Riemannian geometry-based detection of slow cortical potentials during
movement preparation

Frigyes Samuel Racz'?, Rawan Fakhreddine?, Satyam Kumar? and José del R. Millan'»?

Abstract—Slow cortical potentials - such as the readiness
potential (RP) and the contingent negative variation (CNV)
- provide means for controlling a brain-machine interface
(BMI). RP and CNYV precede self-paced and cued movements,
respectively, and thus can be exploited for a variety of
purposes such as robotic exoskeleton control or motor
rehabilitation via BMI training. Single-trial detection of these
patterns, however, is a challenging and therefore not yet
fully resolved task, especially for online applications. Here
we propose and evaluate a novel decoding algorithm for this
cause, utilizing Riemannian geometry, template matching and
adaptive re-centering for robust performance. We recruited
12 young, healthy volunteers who performed a center-out
reaching task designed to evoke both RP and CNV in a
sequential manner, while their neural activity was recorded
using electroencephalography. Separate decoders of the same
basic architecture were trained to detect RP and CNV on a
single-trial basis, and data was evaluated offline on the subject
level. RPs could be identified with a group average accuracy
of 62.64+4.75% (ranging from 51.12% to 68.31%) with all
but one subject surpassing chance levels, while CNVs were
detected with an average accuracy of 74.01+7.49% (ranging
from 62.24% to 85.00%) with all participants surpassing
chance level. Even though evaluation was carried out offline,
the proposed pipeline is readily adaptable to an online setting.
Therefore, our Riemannian geometry-based approach show
potential in single-trial detection of slow cortical potentials.

Clinical relevance— Robust detection of RP and CNV and
longitudinal BMI training could improve robotic control and
neurorehabilitation.

I. INTRODUCTION

Single-trial detection of electroencephalography (EEG)
slow cortical potentials, such as the readiness potential (RP)
or the contingent negative variation (CNV) preceding self-
paced [1] or cued [2] movements, respectively, is still a
challenging task. These neural patterns signal movement
intent and/or preparation for motor execution, and therefore
—if reliably identified— they can be exploited for a variety
of purposes, such as improved robotic exoskeleton con-
trol [3], neurofeedback training [4] or other brain-machine
interface (BMI) applications [5]. Many of the previously
proposed solutions for this task rely on template matching,
where detection of the pattern is confirmed if correlation
of the collected neural data with a pre-defined (obtained
or simulated) template surpasses a certain threshold [6]—
[8]. Other attempts utilized more data-driven approaches,
mostly using EEG signal amplitudes as features in their
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detection pipeline [5], [9]. Furthermore, multiple previous
studies utilized pre-processing steps —such as independent
component analysis (ICA)— that might raise concerns for
online applications. For example, using ICA decomposition
to remove artifactual components from neural signals online
assumes that the obtained mixing matrix is stationary over
time, however this is not necessarily the case. Therefore,
consistent long-term performance of the decoder can only
be expected if the obtained model parameters indeed remain
constant over time, or the system is regularly re-calibrated.

In this work, we propose a novel decoding method that
alleviates some of these shortcomings. Our method utilizes
Riemannian geometry-based classification [10] and combine
it with template matching. Such decoders take covariance
matrices obtained from EEG data as features, and therefore
they not only capture the univariate spectral power of neural
activity from distinct brain regions, but also their multivariate
covariance structure. Furthermore, we incorporate an adap-
tive re-centering step to the detection pipeline [11] to elim-
inate plausible non-stationarities existing between training
and test data sets. We evaluated decoder performance offline
on EEG data collected from young, healthy, naive subjects
while performing a task that was designed to evoke both RP
and CNV in a sequential manner. Our results show that slow
cortical patterns could be detected, verifying the potential of
Riemannian geometry-based classification of slow cortical
potentials in future BMI applications.

II. METHODS
A. Participants and experimental setup

We recruited 12 young, healthy volunteers without pre-
vious experience with BMI systems (mean age: 26.3 + 4.8
years, all right-handed, 4 females) for this study. The study
was approved by the institutional ethics committee (approval
number: 2020-03-0073) and all subjects provided written
informed consent. Participants were seated in a comfortable
armchair in front of a touchscreen computer, where they
were asked to perform a center-out reaching task while their
EEG was recorded. Electromyographic activity (EMG) of
the deltoid and trapezius muscles were also collected by
two pairs of bipolar electrodes for movement onset detection
purposes.

B. Center-out reach task

Participants awaited trial onset with their right arm resting,
approximately 10 centimeters from the touchscreen ("home
position’). A trial started by the appearance of a ’home
button’ at the center of the screen, however subjects were



instructed to wait for 2 seconds before reaching for it,
promoting a self-paced movement (RP trials). After touching
and holding on the home button, the trial continued either as
a 'move’ or a 'rest’ trial. In the former, following 2 seconds
of waiting time —allowing EEG to return to baseline—
, two target indicators and a countdown bar appeared on
the screen (Cprep’ cue). When the countdown of 3 seconds
finished, targets ’activated’ (’go’ cue) and participants were
instructed to reach and touch one of them as fast as possible
(CNV trials). During ’rest’ trials, subjects were presented
with the same visual interface (although in different color)
containing the countdown and targets; however, participants
were instructed not to reach for the targets when they
activated, but instead to hold on to the home button until
the trial was over (no-CNV trials). Finally, subjects also
performed ’relax’ trials to provide a control condition for
RP development, where an inactive home button appeared
at the start of the trial and subjects remained relaxed in the
home position without reaching for it, until it disappeared
after 7 seconds (no-RP trials).

All participants completed 4 runs, each containing 30
relax’ and 30 active trials, with the latter comprised of
15-15 ’rest’ and ’move’ trials. Participants also completed
4 additional runs, each consisting of only 15-15 ’rest’ and
’move’ trials, resulting in a final number of 120 trials for
every condition (no-RP, RP, no-CNV, CNV).

C. Data collection and pre-processing

EEG data was collected from 32 standardized cortical
locations (International 10-10 system) at 512 Hz with an
ANTneuro eego device (ANT Neuro, Netherlands). Raw
EEG was band-pass filtered using a 2"? order, zero-phase
Butterworth filter with cutoff frequencies 0.1 and 2 Hz and
re-referenced to the common average electrode. All following
analyses were then performed using data only from a subset
of 9 channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2).

EMG data was collected at 512 Hz from two pairs of
bipolar electrodes placed over the deltoid and trapezius
muscles. Raw EMG was first high-pass filtered using a 2"¢
order Butterworth filter with a cutoff frequency of 10 Hz and
rectified by taking the absolute value. Then, an additional
low-pass filter with cutoff at 100 Hz and a moving average
filter with a window size of 0.5 sec was applied to obtain
the EMG envelope. Movement onset when reaching for the
home button was identified via linear regression as follows.
A sliding window of 0.25 second was shifted through EMG
data with a one data point step size, and the slope of EMG
envelope from both muscles were obtained via ordinary least
squares regression. If one of the slopes surpassed a pre-
specified threshold in the 1 second preceding pressing of the
home button, movement onset was registered. The threshold
was set empirically to 0.1 after visual inspection of the data
sets.

Pre-processed EEG data was segmented into epochs for all
four conditions. For RP trials, 2 seconds of data were selected
preceding movement onset as detected by EMG, while from
no-RP trials 2 seconds of activity were chosen randomly. For

both CNV and no-CNV trials, the entire 3-seconds of data
between the "prep’ and ’go’ cues were utilized. Finally, trials
were rejected from further analysis when either the absolute
EEG amplitude surpassed =100 'V, or subjects released the
home button before targets activated, or subjects did not
reach for a target in a move’ trial (timeout), or subjects
erroneously reached for a target in a ’rest’ trial.

D. Riemannian geometry-based classification

Riemannian manifolds are smooth manifolds with a finite-
dimensional tangent space defined at every point [10]. Co-
variance matrices obtained from empirical data, being sym-
metric positive definite (SPD) matrices, lie on the Rieman-
nian manifold [10], [12]. More precisely, let X € RN:*Nen
be a band-pass filtered empirical EEG trial data set of NV
data points and N, channels. Then, the trace normalized
sample covariance matrix C' is defined as [13]:

XTX

¢= trace(XTX)’ b

where X7 denotes the transpose of X. On a manifold, the
shortest distance between two points is called a gedoesic. For
our current study, we use the following geodesic embedding
between two covariance matrices C;, C; [14]:

1 1 1 1

Y(Cy,Cj,t) = C2(C; 2C;C; 2 C2 te0,1] (2)

Interestingly, the derived Riemannian distance between
C;,C; using the aforementioned geodesic is invariant to
affine transformation on the Riemannian manifold and is
known as Affine Invariant Riemannian Metric (AIRM).
AIRM allows us to define the Riemannian mean of the set
of covariance matrices on the manifold as the point which
minimizes the Riemannian distance to individual covariance
matrices in the set. Using the AIRM distance and Rieman-
nian mean, a Minimum Distance to Mean (MDM) classifier
can be built onto the manifold. MDM is a simple, robust
classification method that classifies the covariance matrices
directly on the Riemannian manifold based on the AIRM
distance to class-specific Riemannian means (see [11] for
details on the MDM classification pipeline).

E. Classification pipeline

Classification was carried out offline in a leave-one-run-
out cross-validation (CV) scheme, meaning that in every
iteration, each trial from a particular run was assigned either
to the training or validation sets exclusively. That resulted
in a 4-fold CV for RP vs no-RP with a 180/60 train-to-test
ratio, while a 8-fold CV for CNV with a 210/30 ratio, as a
consequence of the experimental design.

Template matching was incorporated in the model as
follows. At each CV iteration, an RP/CNV template was
obtained as the average of the corresponding trials in the
training set. This template was concatenated to each in-
dividual trial in the training set, resulting in epochs of
size N; x 2N.p. Next we estimated the trace normalised
covariance of template extended signal using equation 1.
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Interestingly, the matrices obtained from template-extended
data not only capture the covariance structure of the given
trial, but also how much it resembles the desired template
signal of RP or CNV. Importantly, this ’training’ template
was concatenated to the trials of the testing set too.
Furthermore, in order to align the distributions of the
covariance matrices from training and validation sets, all
matrices were re-centered around the identity matrix [11],
[15]. As a result, a reference matrix R was obtained as the
Riemannian mean of all training trials regardless of class.
Then, R was used to re-center all covariance matrices C; in
the training set as [11]:
R™2CiR™%,
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where C}¢ is the re-centered version of C;. Finally, class
prototypes to build the MDM classifier for the given CV
iteration were obtained as the Riemannian mean of re-
centered covariance matrices of each class.

In order to emulate a real-time online RP/CNV detec-
tion, incremental recentering was performed to match the
distribution of validation trials to the training set before
MDM-based classification. Precisely, we followed the order
of temporal chronology of validation trials to perform the
recentering of the template extended covariance (see [11]
for details). The approach was evaluated at the subject level,
with independent decoders trained for detecting RP and CNV.
Decoder performance was characterized by average accuracy
taken over CV iterations. Chance levels were obtained for
every subject individually (based on the final number of
trials after rejection), assuming a binomial distribution of
classification errors [16].

III. RESULTS AND DISCUSSION

Figures 1 and 2 show grand average signals for RP and
CNYV, respectively. A clear buildup of negative potential is
observable over the fronto-central and frontal regions of
Fig. 1, which is more prominent over regions of the left

Fig. 2.

Grand average Contingent Negative Variation (CNV) at each of
the nine electrodes. Data is shown from ’prep’ cue (¢ = 2) until *go’ cue
(t = 5). Dotted line indicates baseline.

hemisphere (FC1 and C1). This is not surprising, as all
subjects performed the task with their right hand, resulting in
an RP dominant in the contralateral hemisphere. On Fig. 2 a
roughly symmetric buildup of negative potential is apparent,
with highest amplitude over the midline (CZ and FCZ),
indicating a CNV. These observations confirm that the task
elicited the slow cortical potentials as expected.

TABLE I
CLASSIFICATION ACCURACIES

RP CNV
ID train test train test
1 78.11% | 66.49% 80.09% | 76.14%
2 70.88% | 62.88% 88.45% | 84.17%
3 73.84% | 61.60% 83.75% | 74.58%
4 70.31% | 58.43% 71.55% | 65.42%
5 76.59% | 67.58% 86.61% | 76.18%
6 70.30% | 51.12% 79.71% | 62.24%
7 78.75% | 61.25% 81.13% | 69.17%
8 73.70% | 62.76% 68.07% | 65.57%
9 77.95% | 64.45% 92.38% | 85.00%
10 79.04% | 68.31% 84.35% | 79.58%
11 72.57% | 60.32% 80.83% | 70.42%
12 77.02% | 66.48% 86.20% | 79.67%
AVG | 74.92% | 62.64% 81.93% | 74.01%
STD 3.37% 4.75% 6.82% 7.49%
MIN | 70.30% | 51.12% 68.07% | 62.24%
MAX | 79.04% | 68.31% 92.38% | 85.00%

Classification results are presented in Table I. For RP,
average CV test accuracy taken over all subjects was 62.64+
4.75%. Nevertheless, except for Subject 6 (51.12%), all
accuracies were above chance level. On the other hand, CNV
could be detected with an average accuracy of 74.0147.49%,
with all subjects surpassing chance level. Notably, CNV
classification accuracy was found the lowest also for Subject
6, raising the possibility of confounding effects with this par-
ticular recording (e.g., poor signal quality or lack of subject
involvement). With the exclusion of Subject 6, average test
accuracies improve to 63.69 4 3.22% and 75.08 +6.82% for
RP and CNYV, respectively.



Clearly, detection of CNV proved to be a less challenging
task relative to RP, as indicated by not only higher classifi-
cation accuracies, but also less model overfitting. The latter
is indicated by the fact that the average difference between
train and test accuracies was 12.28% for RP while only
7.92% for CNV. This difference in performance might be
explained by multiple factors. First, more EEG data were
used for CNV detection (3 seconds) when compared to RP
(2 seconds). Nevertheless, since development of RP starts
roughly at 1-1.5 seconds before movement onset [1], [17],
this issue could not be remedied by taking longer epochs.
Second, at each iteration the train-to-test ratio for RP was
180/60 compared to that of 210/30 for CNV, resulting in
more training data for the latter. Even though it is not a
huge difference, with such a small sample size even a small
amount of additional training data could substantially affect
model fitting. Also, considering this with the more severe
overfitting of the decoder, RP detection performances are
expected to further improve with more data collection in the
future. Third, epochs selected for CNV were well defined
in all cases, as the start and end points ("prep’ and ’go’
cues) were logged by the visual interface. On the other hand,
for RP movement onset was detected automatically based
on EMG, which itself can introduce errors. Indeed, visual
inspection of the data indicated movement onset detection
roughly 30-40 ms before a steep rise in EMG envelope in
the vast majority of trials. This is hardly surprising as slope
estimation was performed prospectively in order to fit an
online implementation; i.e., at time ¢, slope was estimated
on EMG data from ¢ to ¢ + 0.25s. However, we decided
to go with this more conservative approach rather than with
other techniques that might identify movement onset with
some delay in order for the analyzed epochs containing
only preparation but not execution related neural activity.
Furthermore, RP has been observed to be vary greatly in
morphology depending on a multitude of factors, such as
planned force, movement complexity or subjective difficulty
[17], which might also affect the data sets analyzed in this
study.

Multiple previous studies set out to detect slow corti-
cal potentials on a single-trial basis (e.g., [5], [9], [18],
[19]), with many of them utilizing a template matching
approach [6], [7], [20]. The technique proposed in our
work is not only unique in the sense that no prior efforts
applied Riemannian geometry-based classification to RP or
CNV detection, but it also combines single-trial analysis and
template matching at the same time during the covariance
matrix construction. In fact, previous studies have shown
that a Riemannian approach seems to be robust to jitters
in the latency of EEG potentials [21]. Even though many
of the preceding works reported offline detection accuracies
surpassing those obtained here, data processing pipelines
often included steps that cannot be implemented online,
such as spatial filtering using ICA [22], [23] or second-
order blind identification [7]. Application of these methods
assumes that the identified parameters —such as the ICA
mixing matrix— remain stationary over separate sessions for

a given subject. Nevertheless, EEG data collected on multiple
occasions contain non-stationarities originating from slightly
different electrode positions, impedances or changes in the
participant’s mental states among others [24], therefore the
online performance of such methods are expected to dete-
riorate over time unless tedious regular calibration sessions
are introduced. On the other hand, our proposed approach
not only can be readily adopted to an online setting without
affecting the performance, but the adaptive re-centering step
diminishes the effect of non-stationarities and thus promoting
consistent performance over multiple sessions [11]. Notably,
this re-centering procedure can also be computed online.
Furthermore, it has been demonstrated that operating a BMI
system is indeed a skill to be learned that requires effort
and involvement from the subject side, too [25]-[27], thus a
stable decoder performance over sessions of a longitudinal
training program is essential for a reliable and robust BMI
system. Our method was designed with such considerations
in mind, and thus the reported performance measures are
expected to further improve when users get to learn to use
the application in a series of online sessions.

An obvious limitation of our work is that performance was
only evaluated in an offline setting. Therefore, our next goals
include testing the Riemannian geometry-based decoder in
an online setting, then in a multi-session training program
to assess whether users are able to improve their skills
in operating the BMI detecting both RP and CNV. Such
analyses would pave the way for future online applications
of the approach, such as robotic exoskeleton control or motor
rehabilitation training programs based on BMI feedback.

IV. CONCLUSIONS

Here we propose a novel, Riemannian geometry-based
decoding method for detecting slow cortical potentials pre-
ceding self-paced and cued movements. Our results show that
these neural patterns could be captured with a confidence
over chance level, implying potential of the approach for
various online BMI applications in the future.
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