Computational Semantics: an Introduction

Katrin Erk

Computational linguistics is about...

• Automatically processing human language

- Linguistics:

Using computational models to gain a better understanding of how language works

- Engineering:

Building language technology

We look at natural language meaning from both perspectives.

Computational semantics

- Automatically analyzing the meaning of natural language
- How can you describe the meaning of a word?
- How can you tell if someone has understood the meaning of a sentence?

Computational semantics

• Where can we use a system for automatic meaning analysis?

Automatically building a thesaurus

- Merriam-Webster:
 - Synonyms <u>adversary</u>, <u>antagonist</u>, <u>foe</u>, <u>hostile</u>, <u>opponent</u>
 - Related Words archenemy, archfoe, nemesis; illwisher; bane, bête noire; assailant, attacker, combatant, invader; competitor, emulator, rival
 - Near Antonyms buddy, chum, compadre, crony...
- Automatically generated thesaurus:
 - *adversary*: enemy, foe, ally, antagonist, opponent, rival, detractor, neighbor, supporter, competitor, partner, trading partner, accuser, terrorist, critic, Republican, advocate, skeptic, challenger

Lin et al 2003: Identifying synonyms among distributionally similar words

Figuring out how word meanings changed over time

Hamilton, Leskovec, Jurafsky: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change ACL 2016

How many senses does this word have, and which are they?

How many senses does this word have, and which are they?

.02715

Information Extraction

- Automatically extracting "structured data" from "unstructured text"*
 - "<u>Citrix</u> announced <u>today</u> that it has completed its <u>acquisition</u> of <u>Sanbolic</u>, an innovator and leader in workload-oriented storage virtualization technologies.[...] <u>Published Monday</u>, <u>January 12</u>, 2015 <u>9:54 AM</u> by David Marshall.
 - Merger(Citrix, Sanbolic, 2015-01-12)
- Need to figure out:
 - "acquisition" can mean merger, if it's between companies
 - Citrix, Sanbolic are companies
 - link "today" to last line of text
 - that "Citrix", "Sanbolic" are the two participants in the "acquisition"
- *: What counts as "structured" depends on one's perspective. Linguists usually laugh heartily at the idea that ordinary text is unstructured.

Natural Language Generation

GIVE challenge, image from http://www.give-challenge.org/research/

Natural language generation

- press buttons b8, b6, b13, b13, b10 (in this order) to open the safe;

if a button is pressed in the wrong order, the whole sequence is reset

- if the alarm sounds, the game is over and you have lost

Natural language generation

badPass (PurplePlayer1 , PinkPlayer8)
turnover (PurplePlayer1 , PinkPlayer8)
kick (PinkPlayer8)
pass (PinkPlayer8 , PinkPlayer11)
kick (PinkPlayer11)

Chen, Kim, and Mooney: Training a Multilingual Sportscaster: Using Perceptual Context to Learn Language, Journal of Al Research 2010

Natural language generation

• We can define translations for pieces of the formal representation:

- badPass(P1, P2) =>

[translation(P1) makes a bad pass that was intercepted by [translation(P2)]

Another task: database queries

- "Which country is Athens in?"
- SQL query: SELECT country FROM city_table WHERE city="athens"
- Here is the database city_table:

City	Country	Population
athens	greece	1368
bangkok	thailand	1178
barcelona	spain	1280
berlin	east_germany	3481
birmingham	united_kingdom	1112

More practically: dialog agents for flight planning/ train schedules

Another task: database queries

- "Which country is Athens in?"
- SQL query: SELECT country FROM city_table WHERE city="athens"
- We can define translations for pieces of the sentence, and put them together:
 - "Which country is ... in" => SELECT country FROM city_table WHERE city="..."
 - "Where is ... located" => SELECT country FROM city_table WHERE city="..."

Another task: Natural language inference

- After reading sentence T, would a person conclude that sentence H is most likely also true?
 - T: Phish disbands after a final concert in Vermont on Aug. 15
 - H: Rock band Phish holds final concert in Vermont.

T: Crude oil for April delivery traded at \$37.80 a barrel, down 28 cents H: Crude oil prices rose to \$37.80 per barrel

Natural language inference

- One way of doing this: with inference rules at the level of words and phrases
 - T: Phish disbands after a final concert in Vermont on Aug. 15
 - H: Rock band Phish holds final concert in Vermont.
 - X disbands after [concert] => X holds [concert]
 - Phish = Rock band Phish (in the context of "hold concert")

Natural language inference

• Approximate matching:

T: Crude oil for April delivery traded at \$37.80 a barrel, down 28 cents

- H: Crude oil prices rose to \$37.80 per barrel
- X trades at..., down = X prices fell
- Rise ⇔ fall
- A barrel = per barrel (in the context of \$XX)

Natural language inference

T: Crude oil for April delivery traded at \$37.80 a barrel, down 28 cents

H: Crude oil prices rose to \$37.80 per barrel

- A more recent way of doing this:
- The computational representations of the sentences do not have to be readable by us.
- But they need to help the machine solve the problem.
- Iteratively adapt representations of the sentences to best work on the task

Plan for the semester

- Part 1: Learning word meanings automatically from textual context
 - How to find & use pre-computed learned word meanings
 - How to do this yourself
 - Including a very short introduction to neural machine learning methods
 - What do these representations tell us about word contexts? What do they tell us about meaning representations in our heads?

Plan for the semester

- Part 2: Representing sentence meaning using logic
 - Why logic for representing sentence meaning?
 - Short introduction to propositional first-order logic
 - Why can you figure out the meaning of a sentence you have never seen before, like, say, "My iguana is on fire"?
 - Putting together logic-based meaning representations piece by piece

Plan for the semester

- Part 3: Structured meaning representations in applications
 - Logic-based representations have inspired tons of practical applications:
 - The "semantic web"
 - Knowledge graphs
 - Information extraction
 - We look at mechanisms and applications