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Abstract— Motor Imagery (MI) based Brain-Computer Inter-
faces (BCI) typically require the collection of subject-specific
calibration data to build a classifier of motor intent. The BCI
users are then trained over multiple online sessions with real-
time feedback using the calibrated decoder to acquire MI
skills. The subject-specific calibration session is thought to be
necessary for accurate MI decoding due to the wide variability
in electroencephalogram (EEG) signals across the population.
The process of acquiring calibration data is long and tedious
and includes training individualized decoding models for each
subject. Transfer Learning setups can help circumvent this
individualized calibration and decoder training phase by using
data acquired from previous subjects. This paper first proposes
a geometry-aware deep learning architecture that exploits the
spatial similarity of MI neural activity between BCI users. We
show the efficacy of the proposed approach by classifying the
motor intentions of 18 naı̈ve BCI subjects. In a subject-specific
setting, our proposed method significantly outperforms classical
decoding algorithms. Next, we train the proposed network and
skip the subject-specific calibration data to mimic a transfer
learning setting. We show that our model architecture achieves
similar performance to subject-specific decoders in the transfer
learning setting. This finding opens the door to robust BCIs that
are readily transferable across subjects without the need for
subject-specific calibration and individualized decoding models.

Clinical relevance— Efficacious Brain-computer Interfaces
may help stroke and spinal cord injury patients in rehabilitation
and to control assistive devices.

I. INTRODUCTION

Brain-computer interfaces (BCIs) enable communication
between the brain and an external device without any in-
volvement from the peripheral nervous system. BCIs have a
range of applications from neurorehabilitation [1] to robotics
[2] to interactive and assistive devices [3]. They offer a gate-
way to users’ intentions by decoding their brainwaves from
electroencephalography (EEG). Such non-invasive EEG-
based BCIs are commonly controlled using Motor Imagery
(MI) —the act of imagining the movement of a limb without
actually executing the movement [4]. In a typical MI-BCI
setup, subjects first perform a calibration session in which
their EEG is collected while they perform different MI tasks
in an open-loop setting; i.e., without receiving feedback on
their brain activity. The calibration data is used to build a
decoder that predicts the subject’s motor intent in real-time.
The decoder is used to provide feedback to subjects in online
closed-loop BCI training sessions to help them learn proper
control of the BCI [3].
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The ability of the subjects to learn to control the BCI is
dependent on the consistency of the feedback they receive,
and thus on the classification accuracy of the BCI decoder.
The latter is affected by the quality of the data collected
during the offline calibration period. However, the lack
of feedback during calibration presents a challenge since
naı̈ve subjects may fail to generate distinctive neural signals
for accurate distinction between MI classes in real time.
Furthermore, collecting calibration data and training a model
for each subject is time-consuming. A potential alternative
to subject-specific data collection is to exploit existing data
from other subjects to train a generalised decoding model.
This technique, called transfer learning, has been successful
in machine learning applications in which data from apriori
known domains is used to build a generalised model for
unseen domains [5]. Transfer learning could play a pivotal
role in MI-BCIs, as it would allow subjects to immediately
use decoders built on previously recorded data This can also
eliminate the risk of having a biased subject-specific decoder
for naı̈ve BCI users who generate confusing neural patterns
during open-loop calibration.

A major challenge in building accurate BCI decoders is the
low signal to noise ratio (SNR) of EEG signals. Typically
temporal and spatial filtering is performed to increase the
SNR. Among many spatial filtering techniques, Common
Spatial Patterns (CSP) has emerged as a highly effective
method that learns a set of optimal spatial filters [6] over
a wide-band. It has also been modified to capture narrow-
band frequencies that might correspond to subject-specific
modulations: the so-called Filter Bank Common Spatial
Pattern (FBCSP) [7]. However, one of the major limitations
of this approach is the prior specification of the narrow
bands to use. In subsequent efforts, Lawhern et al. [8]
proposed EEGNet, a data-driven deep learning method that
learns temporal and spatial filters and showed improved
classification performances over prior methods.

Other emerging decoding techniques are based on Rieman-
nian geometry, which have shown superior results in several
online BCI classification competitions [9]. These methods
have been shown to only require small amounts of data, avoid
spatial filtering, and be robust against non-stationarities.
Barachant et al. [10] proposed the Minimum Distance to
Riemannian Mean (MDM) classifier, a simple distance-
based classifier that exploits the spatial covariance matrix of
EEG signals. MDM-based techniques are shallow learning
approaches, while there are deep learning approaches that
respect the structure of the Riemannian manifold [11], [12].

In this paper, we first propose a deep network on the
Riemannian manifold for MI classification and show its



efficacy as compared to the previously proposed state-of-the-
art deep network EEGNet and classical MI decoding algo-
rithms. Next, we experiment with multiple transfer learning
schemes and show that transfer learning frameworks have
similar performance to that of subject-specific decoding for
different models. Thus, we recommend to skip the ubiquitous
subject-specific calibration phase in favor of a generic MI
classifier.Lastly, we discuss the future of transfer learning in
BCIs, and how it may be able to be improved through the
use of domain adaptation.

II. METHODS

1) Common Spatial Pattern: CSP is one of the most
popular algorithms used for spatial filtering in the MI clas-
sification pipeline. In a binary classification setting, CSP
estimates spatial filters that maximize the ratio of across-class
variances for the transformed signals [6]. Let X ∈ RNt×Nc

be a band passed filtered trial of EEG, where Nt is the
number of temporal samples in the trial and Nc is the
number of EEG channels. The sample wise covariance can
be estimated by

C =
XXT

Nt
(1)

Customarily, CSP uses the Euclidean mean of the covari-
ances across trials of the two classes [6].

Let WCSP ∈ Rm×Nc (m: number of spatial filters) be
the subset of spatial filters, then the transformed signal after
CSP filtering is

XCSP
i (t) = WTXi(t) (2)

Next, the features for each trial i can be extracted as
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)
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where XCSP
i

n is the nth spatially filtered channel and
n ∈ 1 · · ·m (number of selected spatial filters). Once the
feature vectors for all samples are estimated, they are used
to train a Linear Discriminant Analysis (LDA) classifier.
In the evaluation phase, an incoming EEG sample is first
transformed to the surrogate space using the selected m
spatial filters. Then, its features are extracted using (3) and
classified by LDA.

2) EEGNet: EEGNet is a convolutional neural network
designed for the classification of EEG signals. It consists of
two main blocks:

• Block 1: The first layer includes F1 2D convolutions
with length Ke. Afterwards, D depthwise 2D convo-
lutions are applied to each feature. This structure is
reminiscent of that of FBCSP [7], where spatial filters
are learned for each filter-band.

• Block 2: The second block features a separable con-
volution which creates compressed feature maps and
combines them optimally for classification.

3) Riemannian MDM: A Minimum Distance to Rieman-
nian Mean (MDM) classifier is a simple distance-based clas-
sifier on the Riemannian manifold that embeds symmetric
positive definite (SPD) covariance matrices [9]. To build the
MDM classifier, we use sample covariances of each trial
using (1) to estimate the class prototypes C̄k corresponding
to each MI class i. Note that the class prototypes are
estimated using the Riemannian distances, which is defined
using an affine invariant Riemannian metric [10]. In the
testing phase, for an EEG trial i, we first estimate the sample
covariance Ci and then estimate the classification probability
to each of the binary classes

pk =
e−(δr(Ci,C̄k))

2

e−(δr(Ci,C̄1))2 + e−(δr(Ci,C̄2))2
k ∈ [1, 2] (4)

where pk is classification probability and δr(Ci, C̄k) is the
affine invariant Riemannian distance between the ith trial and
the corresponding kth class prototype.

4) RBNNet: RBNNet is a deep neural network architec-
ture that acts upon the SPD manifold by preserving the SPD
structure across the layers. RBNNet is a combination of
SPDNet [11] and Riemannian Batch Normalization [12] and
consists of four main layers :

• Bilinear Mapping (BiMap): The Bilinear Mapping layer
transforms input SPD matrices: Co = WCiWT , where
W is the transformation matrix, Co and Ci are the
output and input of the BiMap layer respectively . W
is a row full-rank matrix to ensure that the output Ci

maintains its SPD structure.
• Eigenvalue Rectification (ReEig): The ReEig layer

seeks to introduce nonlinearity into the Riemannian
Manifold in a fashion similar to ReLu in classical
deep nets. Eigenvalues smaller than the threshold are
rectified: Co = U max (ϵI,Σ)UT , where U and Σ are
the eigenvectors and eigenvalues obtained by eigen-
decomposition of the Ci matrix respectively, I is the
identity matrix and ϵ is the rectification threshold.

• Eigenvalue Logarithm (LogEig): The LogEig layer re-
duces the manifold to its flat tangent space which
allows for the use of Euclidean computations. It does
so by taking the logarithm of input SPD matrices using
eigendecomposition: X = U log (Σ)UT , where U and
Σ are the eigenvectors and eigenvalues respectively of
the input matrix Ci to the LogEig layer. X is then
flattened to perform euclidean manipulations.

• Riemannian Batch Normalization (RBN): The Rieman-
nian Batch Normalization layer replicates the classical
technique of batch normalization on the SPD manifold.
However, RBN only normalizes the mean, as opposed
to both the mean and the variance in classical Batch
Normalization [12].

III. EVALUATION

A. Dataset

The experimental data were collected from 18 naı̈ve sub-
jects who imagined moving either their right hand or their left



Fig. 1. Pictorial summary of the different methods: Common Spatial Patterns (CSP), Minimum Distance to Mean Classifier (MDM), EEGNet, RBNnet
classifiers.

hand. The 22 electroencephalogram (EEG) electrodes used
for data acquisition were: F7, F3, Fz , F4, F8, FC5, FC1,
FC2, FC6, C3, Cz , C4, CP5, CP1, CP2, CP6, P7, P3, Pz ,
P4, P8, POz. All subjects performed an offline calibration
session followed by an online session on a different day. The
sessions consisted of 4 runs. We used a classical bar task
[3] for providing feedback to subjects. Each run consisted
of 20 trials, 10 for each class. Each trial began with a rest
period, followed by a period of fixation on the center of the
screen, and the presentation of a cue that prompted the user
to perform MI for one of the classes.

B. Preprocessing

For each of the above classifiers we bandpassed the EEG
signals to the mu and beta wide band ([8 30] Hz) using a 3rd
order Butterworth filter. To mimic online classification, we
used one-second sliding windows with 62.5 ms of step size
over the MI period. We used shrinkage for estimating the
covariance matrices [13] as it has shown to result in better
classification performances for BCI [14].

C. Network Parameters

1) EEGNet: We set F1 and D as 8 and 2, respectively,
as the original authors show that this configuration performs
well in MI classification. The kernel length Ke is changed
to 256 due to the increased sampling rate of our data. Some
dimensions for separable convolution were also changed to
reflect our sampling rate.

2) RBNNet: The architecture of the proposed RBNNet is
{ {BiMap-RBN-ReEig} – {BiMap-RBN-ReEig} – {BiMap-
RBN} – {LogEig} – Output}. Each BiMap operation oper-
ated on a R22×22 dimensional SPD manifold. We did not
choose to reduce the dimensions below 22 as it resulted in
lower performances. The eigenvalue rectification threshold
ϵ was determined by examining the eigenvalues of the
calibration data of nine subjects. In a fashion similar to
Principal Component Analysis, we evaluated the eigenvalues
for the covariance representation of every trial for nine
subjects, and we determined a threshold at which 99.5%
of the variance was retained. Lastly, we averaged out the
thresholds to determine the ϵ that was used in all the RBNNet
models.

TABLE I
INFERENCE TIME PER TRIAL AND NUMBER OF PARAMETERS USED FOR

TRAINING THE DECODING MODEL

Method CSP MDM EEGNet RBNNet
# parameters - - ∼ 3500 ∼ 3800
Inference time (s) ∼ 0.00005 ∼ 0.001 ∼ 0.005 ∼ 0.007

D. Evaluation Frameworks

We used the following three different frameworks for
training the different classifiers discussed above

• Subject-Specific (SS): We used the subject-specific cal-
ibration session to build the decoders.

• Leave One Subject Out Transfer (LOSOT): To exploit
the data of all the available subjects, we used the offline



Fig. 2. Bar plot of the average kappa value across subjects for the subject-
specific models. Each marker corresponds to the kappa value of a subject.
**: p < 0.01.

calibration data of all the subjects except the subject
for whom we performed the classification performance
evaluation. This framework mimics the classical transfer
learning scenario.

• Discriminant Subject Transfer (DST): The data quality
for training deep learning models has shown to be of
paramount importance. We hypothesize that many of
the naı̈ve subjects might have large overlapping feature
spaces between the two MI classes, which could lead to
unstable training. In this DST framework, we select the
nine best subjects out of 18 based on the Riemannian
distance between the class prototypes of their offline
data. Using (4), we estimated the probability of classi-
fication of each prototype, and if pk > 0.6, the subject’s
data is included in the decoder training pool. The
resulting models are evaluated for the subjects whose
data was not selected for training. For the subjects
whose data was selected for building the decoder, we
employed the LOSOT strategy, and trained the classifiers
using the other eight best subjects to perform evaluation.

All of the classification pipelines benchmarked in this
paper consist of a relatively low number of learnable pa-
rameters, especially the deep learning (DL) architectures
(Table I) compared to classical DL architectures for EEG [8].
These lightweight models allow for fast decoding (inference
time < 0.01s), which is crucial for providing real-time
feedback in closed-loop BCI settings. All the models were
evaluated on an AMD Ryzen 7 5700U with Radeon Graphics
and 16GB RAM. We predominantly used the pyriemann
package1, Tensorflow implementation of Lawhern et al. [8]2

and PyTorch implementation provided in Brooks et al. [12]
to train our models and perform the evaluations.

1https://github.com/pyRiemann/pyRiemann
2https://github.com/vlawhern/arl-eegmodels

Fig. 3. Bar plot of the average kappa value across subjects for A) CSP, B)
MDM, C) EEGNet, and D) RBNnet classifiers across the different evaluation
frameworks.

IV. RESULTS AND DISCUSSION

Figure 2 shows the classification kappa value averaged
across subjects when different classifiers were built on
the subject-specific calibration data. Friedman’s analysis of
variance (ANOVA) shows a significant main effect of the
method on classification performance (p = 0.0074). Post hoc
pairwise comparison shows that the proposed RBNnet(0.19±
0.17) outperforms both CSP (0.09 ± 0.16) and EEGNet
(0.11±0.15), and the improvement is statistically significant
(p < 0.01). However, there was no statistical difference
between MDM and RBNnet, although the mean of kappa
value across subjects is higher in RBNnet compared to MDM
(0.15± 0.14).

One-factor repeated measures ANOVA or Friedman’s
ANOVA (used when the normality criteria is not met) show
no statistically significant effects of frameworks (Fig 3). In
other words, using (SS) does not lead to significant im-
provements in classification compared to a general classifier
trained on some (DST) or all subjects (LOSOT). Moreover, a
repeated measures ANOVA reveals no statistical significance
between any of the transfer learning frameworks.

Our proposed model (RBNNet) significantly outperformed
CSP and EEGNet in subject specific evaluations (Fig 2),
which aligns with previous findings in the literature show-
ing that Riemannian approaches have better performance
compared to classical approaches for MI classification es-
pecially in data scarce settings [15]. Although it is not
significantly better than MDM, the mean performance of the
proposed RBNNet was still higher than MDM. This result
suggests that introducing nonlinearity in Riemannian classi-
fication approaches could increase classification performance
of subject-specific BCI decoders.

The results in Fig 3 show statistically insignificant differ-
ences between the subject-specific and the transfer learning
frameworks. These results corroborate that transfer learning
frameworks could be used in BCIs without having compro-
mising accuracy. We observe that using data from other sub-
jects improves CSP performance, suggesting that CSP may



have learned robust spatial filters when the training dataset
size increased. For EEGNet, the DST framework shows a
trend towards statistically significantly better performance
(p = 0.07) compared to the LOSOT framework. This can
indicate that EEGNet is more sensitive to the quality of the
training data. In contrast, for the proposed RBNNet archi-
tecture, there is no statistical difference between DST and
LOSOT framework, which supports that RBNNet is robust to
overlapping feature spaces of naı̈ve subjects that are included
in the training pool. Moreover, we notice that the average
classification performance across subjects for the proposed
RBNNet (DST:0.1737 ± 0.1992 LOSOT:0.1754 ± 0.1946)
is better than EEGNet (DST: 0.1553 ± 0.1733 LOSOT:
0.1015±0.1150) in both frameworks. This further highlights
the potential advantage of using Riemannian geometry for
decoding MI intents.

Finally, the accuracy of the transfer learning frameworks
for different classifiers was relatively similar. Although RBN-
Net consistently performed well compared to the other clas-
sifiers in the transfer learning settings, the results are subject
and framework dependent. Recent studies point out that
long-term subject training is crucial in building robust MI-
based BCI systems, including people with severe disabilities
[16]–[18]. Thus, we could use any of the proposed trans-
fer learning frameworks with the benchmarked classifiers,
specifically RBNnet, to skip the calibration session and to
immediately provide appropriate feedback over the course
of their closed-loop BCI training to help them gain better
control. Moreover, to tackle the non-stationarities between
sessions over multiple days, we can use incremental domain
adaptation for Riemannian techniques as it has recently
showed promising results [19], [20]. In our future work,
we plan to incorporate recentering strategies for RBNnet
architectures for MI signal classification.

V. CONCLUSION

In this paper, we proposed a deep learning based archi-
tecture for MI BCIs. The proposed method outperforms the
studied benchmarks on an in-lab recorded MI dataset with
18 naı̈ve BCI subjects. Next, we experimented with different
transfer learning strategies and showed that transfer learning
could be used in place of subject-specific decoders for MI
classification; thus allowing for skipping the tedious subject
specific calibration. Finally, we propose the use of transfer
learning models in a closed-loop BCI training that fosters
subjects’ MI skill acquisition.
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