScLFZn/nluuGGG1QbC19a6623nt7joosuCqxWCFnDSoebbrqpOpjHjPKaa65RIgkiCzO5IrLiiisqUXZTk5N1zP4g8CDQwP6+++5T/1iEm5D3vffeW3GphayiXKxoCL74yYIo4xnUI5BTaKNBspFf6gyaZzwnSEaeE8QbWmgujkBFBCBnVHurYqzyJyG7TFMGsy05zmrddIMMIdw0bkq0coQUa/qdaudIdDS+grjqMoakifYpnw8/0/oIwKs1ac2pVlysDZdqxwmJRBz9LcQS+/R3UziEk2niQSi6OAKOgCPgCDgCjoAj4Ag4Ao5A3QgUIqvqTX3LLbcMZ5xxhmou/eMf/0h9DOFMe6eddgpXXHFF6NmzZ7PksysBxhHOPPNM1ahCiwoCJxa0lM4777yw4IILxsF6D5yy//GPf1SC6fjjj0/Ps6ofpE6vXr2akVXmN2nKKUthwg/WK6+8ouTOww8/HDAxNMGsEcIqawII+TLffPMpUQRZRF6NrIKkwWfWfvvtp6QM5024FzhtuOGGFpTuK+F02WWXBVZAhPhBC4wNwaE6z4VwytxSYWVGNJ523XVXTerxxx8Pq6++etVkDVvb2wWnnnqqasWRJnmMBQ00nv8CCywQB/uxI9B4BCC7RNNFtV0alfp40/Ix7R/2aANZuBBZZTWEiCcEGtpIqoUkmVJNJMLkWMPkHGGiVTQpXlOYaCql8fD1Jn8Tt/iYsIm/J2pGJWHQyjNJWLfQ74WR0TUSD4GPSTc5iI4namZxPg7P/pZz4CwcT6wpNjGMc4TLni2N1/QbbTINk9844GerpJGWaq3J/eS6VGuN8CnJgIsj4Ag4Ao6AI+AIOAKOgCPgCLQnBLqJk2qGLQ0VVp5be+21AwTV0UcfrWnjdBw/Ujg9XW655UpM5+q9+WeffabaNhBemLTNNddcVZP65ZdfwjvvvKPmgmjp4AOpEulTLcGxY8dquSgf91900UXTFQiz1+JwHO0gTAVxeJ6XX7SyiINDYzTJ8uJk0630Gz9POIPHzxNp4czeVkrMXgfBdeGFF4aBAwdmT1X8jf8xNOggIc2nV8ULCp7EGTx54fkussgiwVZOLHi5R3MEHIEWIvDhCGHC5Aux0OxO6LQQSr98MiPgDtYnM+B+O0fAEXAEHAFHwBFwBBqMwGQjqxqcb0+uFRDYZpttcs0oi97KVwwripTHcwQcAUfAEWhNBJysak10PW1HwBFwBBwBR8ARcARaH4FS+7Yy96t3NcAyyXlwO0QAba6nnnpKzRDbYfY8S46AI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI9BFEChEVnURLLp0MRcQP1CYR84xxxxdGgcvvCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCLQtAoXIqlpXA5x66qnD3HPPrSu3tW3x/O5FEcAxPJuLI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI+AIOAJtiUCr+KxqywL5vdsOAfdZ1XbY+50dgdZAwB2stwaqnubkQMB9Vk0OlP0ejoAj4Ag4Ao6AI+AItB4ChTSrWu/2nrIj4Ag4ApURePnll8M888xTeGXM7777Lnz44Ye64uaUU05q4ggfP3587s1YyZJVJ2P56quvwgcffBB+9atfxcF+7Ah0WQR4H3iH+vXrVxYDzvOulZPevXuHbt266enRo0eH9957T9NkJd0ZZpgh9zJW/v3hhx/C4osvnnveAx0BR8ARcAQcAUfAEXAEOh8CrlnV+Z5pm5Wos2tWDRkyJLz00kvhjTfeUJPJZZddVomMyWk++dBDD4WxY8cG7o2fsfvvvz/88ssvYYUVVgjzzz9/mz371roxg9TFFlssXHbZZWGXXXapeBsGyMT5z3/+o/Gmn3768Kc//Skcd9xx+nuttdYKr7zySm4af/3rX0P//v1Lzv3lL38Jd955Z+C5t7W8++676lMuzsdUU00VFlxwQd04bpQUqVMQB//+97/1luuvv35ZkqFInkaMGBGee+45jRrXY9qTxx57TMOXWWYZLSc/xo0bFx588EENh7ygfri0PgKQUKuuumpYccUVw+WXX172htSL3/zmN2XPf/nll4F3k7Zszz33DD/++GMa99RTTw1//vOf099vvvlm2HHHHcPgwYM1jDbvlFNOCb/97W/TOOUOXLOqHDIe7gg4Ao6AI+AIOAKOQMdAYJLaQYX8+mqAFcDxU50egQkTJoQLLrggHHPMMc3KOttss4V//etfYfXVV292rjUCbHD3z3/+M/zxj3/UgRz3KULmtEZ+WitNSCUc/p922mmFb7HDDjuEAQMGhOuuu041P6644orA4He77bZTQuPvf/97M42PJ598Mlx66aWp9tTw4cPD22+/He6+++5w5ZVXBp5vexAIpL/97W+5WWHgf9FFF4Vtt90293ytgZADSKU6NWzYsLDzzjtrPIim5ZZbTo/r+QcJYmkdffTRKbn43//+Nw0/6KCDwumnn67JDxw4MA2/+uqrC5FVBx98cPjmm2/0fdl8883ryWaXvQZtKt7FSy65JAwaNEjJqkpgLLXUUuHWW28tiQLBuP/+++uzgkTiWfBeUm+ouxDuJ510UuD5r7HGGkq+Q2ptscUWqlUJOYn24wknnBAOOeSQwDPs0aNHyT38hyPgCDgCjoAj4Ag4Ao5A50KgEFnVuYrspXEEakOAQTKz+QjEABo6I0eODP/73/8CWiEbbrhh+L//+z/Vdqot5dpjozmEJgImM51ZwLgWef3118Ozzz6rRJWRNhBVX3zxhRJYaN+sueaaJUl+8sknYe+991YScpNNNtFzDLKPOuqoknjt7QcEGppUQ4cO1axRH3bfffcwZsyYqtpnjSoL2oSm6darV68WJTvXXHMpuQgRAkFlwvM0eeKJJ+wwvPjii+lx0Xpy77336ru6/PLLK9GRJuAHVRGAQEILqqiwoiwkUyzHH398mHbaacMtt9wSunfvroQw59FoNKLziCOOCDxnCGc07O666y59Zs8880yqNXrGGWcoqUVdWXrppeNb+LEj4Ag4Ao6AI+AIOAKOQCdDoBBZVetqgJ0MIy9OF0bg008/TYkqNAaY4Z911lkVEQZRm266qR4z6Hr00UcD2gDvv/++klqLLLKIEiiQCpjOMFD+9ttvA9o8+EMijEEZ8v333wcIF3y54CMJbRVMYBjIQ6SYSQvaQz///HNYaKGF9Lr431tvvaVmigwKN9hggzDLLLPoaUubH9zT0mJQCNEx33zzhb59+2pcNCjwEYVJHaTIuuuuG2affXY9N2rUKNWI4Af5iv1BaYQG/oMERNgvscQSVVO2wfRmm22mJA4+q/r06dNMw8MSQltur732Uk2PmJw64IADlMAi3rHHHqsaVnZNe9lTN/DhBTlFuXfddVfNGmaLkASQAdQlpNLzhmBFowUTOzTKqJfrrLOOXmf/ytUpCCojq6gnVseq1V9LN7vfaKONVGsHgor6zYqyZs5JXMgJ3hnePTMZxG8S9RChvK+99prmgzirrbaa1mnq7KuvvhrwjYSgJcQ9Vl55ZdXUqVTf9QL5hxYQBBnmoLwrXGvvBHFiHCFAX3jhhTDTTDOphpDlD3LbzN1IoyPJDTfcEHhfkHo0SDELPPvss9WkllWCEfN5hUm1mfTRHiFGQqHduN5662ldxwzW2gJMc10cAUfAEXAEHAFHwBFwBLoAAomLI9AgBGRgmHS2TQZZiTQDugkx0Kx8Qm6k52VAnVx44YX6WzSwEiG30nOkIb6TEhnYl4SJaZqmKURBGi6ES3rMdTKwS2SgrvFIlzAxA9TfljfRTii5hngyqG+WtgwONYznJP5f9Bryxe8jjzyyJA1LW7SN9Pw111yTnpcBaJpOaz5zIQj0nmKSVvF+olmUCDmY/O53v0vzSP7F1CiRQW6za6+99lqN9/DDDzc7Z+UR0zN9Xva7LfcnnnhiWi5xSF2SZ9H6S8898MADSVyXKj1ve7677bZber2YPqbH1Kkd9jkq2WnfYzQsrlNCAKXxqGfxPSvV33IYCgGRpvfUU08l4qss/W35pB4K4ZPYOyDmYMnXX3+diH+kZnG5hjoT58vSYS/kR9X6Tl5vvvnm9H7x9VdddVX6DCxcCLeSfJBP8XGn8YQYTc+Vw6AjhNMWiclmWvZqeRZyXt/LX//6182uOe+88xSTtddeO+E8OIq/qkT8oWlcIWSTbbbZRts/w5i9tZnV7t2gz5on4wg4Ao6AI+AIOAKOgCPQRgh0l85fw4WZ5sMOOyx89NFHhdNmRSCuuf322wtfUyliPXmolJ6f65oIoNFhIgMqO0z3aDCZoLVhYloUOO1G8wTBlBATGfyuoBmDoL0j774e2z+0ZfbZZ5+wyiqraBB5QGurkqBVgjNxTN9kkKxaHPi0Mo2IStdyDofZ5hMIh+RCGKSmPLyX7V3QukCjDQ0MNGfYozFFeyIEYkn2cVCPJhxaG0XNyEoSaGc/Nt544zRHtKO1yvXXX6+XUN9ikz7qFA61caBeS52qp/7GGjtoJmFii/DubL/99nqMiSDP2N4ttMCEnAv33Xefnj/nnHMC2o5m7nnmmWeqU3YhljT/RBLyI/Abza1q9R2n3jvttJPeTwiVcO655wY0wBDMR9E6iwVn8KQvhKkGk098anVlufHGG/WZCdlaAgPO859++mkNQxvNVg9EmxTtVASNVEwB0bRCA4v6iJYpbaZp12lE/+cIOAKOgCPgCDgCjoAj0CkRKGQGWGvJMclg4MBggtWqiggdVq6hE4vj1ZZKPXlo6T39+s6HAD6PEAbreWZvmPuY2CDLfuP/CPM6zPEgkhDR6NHl13kv9thjDw3DvCkWBsWQVZgMGqmFCVIlwWeROSPH9Ii0GdzxXhUR7mUC2cNqgyeffLLmG7MySC98y2DOg2Bi154E58sIxJSZVuInBzIDsyH84ZhgXga5BWadQWKCCZO1WoU6xjOHSI0FfPbbaSI5M6XgWrROVaq/LEYQE6g9e/YMW2+9ta6uiekeJBUbq0AimKFCFN12221qprjkkkumWSQ+BLGRT6RDPTZy+PPPP1ezQRzGQ1xCHmGKy2/Me03K1Xf8KyG8+5Am1DEWOOA9gMjCPM7eOeJBVBGGYIbK+8cegcDCjBgzya4kLFLACn48q1h4L8HUForgnK0iSBuDbypwRy6++OLUdJlVCFn1lOvzJg/0Av/nCDgCjoAj4Ag4Ao6AI9ApEChEVk2O1QDxo7Pwwgung/NOga4XosMjYL6hGOiy2QDKCmaDan5DTOEDx4TfSEwmMNBCzO8Vx6yGFstKK62kP7kOIgENA/O5E8eLjyGGTWItFQbVEALVBD86kBOspIfGg2k9MDBnlS4IK5y6t1fH7uZDKJs//F2h6RPLTTfdpD/NqXp8riMem6N18l4PiYiWUJaoIq1Kdcp8DxEvK+XqLyQVJGwsEBmQTAhaihBVONk2X09oSVl9RusGggMhnHcRAkhM7QLPlNXmeEeLSJH6jnYeAg5GhkJYo43He5XVrEILzQSyF7JKTNU0iDTYupKADxhAGmcFYgo58MAD01No8EFMPv744xpGHaDtMh97BEL889whIl0cAUfAEXAEHAFHwBFwBDo3At3bS/EYkGDikdexbS959Hx0PQQYDJugKZUVM6Ei3JwGZ+PE2hSQPkgclo3PSmsmrPpWRHC2bYKDahOcrceC5iKCKRwD7ljQYGDgjymhmTcy2BSfQO1+cGjmfOakmXJBAlKe2EE7DsUhPHBEniUeYyw60jGmViasehhLpedt8coRT0XrlKVj+0r1F5O+eNtyyy3tstQkE8KJbwHCYgMsVGDPClM7hBU4EUz9xHeVOmNHY+rSSy9V0kpPVvlXrb5jKojwrsRixHFMonA+JqV79OgRX9Ilj81Bfh4pbGS9LQQAQLyvw4YNS53X84xpf2KtT9os6odNInRJYL3QjoAj4Ag4Ao6AI+AIdBEECpFVrAbYb56JHfeW4DJu3LiWXJ5emx08pCcKHNSTh3quIStZX0QFsudR2hkCW221lZqxkC1x/hvE4XJgZS/8sR166KHpimXijLtksDq5iwFhYRpaZr5EHtBWjMkDfLkhWZ8vaLRA+FDG/fbbL9x7770hJkEwm2LgiDkV28cff6zptNU/8ovmmpHbaGWgpYOpGquIPf/886rFw+A21t4w8y9bcayt8t+S+7JaI6vToYFCvcPUCkHbiNX/ijzv+P7liNNKdSq+vugxRK046S/ZIEZNyHssEFQQwOSPVR5jQQMHQQsLYWVCcditKyPGZoZ6MvonDtn1V5H6jlYhAkFm5rSY+pqmnp3XSFX+QZDau1Mlaoc7DTnOu4jJZiymZZrVdiQO7SpCW4PpJM/jD3/4g5KU4sBdz4njf91DbuKLTJzlqwkngbYCpkbwf46AI+AIOAKOgCPgCDgCnRKBQmRVS0pOJ5TOJyr9zEQzSMS5cZYAwrfH5ptvrmZIeffD7wxLXGNGxYw3fkno3DJoZmDKtTiFzpOieYivveeee/R+5BsTkMUXX1wHwsz8ZgWfJ9yfwSOzyZQXc5yzzjorG9V/dzAE0Ey64IIL0lxT5+add16tx/hPQdD8OProo9M4bXEA+YQZEg6gZbUszQLOodFg4J0xzRScpTPIRrMoFkiBV155RQeNDCQZ+F9yySVpFDTMcN4NFmyTywzHNNFsbxligIzfqe+//16DKN/999+v5AbEBeQVpALliH3gmQ+hrAaSpRvvy5E4cZy2OP7973+vxADtIeQPQnto/sSKPO8i+aZOHXPaFeHEs69vVqeKXF9rHNr1WAuHumzP3TTnSJNnbUSRmQvSXuP/CN9w9l7GJoFm5og/LcgTtKCq1XcIEfMZt/LKK6vfKd4x0iUPEC1FBaLF3p2i17TXeNn3AnKQd5EtFsgqCOSsBhpxcOYPGQrxj/kmmpyyMqdqdZovOfoKEM84X9900021zeK9h6CEHHNxBBwBR8ARcAQcAUfAEejcCLQqWYUzafx04P+GFasgcfDhgekGndN4MEGHlMFldjUrtJMOP/zwsO222+qqTxAFsgy4mvbQ2WXQwiCVa+OV2+yx1ZIHrqHjfeSRR6ofFTrFyyyzTGCGF8IKfz446M1qpTBw5/6YiTHYwokwM/ix823Lj+87HgJoDKBVZNocVgIGrAcccEBAWyk2AbLzeXsb6NkgnDgcx7/zrqsWxiAd/1lWN9FEYfCOMFi86KKL0iQwsYLQiZ0ezzzzzOGRRx5Rsgfy9ZhjjtG0IOIgYfMGnGmCrXiAjxraDAiaWGhXCIeMMmFgTBkYNON4Gy0YyMVYILG4Liaw4vPxMc6zhwwZEge12XG5+oE2Es/+1VdfTc0dizzvIgUhXchA00aL61T2+nL5y8ar9tvMT4m3xhprpNHjugqJZYsdoFnHc+dbwopzOGKnbpuYPy/IZN5XhLAZZpihan0nPqtw2rfK6haOvdH06d27t92my+wh+C677LKS8kLo807hUywWCLpsWHweX2V875lwYs93FM3OWHjWrA5JHeS50Q7HdSGO68eOgCPgCDgCjoAj4Ag4Ap0LgW5CBiWNLhIaGWZ6wywpfkTMQS0zoxBPrOZDPGZVEQZbDLwYJJtmCOEsS46mBw6UIafMVwnncOCKhogNKOP06skDaWKSADkFScWsbryaIedwEMysLveeYoopuEQHSDvssIMeM9OPGRYDrUYN4DThDvDP/ON0gKzWnUVMUCF7GMiiwWLkU90JNvBCiFbMlXBKbCuixcmjzch5tK0qEamQPGg8EMc0V+J0/LhjIFD0eVcqTbU6VenayXUO81fIDNpbNKGMyMren08dpBbvrBFXxClS32nbIEvw71VkwYLsvf335EegrQj2yV9Sv6Mj4Ag4Ao6AI+AIOAKdE4FCmtBcudcAAEAASURBVFWsBjho6CSnzUWhwLSIZcWNqOI6TD2YAUfMAav+KPPvH//4h55BMyQmqghkGXN861QiDGrJA0QaM/XkN0tUcT/MQpj5ZZUofBdlhXxQJkxWuhpRlcWis/7G4Tn1DjPPSvWuLcpPnYNIzSOqyA9On3FMXImoIh4mU7w3TlSBRseVos+7Ugmr1alK106uc5BTaFfxTpYjqsgL7ysaVTFRRXiR+g7xgZahE1Ug5uIIOAKOgCPgCDgCjoAj4Ai0PgKFyKp6s4HPHNM+itNgIIyYv5n4XHzMeUwA8BeFNlaeoAEV+znJxqklD9wLkwTMFWONqjhN0xgzx77xOcxFrGxxuB87Ao6AI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI+AIFENgyiLRWA2wHinnxJhZakgslpGvJLbiGIRUJVl99dXVOWtenFrygMYUwtLkN910U15y6tOKE7Y6VBzJfWnEaPixI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI+AIOAK1I1CIrKo92YlXxOZ/9aRhK+/NOeecFS+vdL6WPNhKYThIZ6sk5nQ4jmMrTsVhfuwIOAKOQEdF4MMRE0IQr4YLzd6qSrgdFR7PtyPgCDgCjoAj4Ag4Ao6AI+AItBICrUpWtdSnj/neYWW9SlLJnLCWPNiKbmeddVZZs0PLB76LssKqSC6OgCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgC9SPQqmRV/dmaeCXOoBFW3qskb7zxRqXThc/hpBf54YcfdKW3vAtZHWv48OHqrDrvvIc5Ao6AI9BZEFhoNteo6izP0svhCDgCjoAj4Ag4Ao6AI+AIdCQECo1E6l0NsKVAsGoZK68NGDAgPP/887nJYSp466235p6rNXCFFVbQFaOuvfbawLLveYLWFaukHXDAAXmnPcwRcAQcAUfAEXAEHAFHwBFwBBwBR8ARcAQcAUegBQgUIqtakH6LLz3mmGM0jX333Td8/vnnJemhAbXnnnuGMWPGlITX+4OlyVl1cMiQIeGII45Inalbeh999FHo37+//jzooIMs2PeOgCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCDUKgkBlgvasBNiKPO+ywg67M99BDD4VVV1017LzzzmH55ZcPH3zwQbjxxhvDoEGDNPyFF15QraiW3vOUU04Jzz33XDj33HPDq6++GrbeeuvQu3fv8MgjjwTy8NNPP4VDDjkkrLXWWi29lV/vCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCjoAjkEGgEFmVuabqzx49ehSKE8ez4ymnLM3SFFNMEe67775w9NFHh8suuyycdtppadp9+vRRwgoNK8gqSCUTS89+5+2Jk4236KKLKkm1xx57hCeeeCI888wz6aWYJZ555plKVqWB0QF5dXEEHAFHoLMg4KsBdpYn6eVwBBwBR8ARcAQcAUfAEXAEOhYC3RKRjpJlnJu/88474YsvvgiLLbZYmHfeeTXru+++e7j++utVI2r11VdvWHF+/vnngPN2/GLh7B0zwamnnrph6Xe2hNA6c3EEHIHOg4CTVZ3nWXa1kkw33XRdrcheXkfAEXAEHAFHwBFwBDoVAu2erNpyyy3DqFGjVLtq+umnbwY+WlV9+/YNY8eODUOHDg0zzjhjszge4Ag4Ao6AI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI9AxECjkYL2tVgMEQsinJ598Mhx55JHNHJ5///33YeONNw7ffPNN2HvvvZ2o6hh1znPpCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCjkBZBAppVkFWBTEW7DfP5DeBGzFihDpQHzx4cMCf1AYbbBCmmWaaMGDAgPDyyy8HNKvWXHPNcOedd4bZZputbEH9hCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCjkD7R6AQWdXWxcAMEMfmt99+e3jvvffCuHHjwiyzzBKWXnrpsP7664ejjjoqZB2zt3We/f6OgCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCtSPQIciquFjjx48PmP/FK//F5/3YEXAEHAFHoDEItKVWbWNK4Kk4Ao6AI+AIOAKOgCPgCDgCjkBHRKCQz6r2VDA0qJyoak9PxPPiCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCjkDjEOhwmlWNK7qn5Ag4Ao6AI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI9DeECikWdWWqwG2N8A8P46AI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI+AIOAKth0Ahsqr1bu8pOwKOgCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCkxBwM8BJWPiRI+AIOAKOgCPgCDgCjoAj4Ag4Ao6AI+AIOAKOQBsj4JpVbfwA/PaOgCPgCLRXBNwEvL0+Gc+XI+AIOAKOgCPgCDgCjoAj0LkRmOxk1QknnBAuueSSDoHqmWeeGU4//fQOkVfPpCPgCDgCjoAj4Ag4Ao6AI+AIOAKOgCPgCDgCnQGBVjMDfO+998KUU04ZFlxwwRKc5phjjjDPPPOEV199tSS8Pf5Yfvnlw+effx6++OKL9pi9DpenJEnCXXfd1SzfPXv2DIsvvnjo06dPs3P1BLz77rvhzTffDNNNN13YdNNNqyYBgfrVV1+Fww47LCy88MIa/5tvvgn/93//FwYMGBDGjBkTlltuubDaaquFeeedt2p6jYrw4Ycfhtdeey1MPfXUYYsttgi1lqvefIwaNSr89a9/DdNMM0345z//qe9xvWm15Lqff/45vP/++4H9YostFqaffvqakvvvf/8bFlpooTDXXHOVXPf1119rujPPPLOep50qJ0OHDg0ff/xxWH311ctFaVH4Rx99pHWMRNZbb71AnjqDPPPMM2HEiBElRenWrVvo3bt3WHrppcMss8xScq4tfuS995aPF154IXz22Wf6Dmy++eahXNtF3ZltttnCiiuuqO9pe3l3rByN2k+YMCEMGTIkDB8+XL/ps88+e6GkeXdpixdddNEwwwwzNLumyDtOW0x/YtZZZw0LLLBAmGKKKZql4wGOgCPgCDgCjoAj4Ag4Ap0QAemEV5V3ho5J3vlsTNV4cQQhpRIZ4MdBeiyd3ERIoGbh7TGA/FMOl8Yg8MsvvyTyCpXdtt5660QGJi2+mRAseg/qWjV54IEHNK4MpJLRo0dr9Icffjjhd15eL7300kQGbtWSbcj5yy+/PM0DCdZSrpZmYJllltF733333S1Nqq7rH3/88WbP4OKLLy6c1g033KD5v/7669Nrxo0blxx00EEppjxfGUQnr7/+ehonPvjpp5+SJZZYIilSj+Lrajm+8sor0/wIgV/Lpe067oYbbpiWK+89uvDCC9s0/3nvfZyhXXbZJc0/4dXaLtqL5557TpNo63cnLkcjjoVQTVZYYYUUD57n3nvvnYwdO7Zs8rSRhx56aMk1v/vd7xIh89Jrqr3jtMfZ95V8DBo0KE3DDxwBR8ARcAQcAUfAEXAEOi8Ck90MUDq6Lo5AYGYejYWNN95Yj4FEiJFwzDHHTFZ0zMxzzz33VC2Kp556SrWxfvjhB83HmmuuWaKdtf/++wchTSZLHtHy2mOPPcI+++wzWe4X32SvvfbSn5jCTm5Bk2KbbbZRjSghAMLAgQO1nhx44IHhpZdeqpodNEB23XXXZvGuu+66ICRJOPHEE1VT41//+pfu8+Jy8bHHHhvefvvtZul4QG0I8J6z/frXv04vFBIifPvtt+nvyX2Qfe9rub+1XZQJjSGE9uKQQw7R47Z8dzQDDf5HedCEvu2221Qj8cgjjwxXXXWVvkvlbnXKKaeEc845J5x66qn6/l500UXhzjvvDDfddJNeUuQd51reV57VBx98oN8HNC1pE10cAUfAEXAEHAFHwBFwBLoAAq3Fw9WiWVVphrZc/uq5plxahKN1kdWYKapZVW9exASiUpbKnqv3fvVeVzYjNZ6ItROE9EmvBnsxgUpn4XkOb7zxRiLEUTJ48OBETPSSq6++Onn00UfTa4S00DA0U/73v/+VPLtYA0kGkcn999+foMkhZmHp9Rx8+umn6T1ffvllrQNo0shrr1o9L774Yhr/k08+ScSkNT0nJk56jnuTT/Io5i7JZZddlsigLBk5cqSef+WVV/TeN998c/L999+n6cXlIx9oAJHHWMtn2LBhmrblu2i50PAgT1xvIoM9DYu1d8TENRHCJpFBZSKDT82/xRfztxQbw+HHH39MxCRON55Za4lpRaF5YUJeeS5CCFhQ7n78+PGJEIyJEFAaP9asEpNQ1RCJL5SBr8ajnsTCvbnfdttt1yaaVd99953Wo/PPPz+RgX5CfsQcNc3is88+q8+TeoamCXHeeecdPc+zu+WWWxI084To03pOfaCOI9RTfgsRp7/5R/0ljI331IQ6hHYd6VOv4jxYnLy9aVbxzsRy1llnKa5gKyau6SnuybuE5qKQIgnvWyyVylsNqzgdjrPvffY8vytpVsVtF3GFtErLxO+8d0dMT9N3hzgdRdCq4lkdf/zxaZZpn2kn2fKE7xqaZgcccEDJaTEtTtiQIu84Go3Uo1ioH+SHuuLiCDgCjoAj4Ag4Ao6AI9C5EcAXR0NFZkOTzTbbLJlqqqkS8S2hx3TmxdeF3ocOKGaAdGhPOumk5Fe/+lUifj8S8UeRbLDBBon4CSqbH0zEDj744ET8gyQ9evRIevXqlay77rpKWpS9qMIJTBKOPvroRPzRJOKfJxF/MTrwEAfwelUlsooB3FZbbZXMOeecSffu3ZN+/folu+++uw5UsrdkwAgmkCYMLumwzzfffNrpFn8niWgXJRdccEH2spLftdzvwQcf1PtBfIDn73//e80nOC+11FLJ4YcfXtGEo+TGDfxRjqziFkcddVQ64OO5QCwwKME00EzyZIZf8QN3zsUbgxqrY0bqcN7IJ4uL+YoJBJKFMwBj8Gy/+/fvb9HS/R133JGeh+RBLG/rrLNOeo40MFcRTaCSMOq+kVxWPtE2SdOwezOQQ8qZARKvUrksnWuuuUbT4R8DbMIhchAzg7K4tj/iiCP0PP8wkSMcMguhzBbPTJ70RIP/8X5wH8zwYsG8yvIfh8fHPHvxK5Z8+eWXmkZMVoEH5TbhmfPuEZ9jE4gFnhXkoWhhTXay6oknnkhxNrzZU34jQS2cd8KOKet9992X/rbwlVdeWcOok4jVPYg6k/hdMBIdvHbY56hkp32PSdMkrZgEteuz+zyyivc/Nusys1uIyJistnxD/JpYWLa8RbCyNGwflzV+7naefVGyijKY2R91yST77uy7774phhanI+z5ZoH9f/7zn5Ls2juaR14++eSTeg0kO9/sp59+WgnSmOC268u946TLff/yl7+U3Jd2h3BrI0tO+g9HwBFwBBwBR8ARcAQcgU6FQMPNAKXzHmSmWx3S4qCZYzYZFEgfc6LgpHX99dcPf/vb39Rp8h/+8IewyiqrBOkQByGfwu23325R0z2mQCuttFI477zzgmh4hB133DGsscYa6oAaM4Xddtut5B7phWUOcJ7L9ZgaiGaC5mejjTbS9GRGOOy3335BBlfNrqYcmEEIiRJkoBRkoKL3pqyYGeGUXTrUJddh8vDQQw8F8YWk588+++yAo3nyjbNh0WYIf/rTn8K2224bpPNecm0998MhNPcTwiUIiRJksKBmVDvvvHPAATCmXUIMKo4lN5uMP8gH9UAGvvrcRXNK744Dcxyjm2AaiIkNOPft21fNBO+99149LWSnPj9+iOZJ+POf/2yXpXvRtFFTEiG4NAzzFRmA6bFomuieRQBw/owTXxMZbNthuscBtolosdih7nmGMrAKMsjV35jNYC6IaZAQZBpGeWWgXHIddWXJJZcMmEWZnHzyyXZYdl+pXGUvik5gCoeACzjgbBoRskcdKXOMc3IkxkUDWvkfOAkJGKaddtqSO+GAX0iokrD4B87whWwLMpANM800U3xKjzEfwnSL95G6s/baawfR1guiraHP3y7g/RdSN7BvCxFiQ2+L2ZxoFGl5CBBtvPDvf/+7JEv23gjpH2SCIPCOI0Jmar3ffvvtC5lOliQqP6gTmMYitM2YYvFuYoZJ21hUcCC/7LLL6oaje8y6ENon2kwE01rafkzqOG9mmdzH3lGNKP/i8uKMvhasLA1L0957Cy+6x5TNykQd5bkIuZmWjXTa6t0pWoai8Vh4ApFJmZJLbNECFivICt9WhGeMQ33eM94nnNBTH5Bq7ziLSoDp888/r/HtHwtOIKIdZ0G+dwQcAUfAEXAEHAFHwBHorAi0FvVWyQxQsFStqKx2BjOwaCnNPffcCeY8JszIMlPNuTPOOMOCdY8GhWm13HjjjSXnKv0w7QJZZa1Eg4P7Yr5AHtmyDtbRXiCc2XRZra3kFpyTTnYiK5eV5J9yWXoyiE4ee+yxkuvQgEIzizhopsVSz/1wRG33Q9vLNBhIlxlrysx50yCL79eax7FmleUvu0ebA7Hnw3mrJ8zCW3y0XkzMpIRzaC7FmlX2jHiupu1g2lWYeHGNmZqQpqWPNlxWSMPOWxqmWWW/0dSwMCEK0iTMhNDM2Kx8xAUXREjQNH3CKmlWVSqX5dGwJO2sZhXaRMRjLySrmpIJ4aZaEOJLiEsS0wbh/UIwMwMjNkydWksw4QOXrKBllzUrszho4/F8ceqMmGYG709WZDCtbYZhIORx+r5aXRK/V3rZ5Nasoq0jD2zin0dNUzGBs2dqTubtN2VAMwmxtoJzmGsi1CNzjl2LZhXtBulsueWWqrEo5EJJ+tQ/2i3qWLyRZ8Q0qyyf2T3atpgeEt/OUf+4D5u9q2hSIRYnLm9RrDSB6F/2vY9OpYeVNKssL9k92qH2LmffHTTAeG8wp+xIgnkw5cw6NUcTmPCsuSZlQxOTc7zD99xzj7YVps2GBh1S5B0X/4WaDu80Wq/Ub2tbhVzXdPyfI+AIOAKOgCPgCDgCjkDnRaCQZtWgYT+HQUN/lv5n40Q67s2Wg19rrbVU8wFtm3fffTe9GdowaHegoSImbGk4B8y+3nrrraqhhbZErMFVEjH6IX6EVMtJCKIgnekSDQ6WxUYjZpNNNomumHgo5jFBfHeoRgAaP8zMx4JGANo95D2rQWPxxLQlZLV20BqiDNwbp7RopyEtvR/lAzvTYCBNZqxNqwZthvYgMgBRDbC77roroP0SC5phYqapQYMHD05PWRgBaMiZxPVGBrbpMwJb04xCkw4xB8+mNYDmlolpB9hv9tRLk0UWWcQOdY92FPL/7Z0JuBxF1YYrSAiQGEkQEMK+aFhFERAUEHBDZDH+oogKP4KK4MKmIiiggoBRWdxRRFx/iaiIggjKqoKICLLIIouELShrgBBI/+c9cJqavj1z5265c2e+8zxzp6eX6qq3untufXPOKTy0wuvABty+jj+xzgSvch0LtM9EWF+H90FYdb9Yz3t/7cr3bbbMvYLRThMmEtcKXmF4J4VXkonGvg/JjTH22Xffff0V23zDMP+hr+rMBKhkoax1m9Jhhx2WYEZi5/5s2rRpyUKV3IMML8kDDjggXXbZZf6ZexjvHby4httgzfMGzz77SqktnvaZqOQeVXiBWbhzIsl/M8P7KK7f6CeeSyuvvLIfwrVV9yxrVl6s5zrAqCvPWF54r4bhvWnhxu59hQdWvMJrKfajLiYq+QuPNhM5fBPHmiCXcg9F7oU4V3jzkVA7t7y9A2UV5VTve9pKv1jIdOzS8p0JD6JNcIhn1jHHHOP3DwfH/RF9gicx9w6TBIwli2cT7c2NexGrux/5jsHw1sRzExZ4QuN5yncO10E79ziTbfCdz3eiheT79RffXVwnMhEQAREQAREQAREQge4m8MwoeSG3EfHEft2uPevaa6/t6y0ZdbkdIQeLUKVyw7ML/ONq02K7oGW/9FY39/mMKIIRetfsn2ZEqaoxoGVwQqhNVaiKfWMwQohg1TimWbsRrHbeeWcPjyCsBBvq+Xbdddfa9iE6YDljX7EQ/xD6w4CdF/VAPCC0smqW26tcFYMgVliy+HJ9DJxYkYcQ5vuwLfaLfQjFxCLUhdCpMPMWicXyncF1WC4ssS4GdbGd92bXVr7P0ksvXX6sG/iVG7OF/toVuxJqGZYLfaxDXDDvKBdmGEgiGCKmELaIEIvFoH7y5Mn+eWH9oV8I/bT8TA2nRIgMEaBhg30gNIsQo4kTJ7pgGAItAot5Onp53O/m1VgeSv+Y14Z/Jozzoosu8mXCcxEdeRGqTMgSy5a0vDx2MAuWFNqv8R133NHrQxm5CIAwRVgVIX3mVeciM+F3lmer6ekQ3sKizdXrIz9H7Ms74dlh1ecm1wOG4EpoaPWFGMZzxPLhNbxWzQTfKJvrmhdhe3loJcJFHuqJaFg9T3UmzLy9A2UV9ane9zZJg/cL135YMAwOsZ53rptoExzy8OO4hkbr3snrORzLwYrvvdwinC9/fsV2y8Poi/FdHuvje+eee+7xMPj+7nHuZfqG7webFMB/vEH0w0KgjbL1LgIiIAIiIAIiIAIi0H0E6t0UKu2cvsIzv5RWVg/6IwMa8qvUWQwOLJyi3MwglYEYuZeaWQgODLrqBkz5cRbC4h/jH998WyxvuummfeoYXjt4PsUU3LF/vIdnV3Xwx3bKrBM14lgEK6b3ZmDAvkM9H4P0OkOsYcAVjPHgsmS4dbv6wJlBw2hZLvjQr1wfDHIs5NMZUa+8Lxhch1CIyIA4QS4ylmGLhdAUnk8xEFtttdXcu4iymaadzwyuGVAjcB566KF+PP1kyZR9eTT+9NeuYMT9Qv3xZCA3Uxj84trH0w/hihww4Y0T3iDBJQaG5OGCDcYAvb/7LM430HfyvmHUGSENwxuOATJ53eqMdtCuMK5phA48M/As4hrGmxMvGq6HsNtuu80XEbzx1rNQo9jk7wjlCBAWvuU58xo2DvBDzovr6+1vf3s655xzylJskgmvX7SDa47cR4iKzQwRLSzEVkRHcl3hkcVAv+rlGZ5z5EsjRx73WH59UB7eXWxHdEHk4/mL4IkHG884BD3E5TqBOerDO6JPPJtZzs+D91rUmX1pa4j9Nmug56sKb0i2Y3l76cuBsHqmhGcEOJbj+o78UuTjstDGhNiCeImFR6R/ePYPz/9oE/kTI48Wm/F6xKLsuHfIw4hYiZGzcKwYORUxBFM8/TBEfzzuuEbqvsfD0xWecQzHRfv5AaKdexzxEpGK3FfhuRrPcLzwZCIgAiIgAiIgAiIgAl1OYKQiHO0X2YLZ9Kpmg8La9bGfJZcmPqZgJiEsz1PE+v5e7eSt2myzzbwcG+jEaWvfyY9CO8LynEL91WPNNdeMwzwPEPvbP9/luroFZr9iv5h9bbDni5xV5AtpZjZA9dkX2W6eXE25Ms39cBn5XIIbOZRaWeR02iObsYz9yfkSZTCTJLPDxWcLAfMi85xVbKMsrrvY77rrrvP9Io8K68NsoO95nGLf6rsJQYUl/Y3dyxwqxx9/fLnORDA/l3nllOuY9Y+ymA0Nq2tfXh8TW1rmrKKsZu2KstmHazhvQ8ymB7vYfvTRRxeRo4h1kSOMHEd8jhkCF9ZsgObx4/1Fn5kQUJhoU+Zd4lrFeD6wnXukzmxA7XXPc1bF7IxcU5aQvzDByPnQpybW1RUzrLMB8iyr9kf0jYkyfv78XmTWS65pE3TKPiS/FhbHkS8qzISThvK5DvLz0Z9Yfn/Qdl5RHu9ceya2+DpmA9x9vyMaZuujXv1ZfzmrOI+FDHox5HGL85sQXM6uxzoTPHyf2J63t11W1brm9xnbyE8X5Vff45mSP7uq+8Rn85wtZ2us3juRw4p9x5qRX4x6H3XUUX7fkIuPz3xfYdxr3Is8U8KYgZZ9+C7jeQlHPsdzv5173MQtPwZ2Jh4WJ554on/mWSUTAREQAREQAREQARHofgJteVbZP5nDavmv4/0VzC/6vPA64Jf+/ixCEFrtt9RSS/lmwowmTZrUdFfCZCJkjJ3iOH71b+bhEYXV/eKch93Efvl7zKxEW7Ghnq9dzjbQ8HCnvC6x3A7P2Hcg7608zFqVQ/ggxzLrW8wUZYPtdMQRRzSE41AGXhv8Ih+zS7IfObwiPIUZvcLwJjKBMRFmxK/55FfB+yU8N9gPLwE8bNrNZ5S3MZbb7ZOoV917f+0idw6zZ+Jhw2vjjTd2ryBLqF8WN2vWLPc6wtOF3DAYfAg7w8OIEEI8qTATd/19Yf0h7BBPDnJo4cGDUTf6Izw98O7Aw6zZPRWc450yaBtGTrpTTz3Vl2EDCxN1/HP1D8fX3cvV/dr5jIceM4KSIyzYchxeIuEdSPssUXeiD5n1khd5f2gvnmWRy6nufHiPwY3QPBNk/Vx4AXKdkyMqjNlX8egiDI/rG7YmRJSeg+yHlx35p35w5qXp3nvu9X15TsyYMaPkGOXVvcf1Xt1GGXh80UZmh8NoK3VgFkwToHwd+5CfkBlgm9lgWVXvezwt8WLj2cI1FYaXF8+Z/oxrBw8z2sQzezTvnf7qOpjthOJxzYRnKWXwzGAdhqcd3PLvUo7BY4/Q/XiGMuOpTZDix7RzjxMOy2y9hGQTFovxTGD2TpkIiIAIiIAIiIAIiEAPEBgpPa6VZ5WFADQ9bdWzih0t10VhA8bCwkiaHscvtcyKxa+8/Rm/7lrX9pmVLz/Owvh8n9yzynLW+DoTRvJdG5b5BZ56WJhIuT5mA7SBcbmubsFyYXn5lujXNw/2fOFZZQPdutP4utyzqulOHbzBBkjuDYMHCMutjGuD2awsd0+f3cIDxBKO99lGX5qIVVx77bW1x/Y5YCGvaNUuZi5kprX+Zu2zEEGf5c/C4Rrur9yLipn2Rsu4j2hDf308kPrxHLGQtgJ+o2G0hevWBKvCwvRqq0C/4AFoYXi121utpHz60yYE8N0OPvhgf66EZ1UcizcZ1wjXeSszUd/vg+Hsg7rzcc1yvw20XwbDqu6+57rgOYGnFd5lg7VOuXcGW/9mx+G5x31T9xxtdgz7cq3Tt82snXucZ8BQ+qTZubVeBERABERABERABESgcwks0o4eNxKzAbZz3tiHX9fJdxLeELE+3m1w494y5BeJfDuxre498mXgZdPMyG9TNRvsec4U6tEsaTFeV9QjTyQc5ZDDo1luqDlz5riHB784R06loZ4vztuN73i84NGAB0juPVPXVpiSv6sugTl5UTB+ubfBeMPheIeQzwZPprpjG3YehQ+t2oVXA55izRKSR3VJek3iY7zFSPAdhjcDhodZ7l0Y2xfWOwmcaUN/fTyQ+tDOVS3/GfxGw2gL1y3PITyK6ox+wQMw8kvV7dNsHeXTn3X5lvJjuH+4Rpp5QcW+eAtxHwxnH0TZ+TvXLOcZaL8MhlXdfc91wXOC5+9QvOk65d7J2Q7HMp573DcDeRayL9c6fdvM2rnHeQYMpU+anVvrRUAEREAEREAEREAEOpdAW2LVYKvfTNAZaHlML89AiVAvQrSqxnbzIkhbb711mYi1uk/+menpzWMqkTw5wm/y7SToJtyramuttZaH/5GUmfCQqrhBmA51xAh5qDNCTQjNyo2wEWYts1+OPZlxDGCH43z5ebTclwDJti23T5o6daon8e67R++tISn3vffe6+GDESLYexS6p8Uk+SYcMGZj656WDb4lI3Xf694ZfJ/oSBEQAREQAREQAREQARHICSyaf2i2PJjZAMm7ZCEmPnsYnhlbbbVVqpvmutk58/X80s0v4XgtkT/HEq56LhPyt5DThVmhEBvIk9GOkTuG3BnkwyEHBmUwu9uECRPc8wmPK35BRoxCSMrNEsV67ixLqO15Z8hVwrnJAcOsRcyuxRToW265ZX6YL1P3q666Km2yySZ+bnKnMMsZuXgQ4fgcv/jHwUM5X5Sh9+YE8Cqh32TPEcCzhVnRZN1BgGdK9bnSHS0bfCtG6r7XvTP4PtGRIiACIiACIiACIiACIpATaEusyg9odxkRiGnO8WLCmEo9prRuVUaEIsV77Dtz5kwPz8CLqjr197bbbptOOOGEZLMxxe79vlMvptAmSSwJuCMJN+EKJBHGs4qE2lWxymZ6c5Fqjz32SHhgMa19GCE71BOxqs522GEHF8n23nvvZDOwMS2U70YC+V133TWdfPLJiVCL3AZzvmDXKryHfWK//HxaFgEREIEgQAg4c7BOnzYhVuldBERABERABERABERABERABEacwDjSaY3UWcjDhCcROU/IzzKQXBet6kQYHZ4fCDvkGOkvN0urstjGLHzXX3+9e0URLkPYTDtG2B6zVxGCSK4VwvbwzqoaghaeZQhUhxxyiG/mnHhT4XW24YYbtiUctXu+6vn1WQREQAQGQ0Bi1WCo6RgREAEREAEREAEREAEREIGhEhhRsWqoleuW4+vEqm5pm9ohAiIgAiIgAiIgAiIgAiIgAiIgAiIgAsNJoK0E66M9G+BwNlhliYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdC6BtsSqzq2+aiYCIiACIiACIiACIiACIiACIiACIiACItBNBNpKsD6Y2QC7CdJQ20IeqxVWWCFNmTJlqEXpeBEQAREQAREQAREQAREQAREQAREQARHoagLKWdXV3avGiYAIiMDgCSjB+uDZ6UgREAEREAEREAEREAEREIHBE1AY4ODZ6chhIDBu3LhhKEVFiIAIiIAIiIAIiIAIiIAIiIAIiIAIdAsBeVZ1S092QDsee+yxAddi4sSJae7cuQM+TgeIgAiIgAiIQDMCSy65ZLNNWi8CIiACIiACIiACIjAGCLTlWaXZAMdAT6qKIiACIiACIiACIiACIiACIiACIiACItAFBNoSq7qgnWqCCIiACIiACIiACIiACIiACIiACIiACIjAGCCg2QDHQCepiiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQKwTkWdUrPa12ioAIiMAACdwyZ0G65b4FAzxKu4uACIiACIiACIiACIiACIjA0AiMqlg1c+bMdOyxxw6tBT149I033pgOOOCAdPrppw+59V/72tfS4YcfPuByZs+e7XX4zW9+M+BjdYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINCMwqmLVD3/4w/TlL3+5Wd1GfD2iz7/+9a8RP89wn+COO+5wbueff/6Qi541a1Y65phjBlzOvffe63W49NJLB3ysDhABERgbBNZYZpG0xrKj+jUxNkCpliIgAiIgAiIgAiIgAiIgAsNKoK2cVcwGmIqUpk+bMKwnH+3Cttxyy7T88sunv/3tb6NdlQGdnym511xzzTRt2rQBHaedRUAEREAEREAEREAEREAEREAEREAERKDTCbQlVnV6I3qtfptvvnm66aabeq3Zaq8IiIAIiIAIiIAIiIAIiIAIiIAIiEAPEGgrvmP6ChOG7FX11FNPpaIw96xB2Pz58wdxVEqDPW5QJxvAQfPmmafaIGyg/J588smFzryuWZ3aD3V11ToREAEREAEREAEREAEREAEREAEREIHRJdCWWDXYKj722GPpk5/8ZHrVq16Vnv/856ell146vfnNb07f+MY3+i3yF7/4Rdp55509TG/xxRdPa6+9dtpjjz3SXXfd1edYknxvv/326eqrr05/+tOf0m677ebHES63/vrrp4MPPrhBuCJHE/s/8MAD6ZprrvFl6jVnzpw+ZceK2267zfc75JBDYlXtO9spm5xOYQ8++GA6+uij0zrrrJOWWGKJRHte+MIXph122CH98Y9/jN3K94svvtjL+N3vfpd+//vfe3tWWWWV9MUvftH3ueWWW3z79773vfKYWLjwwgvTjjvumF70ohf5eTjXS17yknTUUUeluXPnxm617zDfZZddPLyQer7sZS9L++67b7rnnntq92+18le/+lV6+9vfnlZfffU0depUL+t973tfuvvuu1sdpm0iIAIdRECzAXZQZ6gqIiACIiACIiACIiACItBDBEYsDPDOO+900YR8UIgV2267bZo0aVK65JJL0q9//WvPE/X000/3Qb1gwYKE4HPccceliRMnutC1wgorpKuuuiohzpx99tnpjDPO8PVx8O23354QrCZMmOBlL7PMMukNb3iDb77ooosSsw5efvnlvo06PP744+mhhx5yryPEHJbHjRuXOHczQyy6/vrrEwLS/vvvn5Zddtk+u953330uKK200krl9kceeSRtvfXWXv9VV101vfOd73QR6Z///Gc666yz0rnnnpsuuOCCtNlmm5XlIejQHvJpnXbaaS60weIFL3iB70N92b7hhhuWx7DAvrvvvnt63vOe5+1HKGJf6nzYYYelv/zlL+nnP/+5t7XhQPuAEIaoN2XKlLTFFluk8ePHu5DGbIFnnnmmvxCv+jMYfvrTn/bk69T5la98pbcDIZGE+rT3xz/+cUN7+ytT20VABERABERABERABERABERABERABHqHwIiJVXjRIFThsfTTn/7UPYrAikD1oQ99KH396193ysstt1wDbQQNhKoNNtjAhRUEl7Dvf//7ae+9907vfe9707XXXuuiTGzjHSEGsQbPLUQojJC7//mf/3Fh6Ac/+EH6wAc+kI488kh/4X2EIISA1p8hZuHZdfjhh7vogmBVNepOyNuee+5ZCkJ4NCG07bXXXumb3/xmWmSR55zZvvrVr6b99tvPZ+P75S9/WS0ufec73/H6/eQnP0mvfvWrG46t7vzwww87m6WWWirhXQW/MDyq1ltvvcQ5qEtVdCJc8KCDDkrbbbdd+r//+z/3guNYhKePfvSj6aSTTnKGzJ6IENbKOJ4ZHjkf9V5ttdXK3RGp8NTaZ5990l//+td+yyoP7KEFZqdEiETsnTx5cnrxi1/s91Bcz9w/eK1hr3jFK9KKK67YtXS4d/Ei5H2ttdZysbudxiLQchz3wKKL9n3EISCT8w3PS54viy22WJ9iEZ7xpuQZsfLKK/fZ3isrmA1wOIxn7P33399QFNzXWGMNf9X1U8PObXz473//m/hxAnv961/v/dvqsM9+9rPpP//5j38fUY/cEPZnz57t3yNvfOMb/YeNumc09cZLlmcqP5bwrD300EP9uM997nO1119+nrGyzHcBPwrhfcwznR+Emhkh/9yDzYwfr/g+xfC+ju8V+oB7MowyKKvOeB7yY4hMBERABERABERABESgiwlYHqR+7frZTxTX3/lEv/vFDldccQXJqYrp06cX9s9mrG54twGA72NiVbn+iSeeKMyDqbB/RAsbbJbr8wXz/vHjTLgqV5v3T8vzmTDi29/2treVx7DAuc07qWFdqw/2z3phYlNhoYW1u7HexJzChIZyO+XboKwwMalcFwuPPvpoYeGRhQ2GY5W/m+Dj9bV/6Avz5mrYxodoj4VYltsshM+P+cQnPlGuyxdYT5+ccsop+erCvL58vQ0UChPaGrbFh5122sn3Mc+tWFVbBxsselvov3/84x+FDdz6vEz88rJMiPNt1Kluv15cZyKqs4FJ/rKBYWGegc7JBvzlNhNfu5adeR0W5gVZthUexx9/fMv2Wohwsc0225THcLx5aTYc8/nPf77cTpmwNc/Dcp9///vfxZve9KaGfbbaaqvi1ltvLffpxWtzqG3O+yW/tlnme8LEoSHz/cMf/lD2m3lytizvZz/7me/LNWKCVZ993/GOd5Rl0XYTOMvP1frzmXLOP/98L8eEet/XxPo+5Q6V42gcbz8M+fdk3m77Uaiw8Pba9pknbktWFiLvx9mPNw37wdC8p8syN9poo4bt+fn5P6A/FuWXlRZEQAREQAREQAREQATGJIHh+dnc/ovMjTA9DA+qZp44n/rUp/JDfPmyyy7zX2/JOZV7VOU7fvCDH/SP5513Xr7al3fdddfa89lgyLfjfTQUw8OCcEbyXOEZlBufWc+v8NOmTSs32eDYQ+jI2VU1fl3m12FyWtXZa1/72hR1r9uer3v5y1/uXlF4LtVZhC02O5eJWU29APCuwqJf68pnHd4Id9xxh+eqyj2q8v3xuMPIxSV7jsCf//xn99pjzSabbJI+85nPuDcen/FmIP9Xrxi55EwscK9CEwD8uuJe4Dqs3nc5ExgR7ku4MM8SyuD+I+QWIxccIcZ4e1LOb3/7W/eqIjTXhGPfh/sAzzY8P/He/MpXvuKeih/5yEd8u/4MnQDPSDyf4tl2ww03eHj0wpyI4Utf+pI35D3veU/phdtuy/Aqog288PjDuH4+9rGP+TJlYieccIK/j/U/eCPjkYtnM+HcBxxwgN9jzXJP4lWLh23+wqvZxKhkApR7T3FPvv/97/dUAVdeeaV/R+Ilimd05HvEKzkvg2XqghFeLhMBERABERABERABEehuAn1jZGray2yAAzFCcDCEnWa26aab9gm/iUElOaUIqauzyCuFKFI1EonXGaEFiGZ1ObLq9m+1jhA/ckB997vf9X+8Y18+Y4Qo5saABiOUCTGLkAdCvQhDMk8AT15OuFed5Xms6rbn68iTxQsjfIVBBefhxUCDgXorI09VM9tyyy09BDH6tdl+tAmj/xhY1Fn0n3mw1G3u2XURvgQAEt1HfjKET8JWzbPHhdwQHXNQ8DZvRl/FtfTSl77Ul83zwMUbrjnE34033jgRJoohjiEOUH4Iw4TtMugmR1yERXHNInCSywwBklArjPDZ4Qjd8sIqfxCRqAfhpDEo/da3vuX1JKSYAW/V/v73v/s1jlBF2C+GUMXkALSLZwNhqBjhuMGBXG2IWoin3Ks8dxgQh+Dwv//7v86KwTYhSSPVZq9YD/zhGjKvprKl9BHhcjw7rrvuOg+p45lF/9Bn5CgkHCz6g22IG4TvESLL90geOhYF209Hfj1QJs9FxM4I9+T5eOmll/quCJUDNfM0bRCi3vrWt6ZzzjmnFFJnzJjhwhWTfSCKcr0iwIYgGs/pgZ53NPYnFJbvDkRc2oUhpCPonnrqqf6DVLVehPYjCOfGj1NM2kFoOKHw9CuGKBx9feCBB3oou3nlJsqofifxnc/3K5O2xPdqfg4ti4AIiIAIiIAIiIAIdBeBtsSqgTY5hKTcw6haBuIRA+/81/QQQ370ox8lXq2sTuyIvD6tjhvqNmYoZODOwJeBLnlKEKL4XPdPOoMUvDnYnnt2MXBilkTy54SAU60b5Q3EyKlCHpaq9wkeYeQ3YvDUzEj+3swYXDCTY/Rrs/0YSGIICrxaGQNG2XMEcs87rhdEURLo4ynHYBjjfsrvF9aRb+xd73qXD5bxXGDyAgzxioF4zpnt5LvCcwsvEK4TPFzI9YYQQ140jIE91xLXJcsMsj/+8Y+7JwziDYbHUwhJvmIY/yCQYXn53At4bCA81RmDZ8xC+LzNPEsspLhBNKW93HMhVLF/DIjxotp88839HFWRfWE8V6hLJxqzARKUusayI+KE2yA8IoQi4JPzib5GhMJTDk8mxCqebczkmhviFx4/1Tx8eOgg0odxL3Fv0Pf5DKysH4pZ6Lrnl6MM7hUMIRePKwQ4nrmIVUw6YSHYvh0ReawYk4pgFgpbVhmPYMQiC8v17z6+A1sZzwo82RApEcIx+gvPs/xejFlnQzzPy+RZxDMRARPhTCYCIiACIiACIiACItD9BEZErIp/QBFqGCA3M34xz38Vj+MQgcI7otmx8St5vj2StubrhnuZgSsiAMnRmSXP8mD5OwMtZtNjFr0wRCwGx/zDv8466/ivzfyTv/baa7tQhwjEAJmBcp3xS3S7hkfJHnvs4Tzf8pa3+KCdgTihFYQaMgtfzJBYVyahZq2SdeO9g2DVyqL/8JagDq2srv9a7d/t2/BEOOKII1wYoi95ce8wAEas2nHHHd2rJxerWMbTAK8O9sUjicE3Aij3D33K9YYgdfrpp/vAeYcddnAvLcpEvOG6oG/DqxHOhNhy7RKeFd4giEAhRo50X1Bv2lO9/hFdw3uvWgfEawQCvKJyzx3uT2a05DlDeBH3YW5xzZL8m0TZhA/mhmfJt7/9be8HeVXlZAa3jLhK/+L5xKynCB5hePPhIYfhXYMhRq277rpp1qxZpVCFYGr5Ad0rh+uB8M9cmOK4m2++ORFGRp+feOKJvv3YY491bzs8szDKHsx3Bt5BeCZiUU8EtQgtZD1lUzfqMZYNDzas+sMJEw9gfO8hzjUznlF4TPE9mHtDIX6FAIZ3FaIkP3Away3sqsY9jfCHR1az1ALVY/RZBERABERABERABERgbBMYEbEKjwaMwW6zkAcGlwyqc7Eq/kllPQPTOuMXVmbqykWhuv1Gch2DJcQqQv8YDDcLAeSfb4QqBvp4tCBOVS3yc1TXD/QzoRkMvJp5vPR3HgSzZmIV3jmIFnXhV3k9o9/Zt1m/038MVkez//I6d8oyvJgxDe+REFvgSEggLwZ61dBYvKNgidHveKNgeEWF4EPOJVi/5jWvSeQ1o0y2c00SToORa4xwqdzwYGIAiTEQ51hCDGNAHn2dHzPQZQa6CNq5cd9zjdQZYlGz2cFoL+IAXh6ELeG1yX2JJw4CVeQTqrsHOVdduZTz7ne/24WzmTNn1lWp69cN12yAAYpnSZ0XJ96B1Wc+YlPky0NwxRBtuaYx1nHNUyZhnHmILF47hHdizDiH4Mh9hZDOTJtYfN/4hwH84R4KkSoO4/pDYEZw5hqLZynfgRjiMHUdjDgW5xiN97gXq/dNPL/7C60nfJb7Mmb/rWvDBRdckBCFMfqSH7EiDJp1CJz8EGRJ+hMh6TIREAEREAEREAEREIHeINBXPalp9w13mZfF7Hk1W+pXRUiGzfhWv4OtjQFHvgMDYv6ZJxdG7kGS74PXFb/k7rPPPvnqhbqMaLPBBhu4VwoDfbxT+OW4mjOLf9KxXXbZpVaoIqxuOLxVGGiT0wgBIQ+dyqEQXtPK6voj9o9+7C9khu30HwOUZv2HlwNhHkpYHXSfe8czyGZcdG8QQvP2228/F0rYA++pCHWLI0Ko4nMu+oSnHoPqNddc068L7q0wBoacixfGYPHCCy/0ZSYpwMjpgwCGIcgyWCVHEEmRebXypvCD2vjDtcB9lL8YrDbznCDkqpl3U4TqcR3TVsQC8uQgEIT4R5Wq1yUePlheLmL5/vvv7wIhggYeHcHKd9afYSPAsxSBtu75kz/jw+MqFyvomwg1D1EoKsbzOCzCW7m2EK5ikonwFqJsfkwIb6k4rtk7P1YgqPDivAhtGN9NUc+4P+L5jljMfRMTTDQru9PWh0hVvW/wvMTy+6au7oiE9FOr/IvkN8SjkR93EJg5JjeESJ51hHbKREAEREAEREAEREAEeodAW2LVQHHgjcBAgH9Cq94glEWYEZ5JVWNASPgSg2k8IeJX3diPf/z55RpjID8cVv0nvN0yyZ/Br8rbbbedv++11159Do3cG9UcUuzIgBgRAKMOMWj2FQP8w4ABrwTCanhVjbAVfvXH+JW6zs4666wUolS+HdEC7xTOEV4O+fZ8GWGE8L/bb7/dwzmq/YeghrcExsBN9hwBwv0QgwiZIQQOrxHClvL8OtXrCI+n8A5hYB+5cAj7DIN39RWD97j+yOXDgJDzMoMnxvUQM25uv/32UdywvnMPIcLlL54beMggtIWoECdF/I3wo1gX7+FVA8Pc8KrieYIhbERePF9hf+J+ieP5TPgsCd0RUGAQ93Eco/fBE+B65TqNFxMLMLtceOpEyVzbeS6kCAmtPr8QjLD8muczwmZY/own/Dj6OkLc+HEEL6zwvuO4OIZ7omqIqTwPeeERGTPUsh/ekVjUK89F5xvG2J9gVc1XyLMcmzp1atMWIZoTnhliXr7jcccd5xMd5Ot4zvA/QIjksS3+h8jDCGOb3kVABERABERABERABLqXQFtiFbMBTp82oW0KDCy+8IUv+D/z/KOKZxFCCB435JRB4OGX57pBIDNDkYSVXCZbb721v+NtQp4oPCb4ZRzRJP+Fve2KVXYkRw0DYOp1xhln+AxTlV2aftxtt918dikGPAxIYuCfH4DgwD/zJ510krebHFcIeCSrJhQG8Q0O5AyivdVQrLys/pbxiOHXbrgw2xkCBFOLkyyabeR9wfAgqM7Ux+CLEAsEN/K/8Ms2AwQEEPKKUD+SflPn/oxEwrSJgT79zDvJ8vFGID8X/YfQGIJJf+X1ynYG53h+0Gcx4KXtIbSwXA29Y8AX4TUMHgkFxSIckGVEMO4X7jvKYvDIIBsjFBAjpAlxiP4iFxAD9AgBZJl+wziW5Ma8ECSHagisCEP5i2dHzGbIrJthzGhIG5kooM7ieZAnYMfjEM/HyFPFbIi0Ia97nCPOCSdEMvbjmm3m5VVXB60bOQLM+ofhfRNCFKIG1y2WX/N8DoGDa4DnOzZ9+nS/9sNLLgSYEHwRg0nuj2AZs3OGh5QX8Owfnoc893lxLfH9FBaeXlF2eG/x/RL3Tuw7Ft7jeyNm76PO8MfLE0/aVrkHEcCxOpGJ+xKRkh9twhAwYR/MWM8PQrAjp1+dcBjH6l0EREAEREAEREAERKALCZhHz4iZhZ4VljSXOJvyZYO/woSdwvJOFTZ4LOwf0z7nt1mBCvsHt7BBdXkcZVgei8JyxxQ2AGk45uSTT/b9TIhpWJ9/sDChwgbj+arC8pcU1CfqZzlqGrb398G8wPzYvffeu+muJjwUNlguz8G57B98r4vlTikst0q5jbZhJib5OvOGqi336quv9u0mDJXbYWIikJcd7eHdBluFeYkUNqgrzAvAj7N/+svjTBAsYGMiUmFeNb6cH2+/rBc2GCv3j4W6Othgo+BlokLxute9rk//Wc4jZ26zIvp+7Mu54rhefudeybmbeFXYwLdcx2e4WiLwcp0Nwp2dCcLlOgtJLcyro7DBe7nOxKCC4ymfd+49WHNNxHq2mbDo601cLo+l7OgXC9Ep15tQUK6P7cP1zv1PvXiZeFfYTJqFDYz93Cai+XnN48m324DXP1tOtsJEB18HF+oX7TDPGd/HQh29DJsNsTDRw9vLvQBnCzMqTKzw7RxnYkfDi3tyuNo3lsq5+rZHiqtvfWTIbTcx3NnSR63ab16Avh99n+9nHoa+nuuUMkyELT9TNtdy9R6yUMCG+8CEXS+T6yHuNc5hwkn5OdbH++GHH+7HmKjSdJ/Yl3rdddddvn9crxZO6p/Ni7A8Pm/XWFjmu5g2HnHEEYV5XBaWf8s/248w3jbLPef3HfdV3h4L2/P9uLfy9SzbDI6+jT5i2X5cKeyHEV9nYbvl/uad5evsx5JyXbWsZp/ju0rvIiACIiACIiACIiACY5PAOKpt/4iOqPELNInG8aohP02zUJ5qJfAUMlEk2QAgMVMUv4jnoSHV/QfzmVwYeFEwKxi5tsLrZDBlNTuGcDi8V0hyznlgkLeDhL94CNC+oXpy0B7CLzgnObTil37qBk88yfAWaDazH14lzJaF9wC/nOfHN2tfrKd/c+N8tJtfy/Giow/zdrMv4Ts22MgP69llEnofeeSRniMph4BXAXl9CHHDqyH6Do+1nXbayfO54FnCNWQDZu8/clgddNBB7pUQZVEO5eNhEobHHLmjMPqdawZPlAjTJISUGQQxvFrwNsLwammWH813GOIfvFyY6TDyvuFVgRfZjBkzvGTybBE2hDcgybQxE/PcGxCOGMcQApmH6Jrw5Z5msMLghtcn73gcEprYzHrxOr1ljiW7t2+INZZtywm3GTq/Tgmp5PqsJifPD8LD9NBDD/Wk/rlXIfvg7fThD3+4vCZYRx6jo48+2p+rV1xxRTnDHAm58e4N4zM5zHi+MvNl5HDj+4XnEl6vlM3zM4z8UngvEqLI87RZSB/PSBK/E8LLs5XrJMLn4v4hvPaUU07xosfadcT3FqGOhOuGwRMvWnJa8V2Bl3K1b/GMhmez/saL1MTA0jvOBEoV5JrxAAAe0klEQVQPOY/E+JyL5wxsTWCs9V6O+tS955O31G3XOhEQAREQAREQAREQgc4msFDEqs5GoNoNF4GqWNVOuRKr+lJiljxCAgmxISfOUAZdiFuIoYQQVvMC9T1z562BBaInAne7M6lxHZIzqC6EixaizyOgwhXxWDa2CCDE8gNIf9c0+a0I0yOsvJrTCgGWMDUELMLzMPJUIZDxTv69ViFurYjloi5izVDu31bnWdjbENnMs9N/wBiuH3W4F82T0n8kQqwaTusW7sPJRGWJgAiIgAiIgAiIwFgi0JZYxWyA/Lo+kLxVYwmC6jo8BCRWDQ9HlSICIjCyBMhVtvPOO7vwwox+MevdcJw1hDA8tSzUfDiKVBmDICCxahDQdIgIiIAIiIAIiIAIdBCBocV2dFBDVBUREAEREAERaIcAE08wAcaUKVMSyfuHy0gYbjnh0kYbbdQwu+Bwla9yREAEREAEREAEREAERKBXCLTlWdUrMNTOoRGQZ9XQ+OloERABERCB4SEgz6rh4ahSREAEREAEREAERGC0CMizarTI67wiIAIi0OEESLB+y32WZF0mAiIgAiIgAiIgAiIgAiIgAguRwKKtzvX4kwvS7XPmpwcfe2awstSSi6RVlhmfllhMGlcrbtrWPoFOnhnrvocXpPseHZeeeLJIiy82Li0zqUjLTda1337vas+xSuCJ+UWa/UBh139K47wRC9K0KePS4uOf+TRW26V6i4AIiIAIiIAIiIAIiIAIjA0CTUfec+ctSBde/1ia/3SRVjOBitdjNmg/9+q5iW0yEehmAtfMXpD+dX9KL1pqsbTOiov7+9V3FumqOxb4bHLd3Ha1rbcJ8Jy/7FZ7xi+yaFrPrv117TW/WDRdfNMC/w7obTpqvQiIgAiIgAiIgAiIgAiIwMIgUJuzCo8qRKkNV5lgnlSLNdTj9jlPputmP5les86S8rBqIKMPg8lZ1YnUbrq3SP99LPk1Pm7cc54kTLP+qysfTatMXSSttdxz6zuxDaqTCAyGAB5ViFLNnv3X3jkvvXL1ReRhNRi4OmahElDOqoWKWycTAREQAREQAREQgWEnUOtZdfv989NKS4/vI1RxdsSrFacu6uGBw14bFSgCo0zgKXMomf1QkTZ/8RIpF6qoFp/fsMFE385+MhHoNgKzHyxaPvv5XiA8UCYCIiACIiACIiACIiACIiACI0mgVqx6cO6CtMKU5umslp28aLr7waf61OuG2fMSr6pp/TNEeo0DiZnrkjN38vq584q05PiUJoyvvTV8PTnbbrynr1rVye3K70nV8xka4tCXwyNPjOv32f/IPHkV5veTlkVABERABERABERABERABIafQHNFqp9z1f623mwMo/XP0BSHscWhxT1QpJo7QP07tvpX/dW6v+qu/2bM6vbVOhEQAREQAREQAREQAREQAREYJIHanFU33DUvzX+qSOuvvHhtsVfe+kRa0mZHmz5tQu12rexNAt2Qs4rwvktuXpC2XXfJWu+qefMXpPOvfSy9es1F0qL1zle92flqdVcQuGWO3QDjFm357B8/7qm0xrK6+Luiw7u4EcpZ1cWdq6aJgAiIgAiIgAj0BIFaz6pVXjjeZgJ8PE1e4sk+eatIsP7v/8xPr7fcPTIRyAl0y+BglaXnpUtvfCJtvU5j3ioSrLN+FcvbM3mShNq877XcHQTWXJ5ZYPt/9hMKKxMBERABERABERABERABERCBkSJQ61nFyebOW5DOu2auJ9uN/FVzHn7Kkus+lbaYvmSaOEGDlZHqFJU7ugQQpS67+fF070NPpw1XXTxNNC/CuU8W6db75qdJE8alV6yxxOhWUGcXgREkoGf/CMJV0SIgAiIgAiIgAiIgAiIgAm0RaCpWcfTjTy5IzAxIwnVsqYmLJLyu9Ku649CfLidw1wPzbSKBp9PjJtwuYeLs8ks9z5JPW/Z1mQh0OQE9+7u8g9U8ERABERABERABERABEehwAi3Fqg6vu6onAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQZQQUy9dlHarmiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMBYJiCxaiz3nuouAiIgAiIgAiIgAiIgAiIgAiIgAiIgAl1GQGJVl3WomiMCIiACIiACIiACIiACIiACIiACIiACY5mAxKqx3HuquwiIgAiIgAiIgAiIgAiIgAiIgAiIgAh0GQGJVV3WoWqOCIiACIiACIiACIiACIiACIiACIiACIxlAhKrxnLvqe4iIAIiIAIiIAIiIAIiIAIiIAIiIAIi0GUEJFZ1WYeqOSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwlglIrBrLvae6i4AIiIAIiIAIiIAIiIAIiIAIiIAIiECXEVi0y9qj5ojAiBIoiiKdccYZfo5VV101bbTRRuX57rzzznTZZZf55+c973lpp512SuPGjSu3d9rCr371q/Tkk0+ml73sZWn11VfvtOp53f75z3+mp556Kr34xS9OEydO7LeOjz/+eLrhhhv8mJe85CVp8uTJfY554IEHEuVOmjTJy11sscX67HPPPfek2267Lb3oRS9KK6+8clpkEen6fSD1s+LWW2/1++Gqq65KSyyxRFpnnXXSjjvumCZMmNDPkcO3+a677kp/+tOfvEDOPX78+H4Lv/7669N1113n+22zzTZpypQp5TF33HFH+stf/uKf3/SmN3m7yo2jtDB//vx06aWXpk022SQtueSSbdXi3//+d3r44YfTuuuu23T/OXPmpJtuuiltvvnmTfcZ6oZ58+b5OXjnfuWerNp//vMf34d+WGONNdKii+rfliojfRYBERABERABERCBriRgg2+ZCIhAmwSefvrpwh4E/vrABz5QHjV79uzCBJ9y22mnnVZuG8oC53jb295W/PKXvxxKMbXHPv/5z/f6Hn/88bXbR3PlT3/60yLqB2+WTznllJZVOvPMMxuO4bgvfvGLDccceeSRZR+xfdllly1+97vflfs89thjxTvf+c6GfV75ylcWJkSW+2ihNQHukS984QsNDOOeWXHFFQsTdFsXMIxbTZAt6/Hf//63rZKPPvro8pj3vve9Dcf85Cc/KbfdfffdDdtG6wP3CnxNWOq3Cn//+98bnlM8s2bNmlV73H777ef3R+3GYVjJfZff47Tha1/7WlmyiXAFdYhrh3cTrQvaIBMBERABERABERABEeh+AnIXsP+AZSIwFAL88v+6170u/etf//Jivvvd76Z3v/vdQymyPBYvrtNPPz3h7THctvvuu6c99tjDPRqGu+yhlIfX0y677OJeazYwTVdeeWXacMMN05577unLdWXTB3jOrLXWWumvf/1ruvzyy9Mb3vCGdOCBB6YrrrjCDzn33HPT4Ycfnmg3HiNnn312wqtqxowZCY8sbObMmelHP/pRMlHL9/n+97+f/vznP6d99tnHt+tP/wQ+97nPpYMPPth3NDEi7bDDDmmLLbbwz3gfvva1r014PI0F+853vpMuvvjijquqiarpj3/8Yzr22GP9XmmngngL8pxaaqml0nnnnefeWNOmTUsf/OAHE95Z2L333pvOP/98v96/8pWvtFPsoPYx4dDvu+WXX97rcc011/j9Sl3Cc+173/teog7cizfeeKPfl7wP17N1UBXXQSIgAiIgAiIgAiIgAguNgPzpFxpqnagbCRBKs91225VhQwxuEYDCGFAyECSMjYEZdssttyQG7YSoEYLHQI3B2yqrrJIY3JuHUFp66aXTC17wglJEQVy58MIL06abbpoWX3xxLwcRhmMXLFjg4Txsy8MOGdAy8Lz99ts9dIYwrFe/+tVlSNtuu+2WCL9Zc801vTz+XHvttS70PPTQQ2mZZZZxYWG55Zbz7XPnzk2IQtgKK6wwYuE45ini5/jBD36QGExj5lXlQtTvf//79PKXv9zX5X+oN/bJT36y3H7ooYem3/72ty5eveIVr/B2sc9xxx2XzKPK222ea+mwww5zoZGQqG9961vJPKnSpz/9aXb1fRDLvvzlL/tAPlj4Rv3pQ4AwOQRBbIMNNnBRhOsI++EPf5je9a53pUceecQF2I985CO+nj+trmXuFe4ZRJbVVlstcQ0QorneeuulbbfdtuGa57q95JJL/JrPQ3TLEw1iYa+99kpXX311y/BF7iPudUTlqVOn+n1NWNtIGWGKr3rVqwZUPKL3fffd5/cBzxrshBNOSJ/61Kf8+fXSl77UBaEDDjig33LpQ8IrzaPURWXuHUKfq8Yz6IknnnAm+bbf/OY3fh0gxkeY4amnnurPSMTijTfeOP3sZz/zeznuRYRoBGf2e/TRR2tDBvNzaFkEREAEREAEREAERGCME+h+5zG1UASGj0AeBmgD7+I1r3lNGaZy8skn9zmRPR58u3lbldsI7WO9eZv4OhO7/PNb3vKWMizmzW9+c1lulMG7iQGF5VwqLB9Wn+3mNVHYYNTLtMG9h/Dkx7JMfU108n0iBCfCAE206VMmx/ziF7/w/W0QWW63HDm+biT+EIZlXlENRVuOHT/3Mccc07A+PtBu6kobwkxg8nU2qPZVtIN9TMCKXUqO5llVECbGdkIFc4tQsj/84Q/5ai3XEDBPGGcIRxNK++zx2c9+tjCvqyLuh3auZRMXvUxCCE1wLcvnHHvvvXd5DhMsC/ZhfbxM2CyXBxMGGOUcddRRfp66MMB//OMfferFcfvvv39h+dbK+g3nAs8h7mNeP/7xj72N/YUB8rzhGUGdTOwqTPwu7r///oZqEXoX5ZqXU20YoHku9uG8/fbbF9xDVeOZSB9UjWsARoTd5mYCZ/lc5Bo566yzys0myvtzgT5mWSYCIiACIiACIiACItDdBBQGaP8xy0RgMATw/Lngggv8UDyiSKg+FPv5z3/u3gZ4pOCpQAga5WKWt8o/46WC95DlsPL1n/nMZ9LnP/95X7YcMOnDH/6wL+PhhReFDew8jM0G2b6e+kaCeF/x7B88xAjfwgi7IfQt2mN5Y57da+G8HXLIIemcc85pOJnlnvLPEU7WsNE+wOXrX/+6twFvmy233DKZWOBhgCSexvCAIwSQ8EDCDPF8gSOeXHirhddYeMD5QfaHJOsYCadlrQlEYnL2og+qhhcbnm3hfdjOtRxl4GHFdUq/cl1jJoaUIYXve9/73GORe4Zz4JGDV9xQ7OMf/7gfjpfezTff3KcoJijgWqLd1OnEE09MH/rQh3w/vPG4D0fCSPhPMnVe7SasJ+E93mk8X/Cy3GqrrdILX/jCZPnFyiqSvDzKrZt4AC8pnkW0Fa8qvDp5nvz6179OJiSX5fS3wLOJfiLxfm54fBGKiHGNmAjmXqc856gvnpLf+MY3Grzp8uO1LAIiIAIiIAIiIAIi0D0EJFZ1T1+qJaNIgLCY97///UOuAbN6kaeJgR8hUzGYI6SJz6aduyjDicjnQgjPJz7xCReyWIcoZd4S/uIzA3zCBwlDZKZClusEnwcffJDd3diHwSR1YNk8N3xQSsgi5+TFTIgLwwj3gat5f7kQFyFD1XMTbkR4GEaIGOFgGOFb5OrBEJsirxhhZRyDEc7EINy8Vfxzdea/CG+K7b6T/tQSQMDAECL6m7WNPGEIjFira9l3ePYP4WNf+tKXXLCI9YQeIiRx72AIROTMQnQ94ogjfN1g/3B/hTCGaMv9lxuhfyHQmReQC1UIVpaY3XcjzK5TjGcBoYCIVYQVM2smYtDHPvaxtvNymXeh30Pcj4QCE3ZsHqGeTy76sp32InLVGdcMs3/mxnXCeRHbMPJW6V7MCWlZBERABERABERABLqTgHJWdWe/qlULiQADYpIVk4QZz6hvf/vbiRw3gzEL0SvztzQ7PgZsbM+FG3JRhZGgnFxMiEyIaHiH8EJAwLPIwuxi1/J95ZVX9gE2A31EnxB+yA+F5xYCzvTp0/1VHjTCC+TbwruCQXaIVc1OiYcUA3H2i1xI5LfBi4ok1IgGeGfQT4gasGPAjDcZOZbgxyAei2TTcS68Z7D+xJfYv5ffI08T1x0vrrnc8BZECCUXWfBme6trOT8ejyAs3llGaAwRks95LqfNNtuMVYO2iRMnujBmYbnu1VMtCOEkjJxPYdzL3EsIWVxP48ePj02j9h59Qb3wnsLI/4RXIvdPnYhdrWxM9EBetzqjz3m+cM9iPIsQxvKk6AiIIQBXy6Avq/cZ1wpiFQIVHm7k1CI/X37NVMvRZxEQAREQAREQAREQgbFPQJ5VY78P1YJRIoBHAaFGJP8Osxw6PkCLz/FueWBisfQQKFc8u7DSSitVV/X5nIf8hIjCTgzywhiI4gV19913u4DGDFt4hzCQxIMlEhbH/vGO0EbCdkLuEHkwwqhYXtiztyEuMWsc4ZB4QSFA5cnjo87xjjCFRRgky69//evTNttsU4YUWs4q9ySJQS4CHCGHGIPhSASOZ1Zu8Zmk7LLWBNZff/1yBxJl5wbH97znPemggw5yMbTdaznKgH+IHFXxZ9KkSbFb6THHChKfD9XwPnrrW9/qxRCGlltMdsC63Nsnvx+jzvlxo7FMeCtJykOoog6EASJihUdcf/UKzt/85jc9ATpJ0PMXQhP3EQITL8IOsfjMO96iTFTA88hyljWcEnELjy22EU4Z9zU7wZEQUCzCr/2D/oiACIiACIiACIiACHQlAYlVXdmtatTCIBAzwzGbHiJQGF4EISSFNwPhdHjyEKJXHfDGca0GtZFPifC7KJOcWWHMtBZGyB+iwNZbb+2Dwa9+9asu+IQnCwPCquFtRG4nPLL23XdfF3jwVAoj1ArhCq8GXiHgxPbhfCdf1kc/+lH3Bjv77LPT6quv3m/xITT97W9/K/clnAgPj+gnck9ddNFFDcIegh7G8cy+yLnwkMtDkQjvwhDOZK0JIOpEf3Et4UnFNc/1T06pMASgdq/lOKbVe3h0sQ+iK0bIXn6PsI5ZB+MatqT9rGrL8NirGuXn4lzkgsOT6rTTTvPd8VZCFCU8l/Mi1I2WvfGNb/R7OBeI8EhDGELEaseYgRGbMmVKmjFjRvkidJkQTYQo2kkIMS/yeVF2fOYdMQoxHcufhYQlUh+eQ3i08UzFGzK3eO5IOM6paFkEREAEREAEREAEupSA/cMtEwERaJOAeU/4LFb2OCiY1S+M9Rb6U26LWelipj/2N++mcjufbSDrh8c+FvIWxZXvJjCVx3C8eUAUJj6V6ywcx8uhPF4W1ubH5jP7WU6rwhJZl8dYWJ/vY6KXr7OBeGFiWLmddljS5YZymSFsYc0G+I53vMPrwsxrs2bNanhZ2JXX/ZJLLvGZyiy80T8z4x/th5d5uhVsj3JMvPB9aBP7MJPimWeeWZgQ5jOVsc5yW/k+5lXm+5jgWFjC+sJCBP0zZcnaIwA3mDZ7WYLusqB2ruWYDdAEivK4mB2Sc5hXnK/nfoxzcl9svPHG5WfWMxugiUjlOsvhVpaXLzAbZZSTrz/ppJPK9Ww3b0PfTHtif/NCLEwsLj+bOOr77LnnnuW6vMzhWDaRzMuuzgbI9Q4zC/Hz01x11VW+H88dC/P16zueLyYS9amKCca1swFyPM8OZvozkbsIXjwfqtZsNkDLKedlUz/uV9oQMzfGvchshHDlucg1ZRMh+DOUc9P/MhEQAREQAREQAREQge4mwK/PMhEQgTYJ5GIVg6ncLFytHJAyyEJAMY+DBpGKAfQ+++xTDho5vpVYhVgTohJlmodTQR0smXHDevZBaGHqeczCn4oY7MVAmncG9Ob15ftEuYhVmIXWFJYLqKENDLwtz5NvX1hiVVXUy+tv3hZeF8sT5vXMBUPzBGtgTftmzpzp+/PHvKUKyzHW0D7zAirMI6TcB34HHnhgwz4W7lmYd1C5jxb6J2BeMoWFYDZwpB/hb4ntywLauZbbFasoF2Ejv14s0Xr52SYRaEusMu+f8piyorbAtRGCCuewWet8s81QWFjIWnkM27iGzSOvPHwkxSoLb/VzW5L58nwsHP6s0Gq568r1XOshUFFP7m+E3TqzkLtascomKijMg65sL/cQYjh9WTXLj+WiYXU9ny+//PIGYY/7FUEqzDy++jzDeH6a52XsoncREAEREAEREAEREIEuJjCOttk/rTIREIERImCDOM9TRa4YQmAGatyihOoQThQ5YyiD9TF9PPmu6nI6MeNd5Jvi3Hm+mmb1YPY880LxfDODqW+zchfWemb9I1cRdYdZ1egPwv/ImRThg9V9COWCLeFG7TCrHq/PzxAgHJawU8LDCPurJs8OTu1cy7Fvf+9c8/Tdaqut1vR8/ZUxmO2EjhKmRjhps+tqMOWOxDGEFXNvEM43WKNvSZZvwtxgi/DjqAv3Kzm16p5hcS9OnTo1TZ48eUjn0sEiIAIiIAIiIAIiIAJjh4DEqrHTV6qpCIiACIiACIiACIiACIiACIiACIiACHQ9gb5uB13fZDVQBERABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwlIrOrUnlG9REAEREAEREAEREAEREAEREAEREAERKAHCUis6sFOV5NFQAREQAREQAREQAREQAREQAREQAREoFMJSKzq1J5RvURABERABERABERABERABERABERABESgBwlIrOrBTleTRUAEREAEREAEREAEREAEREAEREAERKBTCUis6tSeUb1EQAREQAREQAREQAREQAREQAREQAREoAcJSKzqwU5Xk0VABERABERABERABERABERABERABESgUwn8P58f3R9jZ9pAAAAAAElFTkSuQmCC"
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"What do we see here?\n",
"\n",
"* The coefficients for study time and IQ are both positive: higher study time and higher IQ both go with higher exam scores.\n",
"* Looking at the t tests for both coefficients, we see however that the slope for IQ is not significantly different from zero -- this is not a reliable predictor for exam score.\n",
"* The intercept is not interpretable when we have multiple predictors. \n",
"* Residuals: Looking at the Omnibus and Jarque-Bera tests, the residuals again fail the test for normality (unsurprisingly, as this is a variant of the same dataset that failed normality of its residuals last time)\n",
"* Amount of variance explained: We get an R-squared value of 0.573. Now that we have multiple predictors, we see that the adjusted R-squared value, which adjusts for random variations in the data, is now quite a bit lower than the non-adjusted R-squared, and is at 0.451: We explain about 45% of the variance in exam scores with the predictors that we have. \n",
"* How good is the model overall? Can we trust that not all slopes are really zero? The F-test shows a p-value of 0.051, which shows that the model probably does have value, though it is a bit borderline. This is even though the correlation of study time and exam score is so strong that you can actually see it in a plot of the data. The reason the model is dubious is that we have so few data points.\n",
"\n",
"\n",
"We now have a new problem, shown at the very bottom. There it says \"The condition number is large, 1.61e+03. This might indicate that there are strong multicollinearity or other numerical problems.\" In fact, if the collinearity is above 20, that indicates worrying level of collinearity.\n",
"\n",
"You can find the condition number in the last table, under **Cond. No.** You should always check the condition number to make sure you do not have an unduly high level of collinearity among your predictors. \n",
"\n",
"What should you do when you have a high level of collinearity among your predictors?\n",
"* First, this is a problem when you care to inspect the coefficients, that is, when you are doing data analysis. When you only care about the prediction result, collinearity is not a problem, because in that case you do not care so much about what the coefficient is for each predictor.\n",
"* If you are about the coefficients, then this is a problem. In that case, first think about your predictors: You have some predictors that tell pretty much the same story. Which ones are they? Can you just drop some of them? \n",
"* If you decide you cannot and do not want to drop any of them, another option is to run principal component analysis over your predictors to obtain a new set of predictors that are mutually orthogonal. \n",
"\n",
"# ols output, annotated\n",
"\n",
"\n",
"\n",
"# Another dataset\n",
"\n",
"**Try it for yourself:**\n",
"\n",
"On Canvas, you find the file ```lexdec2.csv```, an extension of the lexical decision data we used before. It contains additional predictors, including the participants' subjective frequency ratings of words. The column ```SubjFreq``` contains these subjective frequencies, averaged over subjects.\n",
"\n",
"Fit a linear regression model that uses both ```Frequency``` and ```SubjFreq``` as predictors for reaction time. \n",
"\n",
"* Do both coefficients have a slope that is significantly different from zero? \n",
"* How much of the variance in reaction time do you explain with this model? (Please make sure to use the value that is adjusted for the number of predictors.) Is this better than the variance explained by the model that used only frequency as a predictor? \n",
"* Does the model as a whole have value? Where do you see this?\n",
"* Are the residuals approximately normally distributed? How do you determine this? "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Word
\n",
"
Frequency
\n",
"
meanRT
\n",
"
SubjFreq
\n",
"
Class
\n",
"
Complex
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
owl
\n",
"
4.859812
\n",
"
6.3582
\n",
"
3.12
\n",
"
animal
\n",
"
simplex
\n",
"
\n",
"
\n",
"
1
\n",
"
mole
\n",
"
4.605170
\n",
"
6.4150
\n",
"
2.40
\n",
"
animal
\n",
"
simplex
\n",
"
\n",
"
\n",
"
2
\n",
"
cherry
\n",
"
4.997212
\n",
"
6.3426
\n",
"
3.88
\n",
"
plant
\n",
"
simplex
\n",
"
\n",
"
\n",
"
3
\n",
"
pear
\n",
"
4.727388
\n",
"
6.3353
\n",
"
4.52
\n",
"
plant
\n",
"
simplex
\n",
"
\n",
"
\n",
"
4
\n",
"
dog
\n",
"
7.667626
\n",
"
6.2956
\n",
"
6.04
\n",
"
animal
\n",
"
simplex
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Word Frequency meanRT SubjFreq Class Complex\n",
"0 owl 4.859812 6.3582 3.12 animal simplex\n",
"1 mole 4.605170 6.4150 2.40 animal simplex\n",
"2 cherry 4.997212 6.3426 3.88 plant simplex\n",
"3 pear 4.727388 6.3353 4.52 plant simplex\n",
"4 dog 7.667626 6.2956 6.04 animal simplex"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lexdec2_df = pd.read_csv(\"lexdec2.csv\")\n",
"lexdec2_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Categorial predictors\n",
"\n",
"A categorial variable is a variable that takes one one of several distinct categories: yes versus no, blue versus yellow versus green, Texas versus Colorado versus New Mexico. \n",
"\n",
"Categorial variables are a problem because we somehow need to turn them into numbers in order to use them as predictors in a regression. But if we just encode, say, the state of origin as a number between 1 and 50, that indicates that states 1 and 2 are somehow closer together than states 1 and 49. But that makes no sense for categories.\n",
"\n",
"Here is an example to illustrate this: Say there have been four different package design for a new cereal, which were tested across a number of stores. Each store is randomly assigned a package design. Then we would like to know what the connection is between the package design and the number of items sold -- did some designs sell better than others? Here is a faulty encoding that just encodes blue as 1, red as 2, yellow as 3, and green as 4. We make up some sales numbers at random by drawing a number between 10 and 30 from a uniform distribution. First, here is how we draw 20 random integers between 10 and 30:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here are 20 random numbers between 0 and 1 [0.92365323 0.50499755 0.81465005 0.91652947 0.78754762 0.0983289\n",
" 0.58256167 0.43721868 0.85807323 0.71901738 0.31263082 0.92505232\n",
" 0.565689 0.54368638 0.85456825 0.99118295 0.90244907 0.53640021\n",
" 0.639402 0.90293479]\n",
"Here are 20 random numbers between 10 and 30 [17.31127331 21.09814648 14.00019978 26.88181994 28.00125672 24.04358013\n",
" 11.06756614 29.35417117 24.19600962 23.40675603 23.89773992 28.58714708\n",
" 11.69962257 25.44360575 12.83877929 13.01877639 16.49801277 24.6725053\n",
" 24.9628653 16.86961988]\n",
"Here are 20 random integers between 10 and 30 [23.0, 16.0, 19.0, 18.0, 18.0, 12.0, 24.0, 27.0, 18.0, 15.0, 11.0, 11.0, 17.0, 21.0, 24.0, 27.0, 28.0, 13.0, 17.0, 18.0]\n"
]
}
],
"source": [
"from scipy import stats\n",
"\n",
"# this draws 20 random numbers between 0 and 1\n",
"print(\"Here are 20 random numbers between 0 and 1\", stats.uniform.rvs(size = 20))\n",
"# this draws 20 random numbers between 10 and 30\n",
"print(\"Here are 20 random numbers between 10 and 30\", stats.uniform.rvs(loc=10, scale = 20, size = 20))\n",
"# and this draws 20 random numbers between 10 and 30, integers only\n",
"print(\"Here are 20 random integers between 10 and 30\", \n",
" [round(val) for val in stats.uniform.rvs(loc = 10, scale = 20, size = 20)])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We use this to make up our fake data for 20 stores: "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"random_sales = [round(val) for val in stats.uniform.rvs(loc = 10, scale = 20, size = 20)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we make a *broken* data frame in which we wrongly code colors as numbers. 5 stores get the yellow design, 5 the blue, 5 the green, and 5 the red:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZk0lEQVR4nO3df3Dc9X3n8eerikI0wJygaCiWzZlyjDokDjbsGXMQhtAGGV8OFJqkeAIHDcXtHbmGuVSZmDAhzXETbtSQppc0GfNjQhtqoEGobjAIT8OMSy4YJGSQwSghhATLLlZKFOhEA7byvj/2K1tWVtbuaqXvSp/XY0aj736+n+/qvR/v7svf34oIzMwsXb+RdwFmZpYvB4GZWeIcBGZmiXMQmJklzkFgZpa4d+RdQCknnXRSLF++PO8yzMwWjP7+/p9FREs1y9ZlECxfvpy+vr68yzAzWzAk/aTaZb1pyMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscTMeNSTpXcB24Jis/7cj4hZJpwH3Ab8J9ANXR8TbJZbfCFwHjAN/GhG9Nax/3vUMDNPVO8Te0TGWNDfR2d5Gx6rWvMsyA/z+tOqUs0bwFnBxRJwFrATWSloD/B/gyxHxH4CfU/yyP4KkM4ErgXcDa4G/ltRQq+LnW8/AMBu7BxkeHSOA4dExNnYP0jMwnHdpZn5/WtVmDIIo+rfsYWP2E8DFwLez9nuAjhKLXw7cFxFvRcSPgZeA1bOuOiddvUOMHRg/om3swDhdvUM5VWR2mN+fVq2y9hFIapC0E9gPbAN+BIxGxMGsyx6g1PpnK/DqpMfT9UPSBkl9kvpGRkbKrX9e7R0dq6jdbD75/WnVKisIImI8IlYCSyn+j/53al1IRGyKiEJEFFpaqjpLes4taW6qqN1sPvn9adWq6KihiBgFHgfOA5olTexsXgqU2hA5DCyb9Hi6fgtCZ3sbTY1H7uJoamygs70tp4rMDvP706o1YxBIapHUnE03AR8AdlMMhA9n3a4B/qHE4luAKyUdkx1ldAbwVC0Kz0PHqla+eMUKWpubENDa3MQXr1jhozKsLvj9adXSTPcslvReijuDGygGxwMR8QVJv03x8NETgQHgqoh4S9JlQCEiPpct/1ng48BB4MaIeGSmogqFQviic2Zm5ZPUHxGFqpatx5vXOwjMzCozmyDwmcVmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniZrx5vZlZqnoGhunqHWLv6BhLmpvobG9blJf1dhCYmZXQMzDMxu7BQ/eBHh4dY2P3IMCiCwNvGjIzK6Grd+hQCEwYOzBOV+9QThXNHQeBmVkJe0fHKmpfyBwEZmYlLGluqqh9ISvnnsXLJD0u6QVJz0v6ZNZ+v6Sd2c8rknZOs/wrkgazfr7tmJktCJ3tbTQ1NhzR1tTYQGd7W04VzZ1ydhYfBD4VEc9IOh7ol7QtIv5gooOkLwG/OMpzvD8ifjbLWs3M5s3EDmEfNQRExD5gXzb9pqTdQCvwAoAkAR8FLp7DOs3M5l3HqtZF+cU/VUX7CCQtB1YBOyY1vw94LSJ+OM1iATwmqV/ShqM89wZJfZL6RkZGKinLzMxmoewgkHQc8CBwY0S8MWnWemDzURa9ICLOBi4FbpB0YalOEbEpIgoRUWhpaSm3LDMzm6WyTiiT1EgxBO6NiO5J7e8ArgDOmW7ZiBjOfu+X9BCwGtg+m6LNrLRUzoS12irnqCEBdwG7I+L2KbN/D3gxIvZMs+yx2Q5mJB0LXALsml3JZlbKxJmww6NjBIfPhO0ZGM67NKtz5WwaOh+4Grh40uGi67J5VzJls5CkJZK2Zg9PBp6Q9CzwFPBwRDxao9rNbJKUzoS12irnqKEnAE0z79oSbXuBddn0y8BZsyvRzMqR0pmwVls+s9hskUjpTFirLQeB2SKR0pmwVlu+DLXZIpHSmbBWWw4Cs0UklTNhrba8acjMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEzXn1U0jLgbyjedjKATRHxFUmfB64HRrKuN0XE1hLLrwW+AjQAd0bEbTWq3cxsTt3cM8jmHa8yHkGDxPpzl3Frx4q8y6q5ci5DfRD4VEQ8k92Ivl/StmzelyPiL6ZbUFID8DXgA8Ae4GlJWyLihdkWbmY2l27uGeRbT/700OPxiEOPF1sYzLhpKCL2RcQz2fSbwG6g3AuerwZeioiXI+Jt4D7g8mqLNTObL5t3vFpR+0JW0T4CScuBVcCOrOkTkp6TdLekE0os0gpMHrU9TBMikjZI6pPUNzIyUqqLmdm8GY+oqH0hKzsIJB0HPAjcGBFvAF8HTgdWAvuAL82mkIjYFBGFiCi0tLTM5qnMzGatQaqofSErKwgkNVIMgXsjohsgIl6LiPGI+BVwB8XNQFMNA8smPV6atZmZ1bX15y6rqH0hmzEIJAm4C9gdEbdPaj9lUrcPAbtKLP40cIak0yS9E7gS2DK7ks3M5t6tHSu4as2ph9YAGiSuWnPqottRDKCYYXuXpAuAfwYGgV9lzTcB6yluFgrgFeCPI2KfpCUUDxNdly2/DvhLioeP3h0R/3umogqFQvT19VX1gszMUiSpPyIK1Sw74+GjEfEEUGqj2K+dM5D13wusm/R463R9zcwsfz6z2MwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS1w59yw2swUilZutW205CMwWiZRutm615U1DZotESjdbt9pyEJgtEindbN1qy0FgtkikdLN1q61y7lm8TNLjkl6Q9LykT2btXZJelPScpIckNU+z/CuSBiXtlOT7T5rNkZRutm61Vc4awUHgUxFxJrAGuEHSmcA24D0R8V7gB8DGozzH+yNiZbX30zSzmaV0s3WrrXLuWbwP2JdNvylpN9AaEY9N6vYk8OG5KdHMynVrxwp/8VvFKtpHIGk5sArYMWXWx4FHplksgMck9UvacJTn3iCpT1LfyMhIJWWZmdkslB0Eko4DHgRujIg3JrV/luLmo3unWfSCiDgbuJTiZqULS3WKiE0RUYiIQktLS9kvwMzMZqesE8okNVIMgXsjontS+7XAB4HfjSh9jFpEDGe/90t6CFgNbJ9l3bZI9AwM09U7xN7RMZY0N9HZ3kbHqta8yzJLSjlHDQm4C9gdEbdPal8LfBq4LCJ+Oc2yx0o6fmIauATYVYvCbeHrGRhmY/cgw6NjBDA8OsbG7kF6BobzLs0sKeVsGjofuBq4ODsEdKekdcBXgeOBbVnbNwAkLZG0NVv2ZOAJSc8CTwEPR8SjtX8ZthB19Q4xdmD8iLaxA+N09Q7lVJFZmso5augJoNQZKVtLtBERe4F12fTLwFmzKdAWr72jYxW1m9nc8JnFlpslzU0VtZvZ3HAQWG4629toamw4oq2psYHO9racKjJLky9DbbmZODrIRw2Z5ctBYLnqWNXqL36znHnTkJlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4sq5Z/EySY9LekHS85I+mbWfKGmbpB9mv0+YZvlrsj4/lHRNrV+AmR3WMzDM+bd9l9M+8zDn3/Zd3//ZylLOGsFB4FMRcSawBrhB0pnAZ4B/iogzgH/KHh9B0onALcC5wGrglukCw8xmp2dgmI3dgwyPjhHA8OgYG7sHHQY2oxmDICL2RcQz2fSbwG6gFbgcuCfrdg/QUWLxdmBbRLweET8HtgFra1G4mR2pq3eIsQPjR7SNHRinq3cop4psoahoH4Gk5cAqYAdwckTsy2b9C3ByiUVagVcnPd6TtZV67g2S+iT1jYyMVFKWmQF7R8cqajebUHYQSDoOeBC4MSLemDwvIgKI2RQSEZsiohARhZaWltk8lVmSljQ3VdRuNqGsIJDUSDEE7o2I7qz5NUmnZPNPAfaXWHQYWDbp8dKszcxqrLO9jabGhiPamhob6Gxvy6kiWyjKOWpIwF3A7oi4fdKsLcDEUUDXAP9QYvFe4BJJJ2Q7iS/J2sysxjpWtfLFK1bQ2tyEgNbmJr54xQrfE9pmVM7N688HrgYGJe3M2m4CbgMekHQd8BPgowCSCsCfRMQfRcTrkv4X8HS23Bci4vWavgIzO6RjVau/+K1iKm7ery+FQiH6+vryLsPMbMGQ1B8RhWqW9ZnFZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4sq5+qhN8rE7vs/3fnT4Aqrnn34i915/Xo4VmZnNjtcIKjA1BAC+96PX+dgd38+pIjOz2XMQVGBqCMzUbma2EDgIzMwS5yAwM0tcOfcsvlvSfkm7JrXdL2ln9vPKpFtYTl32FUmDWb8Ff8ux808/saJ2M7OFoJw1gm8Cayc3RMQfRMTKiFgJPAh0H2X592d9q7qFWj259/rzfu1L30cNmdlCN+PhoxGxXdLyUvMkieJN6y+ubVn1y1/6ZrbYzHYfwfuA1yLih9PMD+AxSf2SNhztiSRtkNQnqW9kZGSWZZmZWblmGwTrgc1HmX9BRJwNXArcIOnC6TpGxKaIKEREoaWlZZZlmZlZuao+s1jSO4ArgHOm6xMRw9nv/ZIeAlYD26v9m/WgZ2CYrt4h9o6OsaS5ic72NjpWteZd1oLl8TTL32zWCH4PeDEi9pSaKelYScdPTAOXALtK9V0oegaG2dg9yPDoGAEMj46xsXuQnoHhvEtbkDyeZvWhnMNHNwPfB9ok7ZF0XTbrSqZsFpK0RNLW7OHJwBOSngWeAh6OiEdrV/r86+odYuzA+BFtYwfG6eodyqmihc3jaVYfyjlqaP007deWaNsLrMumXwbOmmV9dWXv6FhF7XZ0Hk+z+uAziyuwpLmponY7Oo+nWX1wEFSgs72NpsaGI9qaGhvobG/LqaKFzeNpVh98P4IKTBzN4qNcasPjaVYfFBF51/BrCoVC9PUt+EsTmZnNG0n91V7Kx5uGzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwSN+NlqCXdDXwQ2B8R78naPg9cD4xk3W6KiK0lll0LfAVoAO6MiNtqVLctEjf3DLJ5x6uMR9Agsf7cZdzasSLvssySUs4awTeBtSXavxwRK7OfUiHQAHwNuBQ4E1gv6czZFGuLy809g3zryZ8ynl0KfTyCbz35U27uGcy5MrO0zBgEEbEdeL2K514NvBQRL0fE28B9wOVVPI8tUpt3vFpRu5nNjdnsI/iEpOck3S3phBLzW4HJn+g9WVtJkjZI6pPUNzIyMl03W0TGp7kp0nTtZjY3qg2CrwOnAyuBfcCXZltIRGyKiEJEFFpaWmb7dLYANEgVtZvZ3KgqCCLitYgYj4hfAXdQ3Aw01TCwbNLjpVmbGQDrz11WUbuZzY2qgkDSKZMefgjYVaLb08AZkk6T9E7gSmBLNX/PFqdbO1Zw1ZpTD60BNEhcteZUHzVkNs/KOXx0M3ARcJKkPcAtwEWSVgIBvAL8cdZ3CcXDRNdFxEFJnwB6KR4+endEPD8nr8IWrFs7VviL3yxnijrcMVcoFKKvry/vMszMFgxJ/RFRqGZZn1lsZpY4B4GZWeJm3EdgZpaqnoFhunqH2Ds6xpLmJjrb2+hYNe3pUAuWg8DMrISegWE2dg8ydmAcgOHRMTZ2Fy9/stjCwJuGzMxK6OodOhQCE8YOjNPVO5RTRXPHQWBmVsLe0bGK2hcyB4GZWQlLmpsqal/IHARmZiV0trfR1NhwRFtTYwOd7W05VTR3vLPYzKyEiR3CPmrIzCxhHataF+UX/1TeNGRmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJmzEIJN0tab+kXZPauiS9KOk5SQ9Jap5m2VckDUraKcm3HDMzq0PlrBF8E1g7pW0b8J6IeC/wA2DjUZZ/f0SsrPYWamZmNrdmDIKI2A68PqXtsYg4mD18Elg6B7WZmdk8qMU+go8Dj0wzL4DHJPVL2nC0J5G0QVKfpL6RkZEalGVmZuWYVRBI+ixwELh3mi4XRMTZwKXADZIunO65ImJTRBQiotDS0jKbsszMrAJVB4Gka4EPAh+LiCjVJyKGs9/7gYeA1dX+PTMzmxtVBYGktcCngcsi4pfT9DlW0vET08AlwK5Sfc3MLD/lHD66Gfg+0CZpj6TrgK8CxwPbskNDv5H1XSJpa7boycATkp4FngIejohH5+RVmJlZ1Wa8H0FErC/RfNc0ffcC67Lpl4GzZlWdmZnNOZ9ZbGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZomb8TwCs7nUMzBMV+8Qe0fHWNLcRGd7Gx2rWvMuywxI5/3pILDc9AwMs7F7kLED4wAMj46xsXsQYFF+2GxhSen96U1Dlpuu3qFDH7IJYwfG6eodyqkis8NSen86CCw3e0fHKmo3m08pvT8dBJabJc1NFbWbzaeU3p8OAstNZ3sbTY0NR7Q1NTbQ2d6WU0Vmh6X0/vTOYsvNxA63FI7KsIUnpfenprm5WK4KhUL09fXlXYaZ2YIhqT8iCtUs601DZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJq8ujhiS9CdT7edwnAT/Lu4gyuM7acp215Tprpy0ijq9mwXo9j2Co2sOg5oukvnqvEVxnrbnO2nKdtSOp6mPuvWnIzCxxDgIzs8TVaxBsyruAMiyEGsF11prrrC3XWTtV11iXO4vNzGz+1OsagZmZzRMHgZlZ4nILAklrJQ1JeknSZ0rMv1bSiKSd2c8f5VTn3ZL2S9o1zXxJ+qvsdTwn6ew6rPEiSb+YNJafm+8aszqWSXpc0guSnpf0yRJ96mE8y6kz9zGV9C5JT0l6Nqvzz0v0OUbS/dl47pC0vA5rrIvPelZLg6QBSd8pMS/XsZxSy9HqrHw8I2Lef4AG4EfAbwPvBJ4FzpzS51rgq3nUN6WOC4GzgV3TzF8HPAIIWAPsqMMaLwK+UwdjeQpwdjZ9PPCDEv/u9TCe5dSZ+5hmY3RcNt0I7ADWTOnz34FvZNNXAvfXYY118VnPavmfwN+V+rfNeywrqLPi8cxrjWA18FJEvBwRbwP3AZfnVMtRRcR24PWjdLkc+JsoehJolnTK/FRXVEaNdSEi9kXEM9n0m8BuYOpdPuphPMupM3fZGP1b9rAx+5l69MflwD3Z9LeB35WkeSqx3BrrgqSlwH8G7pymS65jOaGMOiuWVxC0Aq9OeryH0h+03882D3xb0rL5Ka1i5b6WvJ2XrZ4/IundeReTrVavovg/xMnqajyPUifUwZhmmwh2AvuBbREx7XhGxEHgF8Bv1lmNUB+f9b8EPg38apr5uY9lZqY6ocLxrOedxf8ILI+I9wLbOJzEVrlngH8fEWcB/xfoybMYSccBDwI3RsQbedZyNDPUWRdjGhHjEbESWAqslvSePOo4mjJqzP2zLumDwP6I6J/vv12JMuuseDzzCoJhYHJKLc3aDomIf42It7KHdwLnzFNtlZrxteQtIt6YWD2PiK1Ao6ST8qhFUiPFL9d7I6K7RJe6GM+Z6qynMc1qGAUeB9ZOmXVoPCW9A/h3wL/Ob3VF09VYJ5/184HLJL1CcVP1xZK+NaVPPYzljHVWM555BcHTwBmSTpP0Too7XrZM7jBlu/BlFLfT1qMtwH/NjnZZA/wiIvblXdRkkn5rYlumpNUU/93n/csgq+EuYHdE3D5Nt9zHs5w662FMJbVIas6mm4APAC9O6bYFuCab/jDw3cj2KNZLjfXwWY+IjRGxNCKWU/w++m5EXDWlW65jCeXVWc145nL10Yg4KOkTQC/FI4jujojnJX0B6IuILcCfSroMOEhxR+i1edQqaTPFI0ROkrQHuIXiDi8i4hvAVopHurwE/BL4wzqs8cPAf5N0EBgDrpzvN3DmfOBqYDDbZgxwE3DqpFpzH88y66yHMT0FuEdSA8UgeiAivjPlc3QX8LeSXqL4ObqyDmusi896KXU2ltOa7Xj6EhNmZomr553FZmY2DxwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEljRJn5f0ZxUuU5D0V3NVk9l8y+U8ArOFLCL6gL686zCrFa8RWHIkfVbSDyQ9AbRlbadLelRSv6R/lvQ7WftHJO3KLi63PWu7aOI68NmZs9tUvNb+nZJ+IukkScsl7ZZ0RzbvsezMWrO64yCwpEg6h+IZoSspnsH8H7NZm4D/ERHnAH8G/HXW/jmgPbu43GUlnvIWiqf5v5vipYlPnTTvDOBr2bxR4Pdr/HLMasKbhiw17wMeiohfAkjaArwL+E/A3+vw5eWPyX5/D/impAeAUhfJuwD4EEBEPCrp55Pm/TgiJi5R0Q8sr+HrMKsZB4FZcc14NLtU8hEi4k8knUvxRiD92RpFud6aND0OeNOQ1SVvGrLUbAc6JDVJOh74LxQvbvdjSR+BQ/dNPiubPj0idkTE54ARjrxENhTXGD6a9b0EOGGeXodZzTgILCnZLSjvp3if7EcoXhId4GPAdZKeBZ7n8K1TuyQNStoF/L9sucn+HLgkm/8R4F+AN+f2VZjVlq8+ajYLko4BxrNLq58HfL3UJiazeuZ9BGazcyrwgKTfAN4Grs+5HrOKeY3AzCxx3kdgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpa4/w9j6DTxpd3zMgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: sales R-squared: 0.036\n",
"Model: OLS Adj. R-squared: -0.017\n",
"Method: Least Squares F-statistic: 0.6790\n",
"Date: Thu, 15 Apr 2021 Prob (F-statistic): 0.421\n",
"Time: 11:33:05 Log-Likelihood: -62.982\n",
"No. Observations: 20 AIC: 130.0\n",
"Df Residuals: 18 BIC: 132.0\n",
"Df Model: 1 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 17.9000 3.257 5.496 0.000 11.057 24.743\n",
"design 0.9800 1.189 0.824 0.421 -1.519 3.479\n",
"==============================================================================\n",
"Omnibus: 0.016 Durbin-Watson: 2.100\n",
"Prob(Omnibus): 0.992 Jarque-Bera (JB): 0.223\n",
"Skew: 0.001 Prob(JB): 0.895\n",
"Kurtosis: 2.483 Cond. No. 7.47\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.formula.api as smf\n",
"\n",
"smf.ols(\"sales ~ design\", data= cereal_df_broken).fit().summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This hallucinates some relation about how sales change linearly as the design number rises by one unit -- which makes no sense at all. \n",
"\n",
"Instead we need to let ```ols()``` know that design is a categorial variable:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
OLS Regression Results
\n",
"
\n",
"
Dep. Variable:
sales
R-squared:
0.281
\n",
"
\n",
"
\n",
"
Model:
OLS
Adj. R-squared:
0.146
\n",
"
\n",
"
\n",
"
Method:
Least Squares
F-statistic:
2.080
\n",
"
\n",
"
\n",
"
Date:
Thu, 15 Apr 2021
Prob (F-statistic):
0.143
\n",
"
\n",
"
\n",
"
Time:
11:33:05
Log-Likelihood:
-60.059
\n",
"
\n",
"
\n",
"
No. Observations:
20
AIC:
128.1
\n",
"
\n",
"
\n",
"
Df Residuals:
16
BIC:
132.1
\n",
"
\n",
"
\n",
"
Df Model:
3
\n",
"
\n",
"
\n",
"
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
t
P>|t|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
16.0000
2.437
6.565
0.000
10.833
21.167
\n",
"
\n",
"
\n",
"
design[T.green]
8.6000
3.447
2.495
0.024
1.293
15.907
\n",
"
\n",
"
\n",
"
design[T.red]
4.6000
3.447
1.335
0.201
-2.707
11.907
\n",
"
\n",
"
\n",
"
design[T.yellow]
4.2000
3.447
1.219
0.241
-3.107
11.507
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
Omnibus:
0.277
Durbin-Watson:
2.588
\n",
"
\n",
"
\n",
"
Prob(Omnibus):
0.871
Jarque-Bera (JB):
0.444
\n",
"
\n",
"
\n",
"
Skew:
0.188
Prob(JB):
0.801
\n",
"
\n",
"
\n",
"
Kurtosis:
2.374
Cond. No.
4.79
\n",
"
\n",
"
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: sales R-squared: 0.281\n",
"Model: OLS Adj. R-squared: 0.146\n",
"Method: Least Squares F-statistic: 2.080\n",
"Date: Thu, 15 Apr 2021 Prob (F-statistic): 0.143\n",
"Time: 11:33:05 Log-Likelihood: -60.059\n",
"No. Observations: 20 AIC: 128.1\n",
"Df Residuals: 16 BIC: 132.1\n",
"Df Model: 3 \n",
"Covariance Type: nonrobust \n",
"====================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------------\n",
"Intercept 16.0000 2.437 6.565 0.000 10.833 21.167\n",
"design[T.green] 8.6000 3.447 2.495 0.024 1.293 15.907\n",
"design[T.red] 4.6000 3.447 1.335 0.201 -2.707 11.907\n",
"design[T.yellow] 4.2000 3.447 1.219 0.241 -3.107 11.507\n",
"==============================================================================\n",
"Omnibus: 0.277 Durbin-Watson: 2.588\n",
"Prob(Omnibus): 0.871 Jarque-Bera (JB): 0.444\n",
"Skew: 0.188 Prob(JB): 0.801\n",
"Kurtosis: 2.374 Cond. No. 4.79\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cereal_df = pd.DataFrame( { \"design\" : [\"yellow\",\"yellow\", \"yellow\", \"yellow\", \"yellow\",\n",
" \"blue\", \"blue\", \"blue\", \"blue\", \"blue\",\n",
" \"green\", \"green\", \"green\", \"green\", \"green\", \n",
" \"red\", \"red\",\"red\",\"red\",\"red\"],\n",
" \"sales\":random_sales})\n",
"\n",
"smf.ols(\"sales ~ design\", data= cereal_df).fit().summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is how to read this: One category's mean becomes the intercept. Here it is blue. The \"slope\" on all other categories is the difference from the mean value for blue packages. As can be seen from the probabilities associated with the t-tests for all coefficients, there is no significant difference between categories in this case -- which makes sense, since we randomly drew the sales values for all four categories from a uniform distribution. \n",
"\n",
"# An actual dataset with categorial predictors: lexical decision times, again\n",
"\n",
"\n",
"We again use the file ```lexdec2.csv``` with data on lexical decision times. There are two additional predictors: ```Complex``` says whether the word is morphologically complex. It has two categorial values, \"complex\" and \"simplex\". ```Class``` contains the category that the word came from. This whole dataset only has animals and plants, and ```Class``` encodes whether the word describes an animal or plant.\n",
"\n",
"Choose one of the two categorial variables, and use it as a predictor of reaction time. First use it on its own, then together with Frequency.\n",
"\n",
"* What list of coefficients do you get? what are they saying? Is each coefficient truly different from zero?\n",
"* How much of the variance in reaction time do you explain with this model? (Please make sure to use the value that is adjusted for the number of predictors.) Is this better than the variance explained by the model that used only frequency as a predictor? \n",
"* Does the model as a whole have value? Where do you see this?\n",
"* Are the residuals approximately normally distributed? How do you determine this? \n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"