
Neural approaches to distributional modeling:
word embeddings and word token embeddings

Neural networks for computing distributional vectors

Why use neural networks?

• Increased speed and ease of computing word vectors / word embeddings

• Are they also better at approximating word meaning and concepts?

Not so clear, see Lenci et al, A comparative evaluation and analysis of three
generations of Distributional Semantic Models, https://link.springer.com/article/
10.1007/s10579-021-09575-z

• Vector / embedding for a word in a particular sentence context: study word
meaning in context

https://link.springer.com/article/10.1007/s10579-021-09575-z
https://link.springer.com/article/10.1007/s10579-021-09575-z
https://link.springer.com/article/10.1007/s10579-021-09575-z
https://link.springer.com/article/10.1007/s10579-021-09575-z
https://link.springer.com/article/10.1007/s10579-021-09575-z
https://link.springer.com/article/10.1007/s10579-021-09575-z

Getting into the underlying math of the models

This is extremely important! If we want to use neural networks as tools for linguistics,
we need to understand the tools.
We need to understand what they are learning, and by what methods, so we can judge
what these models can tell us about patterns and regularities in word use.

I can only do a quick sketch of neural models here. If you can, learn more.

By the way…

Don’t use ChatGPT for science.

We don’t know what it has been trained on.

It is continuously training, so results are not exactly replicable.

It may train on the test data you give it, so that next time it will be perfect because it
has memorized the data.

It has a mixed form of training that makes it something other than a compressed
record of (regularities in) utterances , so it is harder to draw sound conclusions from
its performance.

Prediction-based
word embeddings

Starting point: Logistic regression

Statistical modeling technique

y ~ x1 + x2 + x3

• y: dependent variable, yes/no question

• x1, x2, x3: independent variables, predictors

Katrin Erk

Starting point: Logistic regression

Example: The dative alternation.

“Mary gave John the book” (Recipient is NP) vs “Mary gave the book to John” (Recipient is PP):
when do people choose NP vs PP realization?

• “Mary sent the book to the office” — “Mary sent the office the book”:
when the Recipient is non-animate, PP seems better

• “Mary gave the book that is about an immortal alchemist and his wife living in San Francisco as booksellers to
John”:
when the Theme is long, NP seems better

• Similarly, length of Recipient: “the book to John, this friend of hers whom she hadn’t seen in a long time”
for long Recipients, PP seems better

RealizationOfRecipient ~ AnimacyOfRecipient + LengthOfTheme + LengthOfRecipient

Katrin Erk

Starting point: Logistic regression

RealizationOfRecipient ~ AnimacyOfRecipient + LengthOfTheme + LengthOfRecipient

What is actually computed is:

P(RealizationOfRecipient = 1) =
sigmoid(w0 + w1 * AnimacyOfRecipient + w2 * LengthOfTheme + w3 * LengthOfRecipient)

• w0, w1, w2, w3: coefficients, weights, fitted to best match data

• whole formula: first linear combination of weighted predictors,
then transform from a line to an s-shape,
to get a number between 0 and 1

Katrin Erk

sigmoid function

This is an artificial neuron!

Generalizing: logistic regression as a neural network

• Using notation of vector w of weights, vector x of
predictors: P(yes) = sigmoid(wx)

• Fitting: For every data point (x, y), tweak
the weights to make the predicted output
a bit more like the true y

Theme
length

Recipient
length

Recipient
animate?

sigmoid
sum

bias

w1
w2

w3
b

Generalizing over logistic regression

• Logistic regression model as a function:
• P(yes) = sigmoid(wx)

• This is:
• function of inputs x
• weighted linear combinations of values: wx. weights are “parameters”
• non-linear transformations: sigmoid

• Learning: adapt parameters to best match the model’s prediction to the true label y

• Loss Function L(, y): How much does prediction diverge from true y? We want to minimize the loss

• Cr0ss-entropy loss: if actual y = 1, maximize , if actual y = 0, maximize ,
or minimize

̂y

̂y ̂y

̂y (1 − ̂y)
<latexit sha1_base64="w3Ar2fsgt6eYsQ6dmbdZFJPMOTA=">AAACP3icbVC7TsMwFHV4lvIqMLJYVEjtQJUgXmMFC2OR6ENq2spx3Naq85B9gxRF4TP4GhYG+Ae+gA0xwobTdqAtR7J07jn36voeJxRcgWm+G0vLK6tr67mN/ObW9s5uYW+/oYJIUlangQhkyyGKCe6zOnAQrBVKRjxHsKYzusn85gOTigf+PcQh63hk4PM+pwS01CuYJ9gWwcB2+KBkDwkkcdqN8WPJwtqY1OVuklVxmjWVe4WiWTHHwIvEmpIimqLWK3zbbkAjj/lABVGqbZkhdBIigVPB0rwdKRYSOiID1tbUJx5TnWR8WYqPteLifiD18wGP1b8TCfGUij1Hd3oEhmrey8T/vHYE/atOwv0wAubTyaJ+JDAEOIsJu1wyCiLWhFDJ9V8xHRJJKOgwZ7Yo8IiMpTtzSeJKleqorPlgFknjtGJdVM7vzorV62loOXSIjlAJWegSVdEtqqE6ougJPaNX9Ga8GB/Gp/E1aV0ypjMHaAbGzy+bRK9Z</latexit>

� log
�
ŷy (1� ŷ)1�y

�

Generalizing over logistic regression

• Loss Function L(, y): How much does prediction diverge from true y? We want to
minimize the loss

• Cr0ss-entropy loss: if actual y = 1, maximize , if actual y = 0, maximize ,
or minimize

• Visualize the loss function: in some places it’s high, in some places it’s low,
like a mountain range

• I’m here, what is the quickest way down? Derivative

̂y ̂y

̂y (1 − ̂y)
−log(̂yy (1 − ̂y)1−y))

Building up larger networks from smaller ones

• Green: a logistic regression model

• Red: another logistic regression model

• Larger model learns to combine predictors
into internal features

• New hidden layer

• Network learns combinations of
inputs to match the task:
It can learn its own features!

Theme
length

Recipient
length

Recipient
animate?

Node1

bias

Node2

Theme
length

Recipient
length

Recipient
animate?

sigmoid
sum

bias

w1
w2

w3
b

Generalizing: logistic regression as a neural network

• Using notation of vector w of weights, vector x of
predictors: P(yes) = sigmoid(wx)

• Fitting: For every data point (x, y), tweak
the weights to make the predicted output
a bit more like the true y

• We can use a similar approach to compute word vectors:

• Say t is a target word, and w is a potential context word

• Yes/no question: Does w appear in the corpus as an actual context word of t?

Theme
length

Recipient
length

Recipient
animate?

sigmoid
sum

bias

w1
w2

w3
b

<latexit sha1_base64="F2D4llXADKb7FHW1CZckBZWkOSY=">AAACV3icbVBNT9tAFNyYFlK+GuDYy6oRUiJVkY3a0kslBBeOQSKAFEfRev0SVuyHtfsMtVz/pf6aXjjA7+AGm+ADAUZaaTQzT2/fJJkUDsPwthEsffi4vNL8tLq2vrH5ubW1feZMbjkMuJHGXiTMgRQaBihQwkVmgalEwnlydTTzz6/BOmH0KRYZjBSbajERnKGXxq3jfidG+INlAY5yo2e8on8pfqM3Xfqbxk5MFasz18CrDnZpzFOD9IV20+2OW+2wF85B35KoJm1Soz9uPcSp4bkCjVwy54ZRmOGoZBYFl1CtxrmDjPErNoWhp5opcKNyfnFFd72S0omx/mmkc/XlRMmUc4VKfFIxvHSvvZn4njfMcfJrVAqd5QiaPy+a5JKiobP6aCoscJSFJ4xb4f9K+SWzjKMveWGLQ8VsYdOFS8rUuspXFb0u5i052+tFP3s/Tr63Dw7r0prkC/lKOiQi++SAHJM+GRBO/pH/5I7cN24bj8Fy0HyOBo16ZocsINh6Av93tu4=</latexit>

P (yes context|t, w) = �(vec(t) · vec(w))

Generalizing: logistic regression as a neural network

• Using notation of vector w of weights, vector x of
predictors: P(yes) = sigmoid(wx)

• Fitting: For every data point (x, y), tweak
the weights to make the predicted output
a bit more like the true y

• We can use a similar approach to compute word vectors:

• Say t is a target word, and w is a potential context word

• Yes/no question: Does w appear in the corpus as an actual context word of t?

Theme
length

Recipient
length

Recipient
animate?

sigmoid
sum

bias

w1
w2

w3
b

<latexit sha1_base64="F2D4llXADKb7FHW1CZckBZWkOSY=">AAACV3icbVBNT9tAFNyYFlK+GuDYy6oRUiJVkY3a0kslBBeOQSKAFEfRev0SVuyHtfsMtVz/pf6aXjjA7+AGm+ADAUZaaTQzT2/fJJkUDsPwthEsffi4vNL8tLq2vrH5ubW1feZMbjkMuJHGXiTMgRQaBihQwkVmgalEwnlydTTzz6/BOmH0KRYZjBSbajERnKGXxq3jfidG+INlAY5yo2e8on8pfqM3Xfqbxk5MFasz18CrDnZpzFOD9IV20+2OW+2wF85B35KoJm1Soz9uPcSp4bkCjVwy54ZRmOGoZBYFl1CtxrmDjPErNoWhp5opcKNyfnFFd72S0omx/mmkc/XlRMmUc4VKfFIxvHSvvZn4njfMcfJrVAqd5QiaPy+a5JKiobP6aCoscJSFJ4xb4f9K+SWzjKMveWGLQ8VsYdOFS8rUuspXFb0u5i052+tFP3s/Tr63Dw7r0prkC/lKOiQi++SAHJM+GRBO/pH/5I7cN24bj8Fy0HyOBo16ZocsINh6Av93tu4=</latexit>

P (yes context|t, w) = �(vec(t) · vec(w))

vec(t), vec(w) are vectors of weights,
just like the w for log. regression.

We want to learn vec(t), vec(w) from data
in the same way

Word2Vec SkipGram: Using a neural model to compute word vectors
that behave just like count-based vectors

• Every target word t should have a vector vec(t)

• Every context word w should have a vector vec(w)

• (Let’s say that target vectors and context vectors don’t have to be the same)

• For w’s that are actual context words of t, we want the dot product
vec(t) * vec(w) to be high

• Dot product: the numerator of cosine similarity,

• For w’s that we’ve never seen as contexts of t, we want the dot product
vec(t) * vec(w) to be low

<latexit sha1_base64="sgj0bRmMXwBgcDcjALhPHprw0ak=">AAACR3icbVDJSgNBEO2Je9yiHr00BsFcwoy4XQTRi0cFs0AmDD09FW3snhm6a6JhyK/4NV486N2v8CYe7SyHxPig4PFeFVX1wlQKg6776RTm5hcWl5ZXiqtr6xubpa3tukkyzaHGE5noZsgMSBFDDQVKaKYamAolNMLHq4Hf6II2IonvsJdCW7H7WHQEZ2iloHTmIzxj3gXeP8AK9XmUIJ3Qnir0nPomU4GgaGvU8BSIoFR2q+4QdJZ4Y1ImY9wEpR8/SnimIEYumTEtz02xnTONgkvoF/3MQMr4I7uHlqUxU2Da+fDDPt23SkQ7ibYVIx2qkxM5U8b0VGg7FcMH89cbiP95rQw7Z+1cxGmGEPPRok4mKSZ0EBeNhAaOsmcJ41rYWyl/YJpxtKFObTGomO7paOqTPNKmb6Py/gYzS+qHVe+kenx7VL64HIe2THbJHjkgHjklF+Sa3JAa4eSFvJJ38uG8OV/Ot/Mzai0445kdMoWC8wtW07LF</latexit>

vec(t) · vec(w) =
X

i

ti · wi

Word2vec SkipGram: Learning word vectors

• Learning from data:
• Positive data: our corpus.

• Target word = apricot
• corpus contains “put some apricot jam on top”
• “jam” is observed context word for “apricot”

• Negative data: random target/context pairs, like “apricot/consideration”

• Start with random target word embeddings vec(t), and random context word embeddings vec(w)
• For every datapoint (t, w):

• Predict probability that w is a real context word of t
• Use loss function to determine how far off we are
• Adjust all weights a little

• Repeat

<latexit sha1_base64="F2D4llXADKb7FHW1CZckBZWkOSY=">AAACV3icbVBNT9tAFNyYFlK+GuDYy6oRUiJVkY3a0kslBBeOQSKAFEfRev0SVuyHtfsMtVz/pf6aXjjA7+AGm+ADAUZaaTQzT2/fJJkUDsPwthEsffi4vNL8tLq2vrH5ubW1feZMbjkMuJHGXiTMgRQaBihQwkVmgalEwnlydTTzz6/BOmH0KRYZjBSbajERnKGXxq3jfidG+INlAY5yo2e8on8pfqM3Xfqbxk5MFasz18CrDnZpzFOD9IV20+2OW+2wF85B35KoJm1Soz9uPcSp4bkCjVwy54ZRmOGoZBYFl1CtxrmDjPErNoWhp5opcKNyfnFFd72S0omx/mmkc/XlRMmUc4VKfFIxvHSvvZn4njfMcfJrVAqd5QiaPy+a5JKiobP6aCoscJSFJ4xb4f9K+SWzjKMveWGLQ8VsYdOFS8rUuspXFb0u5i052+tFP3s/Tr63Dw7r0prkC/lKOiQi++SAHJM+GRBO/pH/5I7cN24bj8Fy0HyOBo16ZocsINh6Av93tu4=</latexit>

P (yes context|t, w) = �(vec(t) · vec(w))

first step of the model: mapping “apple” to a whole vector of values

Word2vec SkipGram vectors

• One vector per word

• Very similar to count-based vectors:

• Words that are similar in meaning will have similar target vectors
with high cosine similarity

• We can determine nearest neighbors like for count-based vectors

• We can down-project the space to 2 dimensions and plot the neighborhood, just for count-
based vectors

• What is different?

• Dimensions don’t stand for individual context words, they can’t be interpreted

• But then, dimension labels weren’t super useful for count-based vectors either

Prediction-based word vectors

• Word2vec, in 2 variants, CBOW and SkipGram, which differ in details of the training

• GLoVE

• fasttext

• There doesn’t seem to be a clear advantage, across tasks, for one type of vectors
over another. But the training data, and the dimensionality of the vectors, matters:

• More training data, and larger vectors, generally make better models

• Varied data, as in Wikipedia, seems better than all news articles

Word token embeddings

Vectors / embeddings for words in context

Previously: One vector for the word “bass”, including contexts for all its senses:
the fish, the instrument, the human voice range

Now we can also obtain a vector for each occurrence of the word “bass”, word token embeddings:
(Examples from the British National Corpus)

• Drums and bass were as solid as they come and the keyboards filled in any gaps.

• I do like to be able to pick a fish up by its head,’ William Black said, waving a sea bass in rigor
mortis at me, before going on to inspect its gills.

• As a bass, his appearances in the choir at the Three Choirs Festivals found a singer who ‘could
really get the bottom notes’.

• There is nothing worse than playing a bass guitar — without an amp because you can't afford one
yet — all on your jack up in your bedroom.

Building up larger networks from smaller ones

• Green: a logistic regression model

• Red: another logistic regression model

• Larger model learns to combine predictors
into internal features

• New hidden layer

• Network learns combinations of
inputs to match the task:
It can learn its own features!

Theme
length

Recipient
length

Recipient
animate?

Node1

bias

Node2

Theme
length

Recipient
length

Recipient
animate?

sigmoid
sum

bias

w1
w2

w3
b

We can build a network with more hidden layers

Deep learning is called Deep Learning
because it uses neural networks

with many hidden layers

Output

Input

Hidden3

Hidden2

Hidden1

Transformers

Drums and bass

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

were as

Transformers read several input words at once, and transform each of them through several layers.
Each green box is a separate embedding.

Transformers

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Drums and bass were as

Layer 2 representation for “bass”: based on layer 1 representation for “bass”,
plus weighted sum of layer-1 representations for all other worrds

“Attention weights” are computed based on how relevant each other word is for meaning of “bass”

Attention weights

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

a3

previous decoder
hidden vector

h-the

a0

h1bassh1drums

• Say h1bass is the first-level embedding for “bass”

• h2bass = f(h1bass,
a0 * h1drums + a1 * h1and + a2 * h1were + a3 * h1as + …)

• a0: attention weight, how important is h1drums for determining the next embedding
for “bass”?

• Build a little network to compute this:
This again has weights/parameters.
Train them as part of the overall
training of the whole model.

One large language model: BERT

• Transformer model

• Trained on masked word task: “Drums and bass were as [MASK] as they come”
Guess which word I’m masking.

• “drum” gets many embeddings, one at each layer.
At layer >1, embedding is influenced by this
particular sentence context, both left and right

• Also trained on sentence pair task: given sentences s1, s2,
does s2 come directly after s1 in the corpus?

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Output

Input

Hidden3

Hidden2

Hidden1

Large Language Models (LLMs) in general

• Important difference from count-based models, Word2vec etc: Pre-training

• Pre-trained on masked prediction task on large amount of data

• What you download: weights from pre-training, not pre-computed vectors

• Apply the pre-trained model to your data to obtain embeddings for the word tokens, specific to this context

• Big difference:

• Word type model specific to your data: train a model from scratch on your data.
may not be good if you have little data

• Using a LLM: Pre-train on tons of data, then apply to your data.

• Do you get good performance even when you have little data?
Possibly, if the phenomena in your data are also reasonably frequent in the pre-training,
so that the model is sensitive to them

Large Language Models (LLMs) in general

• LLMs with bidirectional input, focus on producing embeddings, e.g.:

• BERT-base: 11 layers. BERT-large: 23 layers

• RoBERTa

• …

• LLMs with left context only, focus on producing text output, e.g.

• GPT-2, 3,4

• …

• Which is best? unclear. I’ve seen better performance on lexical semantics tasks with BERT than RoBERTa,
but there is no clear

• HuggingFace library: Very easy to switch between different LLMs in your code, best try different
ones

